Production & Supply Chain
Review on Techno-economics of Hydrogen Production Using Current and Emerging Processes: Status and Perspectives
Feb 2024
Publication
This review presents a broad exploration of the techno economic evaluation of different technologies utilized in the production of hydrogen from both renewable and non-renewable sources. These encompass methods ranging from extracting hydrogen from fossil fuels or biomass to employing microbial processes electrolysis of water and various thermochemical cycles. A rigorous techno-economic evaluation of hydrogen production technologies can provide a critical cost comparison for future resource allocation priorities and trajectory. This evaluation will have a great impact on future hydrogen production projects and the development of new approaches to reduce overall production costs and make it a cheaper fuel. Different methods of hydrogen production exhibit varying efficiencies and costs: fast pyrolysis can yield up to 45% hydrogen at a cost range of $1.25 to $2.20 per kilogram while gasification operating at temperatures exceeding 750°C faces challenges such as limited small-scale coal production and issues with tar formation in biomass. Steam methane reforming which constitutes 48% of hydrogen output experiences cost fluctuations depending on scale whereas auto-thermal reforming offers higher efficiency albeit at increased costs. Chemical looping shows promise in emissions reduction but encounters economic hurdles and sorptionenhanced reforming achieves over 90% hydrogen but requires CO2 storage. Renewable liquid reforming proves effective and economically viable. Additionally electrolysis methods like PEM aim for costs below $2.30 per kilogram while dark fermentation though cost-effective grapples with efficiency challenges. Overcoming technical economic barriers and managing electricity costs remains crucial for optimizing hydrogen production in a low-carbon future necessitating ongoing research and development efforts.
Research on Fast Frequency Response Control Strategy of Hydrogen Production Systems
Mar 2024
Publication
With the large-scale integration of intermittent renewable energy generation presented by wind and photovoltaic power the security and stability of power system operations have been challenged. Therefore this article proposes a control strategy of a hydrogen production system based on renewable energy power generation to enable the fast frequency response of a grid. Firstly based on the idea of virtual synchronous control a fast frequency response control transformation strategy for the grid-connected interface of hydrogen production systems for renewable energy power generation is proposed to provide active power support when the grid frequency is disturbed. Secondly based on the influence of VSG’s inertia and damping coefficient on the dynamic characteristics of the system a VSG adaptive control model based on particle swarm optimization is designed. Finally based on the Matlab/Simulink platform a grid-connected simulation model of hydrogen production systems for renewable energy power generation is established. The results show that the interface-transformed electrolytic hydrogen production device can actively respond to the frequency disturbances of the power system and participate in primary frequency control providing active support for the frequency stability of the power system under high-percentage renewable energy generation integration. Moreover the system with parameter optimization has better fast frequency response control characteristics.
An Overview of Hydrogen Energy Generation
Feb 2024
Publication
The global issue of climate change caused by humans and its inextricable linkage to our present and future energy demand presents the biggest challenge facing our globe. Hydrogen has been introduced as a new renewable energy resource. It is envisaged to be a crucial vector in the vast low-carbon transition to mitigate climate change minimize oil reliance reinforce energy security solve the intermittency of renewable energy resources and ameliorate energy performance in the transportation sector by using it in energy storage energy generation and transport sectors. Many technologies have been developed to generate hydrogen. The current paper presents a review of the current and developing technologies to produce hydrogen from fossil fuels and alternative resources like water and biomass. The results showed that reformation and gasification are the most mature and used technologies. However the weaknesses of these technologies include high energy consumption and high carbon emissions. Thermochemical water splitting biohydrogen and photo-electrolysis are long-term and clean technologies but they require more technical development and cost reduction to implement reformation technologies efficiently and on a large scale. A combination of water electrolysis with renewable energy resources is an ecofriendly method. Since hydrogen is viewed as a considerable game-changer for future fuels this paper also highlights the challenges facing hydrogen generation. Moreover an economic analysis of the technologies used to generate hydrogen is carried out in this study.
Critical Review of Life Cycle Assessment of Hydrogen Production Pathways
May 2024
Publication
In light of growing concerns regarding greenhouse gas emissions and the increasingly severe impacts of climate change the global situation demands immediate action to transition towards sustainable energy solutions. In this sense hydrogen could play a fundamental role in the energy transition offering a potential clean and versatile energy carrier. This paper reviews the recent results of Life Cycle Assessment studies of different hydrogen production pathways which are trying to define the routes that can guarantee the least environmental burdens. Steam methane reforming was considered as the benchmark for Global Warming Potential with an average emission of 11 kgCO2eq/kgH2. Hydrogen produced from water electrolysis powered by renewable energy (green H2 ) or nuclear energy (pink H2 ) showed the average lowest impacts with mean values of 2.02 kgCO2eq/kgH2 and 0.41 kgCO2eq/kgH2 respectively. The use of grid electricity to power the electrolyzer (yellow H2 ) raised the mean carbon footprint up to 17.2 kgCO2eq/kgH2 with a peak of 41.4 kgCO2eq/kgH2 in the case of countries with low renewable energy production. Waste pyrolysis and/or gasification presented average emissions three times higher than steam methane reforming while the recourse to residual biomass and biowaste significantly lowered greenhouse gas emissions. The acidification potential presents comparable results for all the technologies studied except for biomass gasification which showed significantly higher and more scattered values. Regarding the abiotic depletion potential (mineral) the main issue is the lack of an established recycling strategy especially for electrolysis technologies that hamper the inclusion of the End of Life stage in LCA computation. Whenever data were available hotspots for each hydrogen production process were identified.
Is the Polish Solar-to-Hydrogen Pathway Green? A Carbon Footprint of AEM Electrolysis Hydrogen Based on an LCA
Apr 2023
Publication
Efforts to direct the economies of many countries towards low-carbon economies are being made in order to reduce their impact on global climate change. Within this process replacing fossil fuels with hydrogen will play an important role in the sectors where electrification is difficult or technically and economically ineffective. Hydrogen may also play a critical role in renewable energy storage processes. Thus the global hydrogen demand is expected to rise more than five times by 2050 while in the European Union a seven-fold rise in this field is expected. Apart from many technical and legislative barriers the environmental impact of hydrogen production is a key issue especially in the case of new and developing technologies. Focusing on the various pathways of hydrogen production the essential problem is to evaluate the related emissions through GHG accounting considering the life cycle of a plant in order to compare the technologies effectively. Anion exchange membrane (AEM) electrolysis is one of the newest technologies in this field with no LCA studies covering its full operation. Thus this study is focused on a calculation of the carbon footprint and economic indicators of a green hydrogen plant on the basis of a life cycle assessment including the concept of a solar-to-hydrogen plant with AEM electrolyzers operating under Polish climate conditions. The authors set the range of the GWP indicators as 2.73–4.34 kgCO2eq for a plant using AEM electrolysis which confirmed the relatively low emissivity of hydrogen from solar energy also in relation to this innovative technology. The economic profitability of the investment depends on external subsidies because as developing technology the AEM electrolysis of green hydrogen from photovoltaics is still uncompetitive in terms of its cost without this type of support.
Decarbonisation of Geographical Islands and the Feasibility of Green Hydrogen Production Using Excess Electricity
May 2023
Publication
Islands face limitations in producing and transporting energy due to their geographical constraints. To address this issue the ROBINSON project funded by the EU aims to create a flexible self-sufficient and environmentally friendly energy system that can be used on isolated islands. The feasibility of renewable electrification and heating system decarbonization of Eigerøy in Norway is described in this article. A mixed-integer linear programming framework was used for modelling. The optimization method is designed to be versatile and adaptable to suit individual scenarios with a flexible and modular formulation that can accommodate boundary conditions specific to each case. Onshore and offshore wind farms and utility-scale photovoltaic (PV) were considered to generate renewable electricity. Each option was found to be feasible under certain conditions. The heating system composed of a biomass gasifier a combined heat and power system with a gas boiler as backup unit was also analyzed. Parameters were identified in which the combination of all three thermal units represented the best system option. In addition the possibility of green hydrogen production based on the excess electricity from each scenario was evaluated.
Renewable Methanol Synthesis
Oct 2019
Publication
Renewable methanol production is an emerging technology that bridges the gap in the shift from fossil fuel to renewable energy. Two thirds of the global emission of CO2 stems from humanity’s increasing energy need from fossil fuels. Renewable energy mainly from solar and wind energy suffers from supply intermittency which current grid infrastructures cannot accommodate. Excess renewable energy can be harnessed to power the electrolysis of water to produce hydrogen which can be used in the catalytic hydrogenation of waste CO2 to produce renewable methanol. This review considers methanol production in the current context regionally for Europe which is dominated by Germany and globally by China. Appropriate carbon-based feedstock for renewable methanol production is considered as well as state-of-the-art renewable hydrogen production technologies. The economics of renewable methanol production necessitates the consideration of regionally relevant methanol derivatives. The thermodynamics kinetics catalytic reaction mechanism operating conditions and reactor design are reviewed in the context of renewable methanol production to reveal the most up to date understanding.
Performance Assessment of a 25 kW Solid Oxide Cell Module for Hydrogen Production and Power Generation
Jan 2024
Publication
Hydrogen produced via water electrolysis from renewable electricity is considered a key energy carrier to defossilize hard-to-electrify sectors. Solid oxide cells (SOC) based reactors can supply hydrogen not only in electrolysis but also in fuel cell mode when operating with (synthetic) natural gas or biogas at low conversion (polygeneration mode). However the scale-up of SOC reactors to the multi-MW scale is still a research topic. Strategies for transient operation depending on electricity intermittency still need to be developed. In this work a unique testing environment for SOC reactors allows reversible operation demonstrating the successful switching between electrolysis (− 75 kW) and polygeneration (25 kW) modes. Transient and steady state experiments show promising performance with a net hydrogen production of 53 kg day− 1 in SOEL operation with ca. − 75 kW power input. The experimental results validate the scaling approach since the reactor shows homogenous temperature profiles.
The Cost of Clean Hydrogen from Offshore Wind and Electrolysis
Feb 2024
Publication
The decarbonization of industry heating and transportation is a major challenge for many countries’ energy transition. Hydrogen is a direct low-carbon fuel alternative to natural gas offering a higher flexibility in the range of possible applications yet currently most hydrogen is produced using carbonintensive steam methane reforming due to cost considerations. Therefore this study explores the economics of a prominent low-carbon method of hydrogen production comparing the cost of hydrogen generation from offshore wind farms with and without grid electricity imports to conventional hydrogen production methods. A novel techno-economic model for offshore electrolysis production costs is presented which makes hydrogen production fully dispatchable leveraging geological salt-cavern storage. This model determines the lifetime costs aportioned across the system components as well as the Levelized Cost of Hydrogen (LCOH). Using the United Kingdom as a case study LCOH from offshore wind power is calculated to be €8.68 /kgH2 using alkaline electrolysis (AEL) €10.49 /kgH2 using proton exchange membrane electrolysis (PEMEL) and €10.88 /kgH2 with grid electricity to backup the offshore wind power. A stochastic Monte-Carlo model is used to asses the uncertainty on costs and identify the cost of capital electrolyser and wind farm capital costs and cost of electricity as the most important drivers of LCOH across the different scenarios. Reducing the capital cost to comparative levels observed on today’s wind farms alone could see AEL LCOH fall to €5.32 /kgH2 near competitive with conventional generation methods.
Energy-exergy Evaluation of Liquefied Hydrogen Production System Based on Steam Methane Reforming and LNG Revaporization
Jul 2023
Publication
The research motivation of this paper is to utilize the large amount of energy wasted during the LNG (liquefied natural gas) gasification process and proposes a synergistic liquefied hydrogen (LH2) production and storage process scheme for LNG receiving station and methane reforming hydrogen production process - SMR-LNG combined liquefied hydrogen production system which uses the cold energy from LNG to pre-cool the hydrogen and subsequently uses an expander to complete the liquefaction of hydrogen. The proposed process is modeled and simulated by Aspen HYSYS software and its efficiency is evaluated and sensitivity analysis is carried out. The simulation results show that the system can produce liquefied hydrogen with a flow rate of 5.89t/h with 99.99% purity when the LNG supply rate is 50t/h. The power consumption of liquefied hydrogen is 46.6kWh/kg LH2; meanwhile the energy consumption of the HL subsystem is 15.9kWh/kg LH2 lower than traditional value of 17~19kWh/kg LH2. The efficiency of the hydrogen production subsystem was 16.9%; the efficiency of the hydrogen liquefaction (HL) subsystem was 29.61% which was significantly higher than the conventional industrial value of 21%; the overall energy efficiency (EE1) of the system was 56.52% with the exergy efficiency (EE2) of 22.2% reflecting a relatively good thermodynamic perfection. The energy consumption of liquefied hydrogen per unit product is 98.71 GJ/kg LH2.
Fuelling the Transition Podcast: The Future of Electrolysers and Hydrogen in the UK
Nov 2021
Publication
ITM Power is a leading electrolyser manufacturer and is a globally recognised expert in hydrogen technologies. In this episode Graham Cooley Chief Executive Officer at ITM Power and John Williams Head of Hydrogen Expertise Cluster at AFRY Management Consulting join us to discuss ITM’s recent announcements. This includes raising £250 million to scale up its electrolyser manufacturing capacity to 5GW per annum by 2024 and forming a partnership with Linde to halve electrolyser manufacturing costs within five years. The episode also explores the UK hydrogen strategy how blue hydrogen compares with green hydrogen the role of electrolysers in hydrogen production and providing flexibility to power grids.
The podcast can be found on their website.
The podcast can be found on their website.
Global Demand Analysis for Carbon Dioxide as Raw Material from Key Industrial Sources and Direct Air Capture to Produce Renewable Electricity-based Fuels and Chemicals
Sep 2022
Publication
Defossilisation of the current fossil fuels dominated global energy system is one of the key goals in the upcoming decades to mitigate climate change. Sharp reduction in the costs of solar photovoltaics wind power and battery technologies enables a rapid transition of the power and some segments of the transport sectors to sustainable energy resources. However renewable electricity-based fuels and chemicals are required for the defossilisation of hard-to-abate segments of transport and industry. The global demand for carbon dioxide as raw material for the production of e-fuels and e-chemicals during a global energy transition to 100% renewable energy is analysed in this research. Carbon dioxide capture and utilisation potentials from key industrial point sources including cement mills pulp and paper mills and waste incinerators are evaluated. According to this study’s estimates the demand for carbon dioxide increases from 0.6 in 2030 to 6.1 gigatonnes in 2050. Key industrial point sources can potentially supply 2.1 gigatonnes of carbon dioxide and thus meet the majority of the demand in the 2030s. By 2050 however direct air capture is expected to supply the majority of the demand contributing 3.8 gigatonnes of carbon dioxide annually. Sustainable and unavoidable industrial point sources and direct air capture are vital technologies which may help the world to achieve ambitious climate goals.
The Role of Direct Air Capture in EU’s Decarbonisation and Associated Carbon Intensity for Synthetic Fuels Production
May 2023
Publication
Direct air capture (DAC) is considered one of the mitigation strategies in most of the future scenarios trying to limit global temperature to 1.5 ◦C. Given the high expectations placed on DAC for future decarbonisation this study presents an extensive review of DAC technologies exploring a number of techno-economic aspects including an updated collection of the current and planned DAC projects around the world. A dedicated analysis focused on the production of synthetic methane methanol and diesel from DAC and electrolytic hydrogen in the European Union (EU) is also performed where the carbon footprint is analysed for different scenarios and energy sources. The results show that the maximum grid carbon intensity to obtain negative emissions with DAC is estimated at 468 gCO2e/kWh which is compliant with most of the EU countries’ current grid mix. Using only photovoltaics (PV) and wind negative emissions of at least −0.81 tCO2e/tCO2 captured can be achieved. The maximum grid intensities allowing a reduction of the synthetic fuels carbon footprint compared with their fossil-fuels counterparts range between 96 and 151 gCO2e/kWh. However to comply with the Renewable Energy Directive II (REDII) sustainability criteria to produce renewable fuels of non-biological origin the maximum stays between 30.2 to 38.8 gCO2e/kWh. Only when using PV and wind is the EU average able to comply with the REDII threshold for all scenarios and fuels with fuel emissions ranging from 19.3 to 25.8 gCO2e/MJ. These results highlight the importance of using renewable energies for the production of synthetic fuels compliant with the EU regulations that can help reduce emissions from difficult-to-decarbonise sectors.
Potential Cost Savings of Large-scale Blue Hydrogen Production via Sorption-enhanced Steam Reforming Process
Jan 2024
Publication
As countries work towards achieving net-zero emissions the need for cleaner fuels has become increasingly urgent. Hydrogen produced from fossil fuels with carbon capture and storage (blue hydrogen) has the potential to play a significant role in the transition to a low-carbon economy. This study examined the technical and economic potential of blue hydrogen produced at 600 MWth(LHV) and scaled up to 1000 MWth(LHV) by benchmarking sorption-enhanced steam reforming process against steam methane reforming (SMR) autothermal gasheated reforming (ATR-GHR) integrated with carbon capture and storage (CCS) and SMR with CCS. Aspen Plus® was used to develop the process model which was validated using literature data. Cost sensitivity analyses were also performed on two key indicators: levelised cost of hydrogen and CO2 avoidance cost by varying natural gas price electricity price CO2 transport and storage cost and carbon price. Results indicate that at a carbon price of 83 £/tCO2e the LCOH for SE-SR of methane is the lowest at 2.85 £/kgH2 which is 12.58% and 22.55% lower than that of ATR-GHR with CCS and SMR plant with CCS respectively. The LCOH of ATR-GHR with CCS and SMR plant with CCS was estimated to be 3.26 and 3.68 £/kgH2 respectively. The CO2 avoidance cost was also observed to be lowest for SE-SR followed by ATR-GHR with CCS then SMR plant with CCS and was observed to reduce as the plant scaled to 1000 MWth(LHV) for these technologies.
Economic and Environmental Assessment of Hydrogen Production from Brazilian Energy Grid
Apr 2023
Publication
The Brazilian energy grid is considered as one of the cleanest in the world because it is composed of more than 80% of renewable energy sources. This work aimed to apply the levelized costs (LCOH) and environmental cost accounting techniques to demonstrate the feasibility of producing hydrogen (H2 ) by alkaline electrolysis powered by the Brazilian energy grid. A project of hydrogen production with a lifetime of 20 years had been evaluated by economical and sensitivity analysis. The production capacity (8.89 to 46.67 kg H2/h) production volume (25 to 100%) hydrogen sale price (1 to 5 USD/kg H2 ) and the MAR rate were varied. Results showed that at 2 USD/kg H2 all H2 production plant sizes are economically viable. On this condition a payback of fewer than 4 years an IRR greater than 31 a break-even point between 56 and 68% of the production volume and a ROI above 400% were found. The sensitivity analysis showed that the best economic condition was found at 35.56 kg H2/h of the plant size which generated a net present value of USD 10.4 million. The cost of hydrogen varied between 1.26 and 1.64 USD/kg and a LCOH of 37.76 to 48.71 USD/MWh. LCA analysis showed that the hydrogen production project mitigated from 26 to 131 thousand tons of CO2 under the conditions studied.
Design and Modeling of a Co-flow Reactor for Turquoise Hydrogen Production
May 2024
Publication
This work focuses on the design of a reactor for producing clean hydrogen from methane pyrolysis in the form of the so-called “turquoise hydrogen”. In addition to its simple geometry the fundamental concept and the main novelty of the proposed method rely on using part of the methane to produce the required heat needed for the thermal decomposition of methane (TDM). The reactor configuration for hydrogen production is shown to produce significant advantages in terms of greenhouse gas (GHG) emissions. A reactive flow CFD model incorporating also soot formation mechanism has been first developed and validated with experimental results available in the literature and then used to design and characterize the performances of proposed reactor configuration. 3D CFD simulations have been carried out to predict the behavior of the reactor configuration; a sensitivity analysis is used for clearing the aspect related to key environmental parameters e.g. the global warming impact (GWI). The real potential of the proposed design resides in the low emissions and high efficiency with which hydrogen is produced at the various operating conditions (very flexible reactor) albeit subject to the presence of carbon by-product. This suggests that this type of methane conversion system could be a good substitute for the most common hydrogen production technologies.
Operation Optimization of Wind/Battery Storage/Alkaline Electrolyzer System Considering Dynamic Hydrogen Production Efficiency
Aug 2023
Publication
Hydrogen energy is regarded as a key path to combat climate change and promote sustainable economic and social development. The fluctuation of renewable energy leads to frequent start/stop cycles in hydrogen electrolysis equipment. However electrochemical energy storage with its fast response characteristics helps regulate the power of hydrogen electrolysis enabling smooth operation. In this study a multi-objective constrained operation optimization model for a wind/battery storage/alkaline electrolyzer system is constructed. Both profit maximization and power abandonment rate minimization are considered. In addition some constraints such as minimum start/stop times upper and lower power limits and input fluctuation limits are also taken into account. Then the non-dominated sorting genetic algorithm II (NSGA-II) algorithm and the entropy method are used to optimize the operation strategy of the hybrid energy system by considering dynamic hydrogen production efficiency and through optimization to obtain the best hydrogen production power of the system under the two objectives. The change in dynamic hydrogen production efficiency is mainly related to the change in electrolyzer power and the system can be better adjusted according to the actual supply of renewable energy to avoid the waste of renewable energy. Our results show that the distribution of Pareto solutions is uniform which indicates the suitability of the NSGA-II algorithm. In addition the optimal solution indicates that the battery storage and alkaline electrolyzer can complement each other in operation and achieve the absorption of wind power. The dynamic hydrogen production efficiency can make the electrolyzer operate more efficiently which paves the way for system optimization. A sensitivity analysis reveals that the profit is sensitive to the price of hydrogen energy.
Hydrogen Production from Methanol–Water Solution and Pure Water Electrolysis Using Nanocomposite Perfluorinated Sulfocationic Membranes Modified by Polyaniline
Oct 2022
Publication
In this work we report the preparation of Nafion membranes containing two different nanocomposite MF-4SC membranes modified with polyaniline (PANI) by the casting method through two different polyaniline infiltration procedures. These membranes were evaluated as a polymer electrolyte membrane for water electrolysis. Operating conditions were optimized in terms of current density stability and methanol concentration. A study was made on the effects on the cell performance of various parameters such as methanol concentration water and cell voltage. The energy required for pure water electrolysis was analyzed at different temperatures for the different membranes. Our experiments showed that PEM electrolyzers provide hydrogen production of 30 mL/min working at 160 mA/cm2 . Our composite PANI membranes showed an improved behavior over pristine perfluorinated sulfocationic membranes (around 20% reduction in specific energy). Methanol–water electrolysis required considerably less (around 65%) electrical power than water electrolysis. The results provided the main characteristics of aqueous methanol electrolysis in which the power consumption is 2.34 kW h/kg of hydrogen at current densities higher than 0.5 A/cm2 . This value is ~20-fold times lower than the electrical energy required to produce 1 kg of hydrogen by water electrolysis.
Greenhouse Gas Reduction Potential and Economics of Green Hydrogen via Water Electrolysis: A Systematic Review of Value-Chain-Wide Decarbonization
May 2024
Publication
Green hydrogen generated via water electrolysis has become an essential energy carrier for achieving carbon neutrality globally because of its versatility in renewable energy consumption and decarbonization applications in hard-to-abate sectors; however there is a lack of systematic analyses of its abatement potential and economics as an alternative to traditional technological decarbonization pathways. Based on bibliometric analysis and systematic evaluation methods this study characterizes and analyzes the literature on the Web of Science from 1996 to 2023 identifying research hotspots methodological models and research trends in green hydrogen for mitigating climate change across total value chain systems. Our review shows that this research theme has entered a rapid development phase since 2016 with developed countries possessing more scientific results and closer partnerships. Difficult-to-abate sectoral applications and cleaner production are the most famous value chain links and research hotspots focus on three major influencing factors: the environment; techno-economics; and energy. Green hydrogen applications which include carbon avoidance and embedding to realize carbon recycling have considerable carbon reduction potential; however uncertainty limits the influence of carbon reduction cost assessment indicators based on financial analysis methods for policy guidance. The abatement costs in the decarbonization sector vary widely across value chains electricity sources baseline scenarios technology mixes and time scenarios. This review shows that thematic research trends are focused on improving and optimizing solutions to uncertainties as well as studying multisectoral synergies and the application of abatement assessment metrics.
PEM Water Electrolysis for Hydrogen Production: Fundamentals, Advances, and Prospects
Jun 2022
Publication
Hydrogen as a clean energy carrier is of great potential to be an alternative fuel in the future. Proton exchange membrane (PEM) water electrolysis is hailed as the most desired technology for high purity hydrogen production and self-consistent with volatility of renewable energies has ignited much attention in the past decades based on the high current density greater energy efficiency small mass-volume characteristic easy handling and maintenance. To date substantial efforts have been devoted to the development of advanced electrocatalysts to improve electrolytic efficiency and reduce the cost of PEM electrolyser. In this review we firstly compare the alkaline water electrolysis (AWE) solid oxide electrolysis (SOE) and PEM water electrolysis and highlight the advantages of PEM water electrolysis. Furthermore we summarize the recent progress in PEM water electrolysis including hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) electrocatalysts in the acidic electrolyte. We also introduce other PEM cell components (including membrane electrode assembly current collector and bipolar plate). Finally the current challenges and an outlook for the future development of PEM water electrolysis technology for application in future hydrogen production are provided.
No more items...