Production & Supply Chain
Green and Blue Hydrogen Production: An Overview in Colombia
Nov 2022
Publication
Colombia a privileged country in terms of diversity availability of natural resources and geographical location has set a roadmap for hydrogen as part of the energy transition plan proposed in 2021. To reduce its emissions in the mid-term and foster its economy hydrogen production should be green and blue with specific targets set for 2030 for the hydrogen costs and produced quantities. This work compares the state-of-the-art production of blue and green hydrogen and how Colombia is doing in each pathway. A deeper analysis considers the advantages of Colombia’s natural resources the possible paths the government could follow and the feedstock’s geographical location for hydrogen production and transportation. Then one discusses what may be the next steps in terms of policies and developments to succeed in implementing the plan. Overall it is concluded that green hydrogen could be the faster more sustainable and more efficient method to implement in Colombia. However blue hydrogen could play an essential role if oil and gas companies assess the advantages of carbon dioxide utilization and promote its deployment.
Techno-economic Viability of Islanded Green Ammonia as a Carbon-free Energy Vector and as a Substitute for Conventional Production
Jul 2020
Publication
Decarbonising ammonia production is an environmental imperative given that it independently accounts for 1.8% of global carbon dioxide emissions and supports the feeding of over 48% of the global population. The recent decline of production costs and its potential as an energy vector warrant investigation of whether green ammonia production is commercially competitive. Considering 534 locations in 70 countries and designing and operating the islanded production process to minimise the levelised cost of ammonia (LCOA) at each we show the range of achievable LCOA the cost of process flexibility the components of LCOA and therein the scope of LCOA reduction achievable at present and in 2030. These results are benchmarked against ammonia spot prices cost per GJ of refined fuels and the LCOE of alternative energy storage methods. Currently a LCOA of $473 t1 is achievable at the best locations the required process flexibility increases the achievable LCOA by 56%; the electrolyser CAPEX and operation are the most significant costs. By 2030 $310 t1 is predicted to be achievable with multiple locations below $350 t1 . At $25.4 GJ11 ) that do not have the benefit of being carbon-free.
Large-scale Hydrogen Production via Water Electrolysis: A Techno-economic and Environmental Assessment
Jul 2022
Publication
Low-carbon (green) hydrogen can be generated via water electrolysis using photovoltaic wind hydropower or decarbonized grid electricity. This work quantifies current and future costs as well as environmental burdens of large-scale hydrogen production systems on geographical islands which exhibit high renewable energy potentials and could act as hydrogen export hubs. Different hydrogen production configurations are examined considering a daily hydrogen production rate of 10 tonnes on hydrogen production costs life cycle greenhouse gas emissions material utilization and land transformation. The results demonstrate that electrolytic hydrogen production costs of 3.7 Euro per kg H2 are within reach today and that a reduction to 2 Euro per kg H2 in year 2040 is likely hence approaching cost parity with hydrogen from natural gas reforming even when applying ‘‘historical’’ natural gas prices. The recent surge of natural gas prices shows that cost parity between green and grey hydrogen can already be achieved today. Producing hydrogen via water electrolysis with low costs and low GHG emissions is only possible at very specific locations nowadays. Hybrid configurations using different electricity supply options demonstrate the best economic performance in combination with low environmental burdens. Autonomous hydrogen production systems are especially effective to produce low-carbon hydrogen although the production of larger sized system components can exhibit significant environmental burdens and investments. Some materials (especially iridium) and the availability of land can be limiting factors when scaling up green hydrogen production with polymer electrolyte membrane (PEM) electrolyzers. This implies that decision-makers should consider aspects beyond costs and GHG emissions when designing large-scale hydrogen production systems to avoid risks coming along with the supply of for example scarce materials
Green Hydrogen Production Technologies from Ammonia Cracking
Nov 2022
Publication
The rising technology of green hydrogen supply systems is expected to be on the horizon. Hydrogen is a clean and renewable energy source with the highest energy content by weight among the fuels and contains about six times more energy than ammonia. Meanwhile ammonia is the most popular substance as a green hydrogen carrier because it does not carry carbon and the total hydrogen content of ammonia is higher than other fuels and is thus suitable to convert to hydrogen. There are several pathways for hydrogen production. The considered aspects herein include hydrogen production technologies pathways based on the raw material and energy sources and different scales. Hydrogen can be produced from ammonia through several technologies such as electro-chemical photocatalytic and thermochemical processes that can be used at production plants and fueling stations taking into consideration the conversion efficiency reactors catalysts and their related economics. The commercial process is conducted by using expensive Ru catalysts in the ammonia converting process but is considered to be replaced by other materials such as Ni Co La and other perovskite catalysts which have high commercial potential with equivalent activity for extracting hydrogen from ammonia. For successful engraftment of ammonia to hydrogen technology into industry integration with green technologies and economic methods as well as safety aspects should be carried out.
Sizing of Hybrid Supercapacitors and Lithium-Ion Batteries for Green Hydrogen Production from PV in the Australian Climate
Feb 2023
Publication
Instead of storing the energy produced by photovoltaic panels in batteries for later use to power electric loads green hydrogen can also be produced and used in transportation heating and as a natural gas alternative. Green hydrogen is produced in a process called electrolysis. Generally the electrolyser can generate hydrogen from a fluctuating power supply such as renewables. However due to the startup time of the electrolyser and electrolyser degradation accelerated by multiple shutdowns an idle mode is required. When in idle mode the electrolyser uses 10% of the rated electrolyser load. An energy management system (EMS) shall be applied where a storage technology such as a lithium-ion capacitor or lithium-ion battery is used. This paper uses a state-machine EMS of PV microgrid for green hydrogen production and energy storage to manage the hydrogen production during the morning from solar power and in the night using the stored energy in the energy storage which is sized for different scenarios using a lithium-ion capacitor and lithium-ion battery. The mission profile and life expectancy of the lithium-ion capacitor and lithium-ion battery are evaluated considering the system’s local irradiance and temperature conditions in the Australian climate. A tradeoff between storage size and cutoffs of hydrogen production as variables of the cost function is evaluated for different scenarios. The lithium-ion capacitor and lithium-ion battery are compared for each tested scenario for an optimum lifetime. It was found that a lithium-ion battery on average is 140% oversized compared to a lithium-ion capacitor but a lithium-ion capacitor has a smaller remaining capacity of 80.2% after ten years of operation due to its higher calendar aging while LiB has 86%. It was also noticed that LiB is more affected by cycling aging while LiC is affected by calendar aging. However the average internal resistance after 10 years for the lithium-ion capacitor is 264% of the initial internal resistance while for lithium-ion battery is 346% making lithium-ion capacitor a better candidate for energy storage if it is used for grid regulation as it requires maintaining a lower internal resistance over the lifetime of the storage.
Review on COx-free Hydrogen from Methane Cracking: Catalysts, Solar Energy Integration and Applications
Oct 2021
Publication
Hydrogen fuel production from methane cracking is a sustainable process compared to the ones currently in practice due to minimal greenhouse gas emissions. Carbon black that is co-produced is a valuable product and can be marketed to other industries. As this is a high-temperature process using concentrated solar energy can further improve its sustainability. In this study a detailed review is conducted to study the advancements in methane cracking for hydrogen production using different catalysts. Various solar reactors developed for methane cracking are discussed. The application of hydrogen to produce other valuable chemicals are outlined. Hydrogen carriers such as methanol dimethyl ether ammonia and urea can efficiently store hydrogen energy and enable easier transportation. Further research in the field of methane cracking is required for reactor scale-up improved economics and to reduce the problems arising from carbon deposition leading to reactor clogging and catalyst deactivation.
Favorable Start-Up Behavior of Polymer Electrolyte Membrane Water Electrolyzers
Nov 2022
Publication
Dynamically-operated water electrolyzers enable the production of green hydrogen for cross-sector applications while simultaneously stabilizing power grids. In this study the start-up phase of polymer electrolyte membrane (PEM) water electrolyzers is investigated in the context of intermittent renewable energy sources. During the start-up of the electrolysis system the temperature increases which directly influences hydrogen production efficiency. Experiments on a 100 kWel electrolyzer combined with simulations of electrolyzers with up to 1 MWel were used to analyze the start-up phase and assess its implications for operators and system designers. It is shown that part-load start-up at intermediate cell voltages of 1.80 V yields the highest efficiencies of 74.0 %LHV compared to heat-up using resistive electrical heating elements which reaches maximum efficiencies of 60.9 %LHV. The results further indicate that large-scale electrolyzers with electrical heaters may serve as flexible sinks in electrical grids for durations of up to 15 min.
Cost Benefit Analysis for Green Hydrogen Production from Treated Effluent: The Case Study of Oman
Nov 2022
Publication
Recently the management of water and wastewater is gaining attention worldwide as a way of conserving the natural resources on the planet. The traditional wastewater treatment in Oman is such that the treated effluent produced is only reused for unfeasible purposes such as landscape irrigation cooling or disposed of in the sea. Introducing more progressive reuse applications can result in achieving a circular economy by considering treated effluent as a source of producing new products. Accordingly wastewater treatment plants can provide feedstock for green hydrogen production processes. The involvement of the wastewater industry in the green pathway of production scores major points in achieving decarbonization. In this paper the technical and economic feasibility of green hydrogen production in Oman was carried out using a new technique that would help explore the benefits of the treated effluent from wastewater treatment in Oman. The feasibility study was conducted using the Al Ansab sewage treatment plant in the governate of Muscat in Wilayat (region) Bousher. The results have shown that the revenue from Al Ansab STP in a conventional case is 7.02 million OMR/year while sustainable alternatives to produce hydrogen from the Proton Exchange Membrane (PEM) electrolyzer system for two cases with capacities of 1500 kg H2/day and 50000 kg H2/day would produce revenue of 8.30 million OMR/year and 49.73 million OMR/year respectively.
Production of Hydrogen from Offshore Wind in China and Cost-competitive Supply to Japan
Nov 2021
Publication
The Japanese government has announced a commitment to net-zero greenhouse gas emissions by 2050. It envisages an important role for hydrogen in the nation’s future energy economy. This paper explores the possibility that a significant source for this hydrogen could be produced by electrolysis fueled by power generated from offshore wind in China. Hydrogen could be delivered to Japan either as liquid or bound to a chemical carrier such as toluene or as a component of ammonia. The paper presents an analysis of factors determining the ultimate cost for this hydrogen including expenses for production storage conversion transport and treatment at the destination. It concludes that the Chinese source could be delivered at a volume and cost consistent with Japan’s idealized future projections.
Potential for Natural Hydrogen in Quebec (Canada): A First Review
Mar 2024
Publication
The energy transition calls for natural hydrogen exploration with most occurrences discovered either inadvertently or more recently at the location of potentially diffusive circles observed from a change of vegetation cover at the surface. However some notable hydrogen occurrences are not directly associated with the presence of diffusive circles like the Bourakebougou field in Mali. Thus the objective of this work was to highlight geological areas that have some potential to find natural hydrogen in Quebec a Canadian province where no diffusive circles have yet been documented but which is rich in potential source rocks and where no exploration for natural hydrogen has been undertaken so far. A review of the different geological regions of Quebec was undertaken to highlight the relevant characteristics and geographical distribution of geological assemblages that may produce or have produced natural hydrogen in particular iron-rich rocks but also uranium-rich rocks supramature shales and zones where significant structural discontinuities are documented or suspected which may act as conduits for the migration of fluids of mantle origin. In addition to regional and local geological data an inventory of available geochemical data is also carried out to identify potential tracers or proxies to facilitate subsequent exploration efforts. A rating was then proposed based on the quality of the potential source rocks which also considers the presence of reservoir rocks and the proximity to end-users. This analysis allowed rating areas of interest for which fieldwork can be considered thus minimizing the exploratory risks and investments required to develop this resource. The size of the study area (over 1.5 million km2 ) the diversity of its geological environments (from metamorphic cratons to sedimentary basins) and their wide age range (from Archean to Paleozoic) make Quebec a promising territory for natural hydrogen exploration and to test the systematic rating method proposed here.
Strategies for Life Cycle Impact Reduction of Green Hydrogen Production - Influence of Electrolyser Value Chain Design
Mar 2024
Publication
Green Hydrogen (H2 via renewable-driven electrolysis) is emerging as a vector to meet net-zero emission targets provided it is produced with a low life cycle impact. While certification schemes for green H2 have been introduced they mainly focus on the embodied emissions from energy supply during electrolyser operation. This narrow focus on just operation is an oversight considering that a complete green H2 value chain also includes the electrolyser’s manufacturing transport/installation and end-of-life. Each step of this chain involves materials and energy flows that impart impacts that undermine the clean and sustainable status of H2. Therefore holistic and harmonised assessments of the green H2 production chain are required to ensure both economic and environmental deployment of H2. Herein we conduct an overarching environmental assessment encompassing the production chain described above using Australia as a case study. Our results indicate that while the energy source has the most impact material and manufacturing inputs associated with electrolyser production are increasingly significant as the scale of H2 output expands. Moreover wind power electrolysis has a greater chance of achieving green H2 certification compared to solar powered while increasing the amount of localised manufactured content and investment in end-of-life recycling of electrolyser components can reduce the overall life cycle impact of green H2 production by 20%.
Golden Hydrogen
Nov 2022
Publication
Hydrogen is a colorless compound to which symbolic colors are attributed to classify it according to the resources used in production production processes such as electrolysis and energy vectors such as solar radiation. Green hydrogen is produced mainly by electrolysis of water using renewable electricity from an electricity grid powered by wind geothermal solar or hydroelectric power plants. For grid-powered electrolyzers the tendency is to go larger to reach the gigawatt-scale. An evolution in the opposite direction is the integration of the photophysics of sunlight harvesting and the electrochemistry of water molecule splitting in solar hydrogen generator units with each unit working at kilowatt-scale or less. Solar hydrogen generators are intrinsically modular needing multiplication of units to reach gigawatt-scale. To differentiate these two fundamentally different technologies the term ‘golden hydrogen’ is proposed referring to hydrogen produced by modular solar hydrogen generators. Decentralized modular production of golden hydrogen is complementary to centralized energy-intensive green hydrogen production. The differentiation between green hydrogen and golden hydrogen will facilitate the introduction of the additionality principle in clean hydrogen policy.
Efficient Plasma Technology for the Production of Green Hydrogen from Ethanol and Water
Apr 2022
Publication
This study concerns the production of hydrogen from a mixture of ethanol and water. The process was conducted in plasma generated by a spark discharge. The substrates were introduced in the liquid phase into the reactor. The gaseous products formed in the spark reactor were hydrogen carbon monoxide carbon dioxide methane acetylene and ethylene. Coke was also produced. The energy efficiency of hydrogen production was 27 mol(H2 )/kWh and it was 36% of the theoretical energy efficiency. The high value of the energy efficiency of hydrogen production was obtained with relatively high ethanol conversion (63%). In the spark discharge it was possible to conduct the process under conditions in which the ethanol conversion reached 95%. However this entailed higher energy consumption and reduced the energy efficiency of hydrogen production to 8.8 mol(H2 )/kWh. Hydrogen production increased with increasing discharge power and feed stream. However the hydrogen concentration was very high under all tested conditions and ranged from 57.5 to 61.5%. This means that the spark reactor is a device that can feed fuel cells the power load of which can fluctuate.
Exploring the Possibility of Using Molten Carbonate Fuel Cell for the Flexible Coproduction of Hydrogen and Power
Sep 2021
Publication
Fuel cells are electrochemical devices that are conventionally used to convert the chemical energy of fuels into electricity while producing heat as a byproduct. High temperature fuel cells such as molten carbonate fuel cells and solid oxide fuel cells produce significant amounts of heat that can be used for internal reforming of fuels such as natural gas to produce gas mixtures which are rich in hydrogen while also producing electricity. This opens up the possibility of using high temperature fuel cells in systems designed for flexible coproduction of hydrogen and power at very high system efficiency. In a previous study the flowsheet software Cycle-Tempo has been used to determine the technical feasibility of a solid oxide fuel cell system for flexible coproduction of hydrogen and power by running the system at different fuel utilization factors (between 60 and 95%). Lower utilization factors correspond to higher hydrogen production while at a higher fuel utilization standard fuel cell operation is achieved. This study uses the same basis to investigate how a system with molten carbonate fuel cells performs in identical conditions also using Cycle-Tempo. A comparison is made with the results from the solid oxide fuel cell study.
Forecasting Hydrogen Production from Wind Energy in a Suburban Environment Using Machine Learning
Nov 2022
Publication
The environment is seriously threatened by the rising energy demand and the use of conventional energy sources. Renewable energy sources including hydro solar and wind have been the focus of extensive research due to the proliferation of energy demands and technological advancement. Wind energy is mostly harvested in coastal areas and little work has been done on energy extraction from winds in a suburban environment. The fickle behavior of wind makes it a less attractive renewable energy source. However an energy storage method may be added to store harvested wind energy. The purpose of this study is to evaluate the feasibility of extracting wind energy in terms of hydrogen energy in a suburban environment incorporating artificial intelligence techniques. To this end a site was selected latitude 33.64◦ N longitude 72.98◦ N and elevation 500 m above mean sea level in proximity to hills. One year of wind data consisting of wind speed wind direction and wind gust was collected at 10 min intervals. Subsequently long short-term memory (LSTM) support vector regression (SVR) and linear regression models were trained on the empirically collected data to estimate daily hydrogen production. The results reveal that the overall prediction performance of LSTM was best compared to that of SVR and linear regression models. Furthermore we found that an average of 6.76 kg/day of hydrogen can be produced by a 1.5 MW wind turbine with the help of an artificial intelligence method (LSTM) that is well suited for time-series data to classify process and predict.
Advances in Hydrogen Production from Natural Gas Reforming
Jun 2021
Publication
Steam natural gas reforming is the preferred technique presently used to produce hydrogen. Proposed in 1932 the technique is very well established but still subjected to perfections. Herein first the improvements being sought in catalysts and processes are reviewed and then the advantage of replacing the energy supply from burning fuels with concentrated solar energy is discussed. It is especially this advance that may drastically reduce the economic and environmental cost of hydrogen production. Steam reforming can be easily integrated into concentrated solar with thermal storage for continuous hydrogen production.
Stoichiometric Equilibrium Model based Assessment of Hydrogen Generation through Biomass Gasification
Sep 2016
Publication
Hydrogen produced from renewable energy sources is clean and sustainable. Biomass gasification has a significant role in the context of hydrogen generation from biomass. Assessment of the performance of biomass gasification process regarding the product gas yield and composition can be performed using mathematical models. Among the different mathematical models thermodynamic equilibrium models are simple and useful tools for the first estimate and preliminary comparison and assessment of gasification process. A stoichiometric thermodynamic equilibrium model is developed here and its performance is validated for steam gasification and air-steam gasification. The model is then used to assess the feasibility of different biomass feedstock for gasification based on hydrogen yield and lower heating value.
Maximizing Green Hydrogen Production from Water Electrocatalysis: Modeling and Optimization
Mar 2023
Publication
The use of green hydrogen as a fuel source for marine applications has the potential to significantly reduce the carbon footprint of the industry. The development of a sustainable and cost-effective method for producing green hydrogen has gained a lot of attention. Water electrolysis is the best and most environmentally friendly method for producing green hydrogen-based renewable energy. Therefore identifying the ideal operating parameters of the water electrolysis process is critical to hydrogen production. Three controlling factors must be appropriately identified to boost hydrogen generation namely electrolysis time (min) electric voltage (V) and catalyst amount (µg). The proposed methodology contains the following two phases: modeling and optimization. Initially a robust model of the water electrolysis process in terms of controlling factors was established using an adaptive neuro-fuzzy inference system (ANFIS) based on the experimental dataset. After that a modern pelican optimization algorithm (POA) was employed to identify the ideal parameters of electrolysis duration electric voltage and catalyst amount to enhance hydrogen production. Compared to the measured datasets and response surface methodology (RSM) the integration of ANFIS and POA improved the generated hydrogen by around 1.3% and 1.7% respectively. Overall this study highlights the potential of ANFIS modeling and optimal parameter identification in optimizing the performance of solar-powered water electrocatalysis systems for green hydrogen production in marine applications. This research could pave the way for the more widespread adoption of this technology in the marine industry which would help to reduce the industry’s carbon footprint and promote sustainability.
Hydrogenerally - Episode 10: Green Hydrogen Production
Feb 2023
Publication
Debra Jones Chemistry Knowledge Transfer Manager and Simon Buckley Zero Emission Mobility Knowledge Transfer Manager from Innovate UK KTN talk about green hydrogen production with their special guest Chris Jackson CEO & Founder at Protium.
This podcast discussion centres around methods of producing clean hydrogen from renewable energy sources the innovative projects Protium is working on and how much green hydrogen will the UK produce by 2030 and beyond.
The podcast can be found on their website.
This podcast discussion centres around methods of producing clean hydrogen from renewable energy sources the innovative projects Protium is working on and how much green hydrogen will the UK produce by 2030 and beyond.
The podcast can be found on their website.
Hydrogenerally - Episode 9: Nuclear Hydrogen
Jan 2023
Publication
In this episode of the podcast Debra Jones Chemistry Knowledge Transfer Manager and Ray Chegwin Nuclear Knowledge Transfer Manager from Innovate UK KTN talk about nuclear uses for hydrogen with special guest Allan Simpson Technical Lead at the National Nuclear Laboratory.
The podcast can be found on their website.
The podcast can be found on their website.
No more items...