Production & Supply Chain
Design and Performance Assessment of a Solar-to-hydrogen System Thermally Assisted by Recovered Heat from a Molten Carbonate Fuel Cell
Mar 2022
Publication
Solar-to-hydrogen plants are predominantly based on steam electrolysis. Steam electrolysis requires water electricity and heat. The excess electric energy is generally converted into hydrogen via an electrolyser. The use of waste heat in hydrogen generation process promises energy efficiency improvement and production fluctuation reductions. This work investigates the techno-economic performance of the proposed system which recovers the waste heat from molten carbonate fuel cell and uses solar energy to produce steam. Comparison of thermally assisted solar system with corresponding solar system is done. The fuel cell provides 80% of the required thermal energy. The solar PV array provides the required electricity. The thermally assisted solar-to-hydrogen system annual energy efficiency (38.5 %) is higher than that of solar- to- hydrogen system. The investment cost of the proposed system is 2.4 % higher than that using only solar parabolic trough collector for the same required amount of heat. The advantage is that the fuel cell simultaneously produces electricity and heat. The recovery of waste heat allows getting an annual overall efficiency of 63.2 % for the molten carbonate fuel cell. It yields 2152 MWh of electricity per year. The 1 MW electrolysers annually generates 74 tonnes of hydrogen.
Decarbonizing Natural Gas: A Review of Catalytic Decomposition and Carbon Formation Mechanisms
Apr 2022
Publication
In the context of energy conservation and the reduction of CO2 emissions inconsistencies between the inevitable emission of CO2 in traditional hydrogen production methods and eco-friendly targets have become more apparent over time. The catalytic decomposition of methane (CDM) is a novel technology capable of producing hydrogen without releasing CO2 . Since hydrogen produced via CDM is neither blue nor green the term “turquoise” is selected to describe this technology. Notably the by-products of methane cracking are simply carbon deposits with different structures which can offset the cost of hydrogen production cost should they be harvested. However the encapsulation of catalysts by such carbon deposits reduces the contact area between said catalysts and methane throughout the CDM process thereby rendering the continuous production of hydrogen impossible. This paper mainly covers the CDM reaction mechanisms of the three common metal-based catalysts (Ni Co Fe) from experimental and modelling approaches. The by-products of carbon modality and the key parameters that affect the carbon formation mechanisms are also discussed.
Electrolyzers Enhancing Flexibility in Electric Grids
Nov 2017
Publication
This paper presents a real-time simulation with a hardware-in-the-loop (HIL)-based approach for verifying the performance of electrolyzer systems in providing grid support. Hydrogen refueling stations may use electrolyzer systems to generate hydrogen and are proposed to have the potential of becoming smarter loads that can proactively provide grid services. On the basis of experimental findings electrolyzer systems with balance of plant are observed to have a high level of controllability and hence can add flexibility to the grid from the demand side. A generic front end controller (FEC) is proposed which enables an optimal operation of the load on the basis of market and grid conditions. This controller has been simulated and tested in a real-time environment with electrolyzer hardware for a performance assessment. It can optimize the operation of electrolyzer systems on the basis of the information collected by a communication module. Real-time simulation tests are performed to verify the performance of the FEC-driven electrolyzers to provide grid support that enables flexibility greater economic revenue and grid support for hydrogen producers under dynamic conditions. The FEC proposed in this paper is tested with electrolyzers however it is proposed as a generic control topology that is applicable to any load.
Scenario-Based Techno-Economic Analysis of Steam Methane Reforming Process for Hydrogen Production
Jun 2021
Publication
Steam methane reforming (SMR) process is regarded as a viable option to satisfy the growing demand for hydrogen mainly because of its capability for the mass production of hydrogen and the maturity of the technology. In this study an economically optimal process configuration of SMR is proposed by investigating six scenarios with different design and operating conditions including CO2 emission permits and CO2 capture and sale. Of the six scenarios the process configuration involving CO2 capture and sale is the most economical with an H2 production cost of $1.80/kg-H2. A wide range of economic analyses is performed to identify the tradeoffs and cost drivers of the SMR process in the economically optimal scenario. Depending on the CO2 selling price and the CO2 capture cost the economic feasibility of the SMR-based H2 production process can be further improved.
Everything About Hydrogen Podcast: Hydrogen, Net Zero and Circularity a Perfect Syzygy!
Jul 2020
Publication
On this week's show we speak with Trevor Best CEO of Syzygy Plasmonics a Houston area startup who is a pioneer in the field of photocatalytic based hydrogen production. The company has recently closed its series A funding round. We discuss with Trevor the potential applications of the Syzygy approach and where they are aiming to engage the market first as well as his view of the evolution of the hydrogen market today. All this and more on the show!
The podcast can be found on their website
The podcast can be found on their website
Molten Carbonate Fuel Cells for Simultaneous CO2 Capture, Power Generation, and H2 Generation
Mar 2022
Publication
This article presents a new technology for the generation of power and steam or other process heat with very low CO2 emissions. It is well known that cogeneration of electricity and steam is highly efficient and that amine units can be used to remove CO2 from combustion flue gas but that the amine unit consumes a significant amount of steam and power reducing the overall system efficiency. In this report the use of molten carbonate fuel cells (MCFCs) to capture CO2 from cogen units is investigated and shown to be highly efficient due to the additional power that they produce while capturing the CO2. Furthermore the MCFCs are capable of reforming methane to hydrogen simultaneous to the power production and CO2 capture. This hydrogen can either be recycled as fuel for consumption by the cogen or MCFCs or exported to an independent combustion unit as low carbon fuel thereby decarbonizing that unit as well. The efficiency of MCFCs for CO2 capture is higher than use of amines in all cases studied often by a substantial margin while at the same time the MCFCs avoid more CO2 than the amine technology. As one example the use of amines on a cogeneration unit can avoid 87.6% of CO2 but requires 4.91 MJ/kg of additional primary energy to do so. In contrast the MCFCs avoid 89.4% of CO2 but require only 1.37 MJ/kg of additional primary energy. The high thermal efficiency and hydrogen export option demonstrate the potential of this technology for widespread deployment in a low carbon energy economy.
Current Legislative Framework for Green Hydrogen Production by Electrolysis Plants in Germany
Mar 2022
Publication
(1) The German energy system transformation towards an entirely renewable supply is expected to incorporate the extensive use of green hydrogen. This carbon-free fuel allows the decarbonization of end-use sectors such as industrial high-temperature processes or heavy-duty transport that remain challenging to be covered by green electricity only. However it remains unclear whether the current legislative framework supports green hydrogen production or is an obstacle to its rollout. (2) This work analyzes the relevant laws and ordinances regarding their implications on potential hydrogen production plant operators. (3) Due to unbundling-related constraints potential operators from the group of electricity transport system and distribution system operators face lacking permission to operate production plants. Moreover ownership remains forbidden for them. The same applies to natural gas transport system operators. The case is less clear for natural gas distribution system operators where explicit regulation is missing. (4) It is finally analyzed if the production of green hydrogen is currently supported in competition with fossil hydrogen production not only by the legal framework but also by the National Hydrogen Strategy and the Amendment of the Renewable Energies Act. It can be concluded that in recent amendments of German energy legislation regulatory support for green hydrogen in Germany was found. The latest legislation has clarified crucial points concerning the ownership and operation of electrolyzers and the treatment of green hydrogen as a renewable energy carrier.
Synthesis and Characterization of Biogenic Iron Oxides of Different Nanomorphologies from Pomegranate Peels for Efficient Solar Hydrogen Production
Feb 2020
Publication
An eco-friendly green synthesis of mesoporous iron oxide (hematite) using pomegranate peels through a low-cost and massive product method was investigated. The mass of pomegranate peels was varied to control the morphology of the produced hematite (Fe2O3). The structures textures and optical properties of the products were investigated by FTIR XRD FE-SEM and UV–Vis spectroscopy. Three different Fe2O3 morphologies were obtained; Fe2O3(I) nanorod like shape Fe2O3(II) nanoparticles and Fe2O3(III) nanoporous structured layer. The bandgap values for Fe2O3 (I) (II) and (III) were 2.71 2.95 and 2.29 eV respectively. The newly hematite samples were used as promising photoelectrodes supported on graphite substrate for the photoelectrochemical (PEC) water splitting toward the efficient production of solar hydrogen. The number of generated hydrogen moles was calculated per active area to be 50 molh−1 cm−2 for electrode III which decreased to 15.3molh−1 cm−2 for electrode II. The effects of temperature (30–70 ◦C) on the PEC behavior of the three electrodes were addressed. Different thermodynamic parameters were calculated for the three electrodes which showed activation energies of 13.4 16.8 and 15.2 kJmol−1 respectively. The electrode stability was addressed as a function of the number of runs and exposure time in addition to electrochemical impedance study. Finally the conversion efficiency of the incident photon to-current(IPCE) was estimated under the monochromatic illumination. The optimum value was ∼11% @ 390nm for Fe2O3(III) electrode
Optimal Dispatch Model for PV-electrolysis Plants in Self-consumption Regime to Produce Green Hydrogen: A Spanish Case Study
May 2022
Publication
The production of green hydrogen from renewable energy by means of water electrolysis is a promising approach to support energy sector decarbonization. This paper presents a techno-economic model of plants with PV sources connected to electrolysis in self-consumption regime that considers the dynamics of electrolysis systems. The model calculates the optimal hourly dispatch of the electrolysis system including the operational states (production standby and idle) the load factor in production and the energy imports and exports to the electricity grid. Results indicate that the model is a useful decision support tool to operate electrolysis plants connected to PV plants in self-consumption regimes with the target of reducing hydrogen production costs.
Green Hydrogen Production from Raw Biogas: A Techno-Economic Investigation of Conventional Processes Using Pressure Swing Adsorption Unit
Feb 2018
Publication
This paper discusses the techno-economic assessment of hydrogen production from biogas with conventional systems. The work is part of the European project BIONICO whose purpose is to develop and test a membrane reactor (MR) for hydrogen production from biogas. Within the BIONICO project steam reforming (SR) and autothermal reforming (ATR) have been identified as well-known technologies for hydrogen production from biogas. Two biogases were examined: one produced by landfill and the other one by anaerobic digester. The purification unit required in the conventional plants has been studied and modeled in detail using Aspen Adsorption. A pressure swing adsorption system (PSA) with two and four beds and a vacuum PSA (VPSA) made of four beds are compared. VPSA operates at sub-atmospheric pressure thus increasing the recovery: results of the simulations show that the performances strongly depend on the design choices and on the gas feeding the purification unit. The best purity and recovery values were obtained with the VPSA system which achieves a recovery between 50% and 60% at a vacuum pressure of 0.1 bar and a hydrogen purity of 99.999%. The SR and ATR plants were designed in Aspen Plus integrating the studied VPSA model and analyzing the behavior of the systems at the variation of the pressure and the type of input biogas. The SR system achieves a maximum efficiency calculated on the LHV of 52% at 12 bar while the ATR of 28% at 18 bar. The economic analysis determined a hydrogen production cost of around 5 €/kg of hydrogen for the SR case.
Economic Dispatch Model of Nuclear High-Temperature Reactor with Hydrogen Cogeneration in Electricity Market
Dec 2021
Publication
Hydrogen produced without carbon emissions could be a useful fuel as nations look to decarbonize their electricity transport and industry sectors. Using the iodine–sulfur (IS) cycle coupled with a nuclear heat source is one method for producing hydrogen without the use of fossil fuels. An economic dispatch model was developed for a nuclear-driven IS system to determine hydrogen sale prices that would make such a system profitable. The system studied is the HTTR GT/H2 a design for power and hydrogen cogeneration at the Japan Atomic Energy Agency’s High Temperature Engineering Test Reactor. This study focuses on the development of the economic model and the role that input data plays in the final calculated values. Using a historical price duration curve shows that the levelized cost of hydrogen (LCOH) or breakeven sale price of hydrogen would need to be 98.1 JPY/m3 or greater. Synthetic time histories were also used and found the LCOH to be 67.5 JPY/m3 . The price duration input was found to have a significant effect on the LCOH. As such great care should be used in these economic dispatch analyses to select reasonable input assumptions.
R&D Status on Thermochemical IS Process for Hydrogen Production at JAEA
Nov 2012
Publication
Thermochemical hydrogen production process is one of the candidates of industrial fossil fuel free hydrogen production. Japan Atomic Energy Agency (JAEA) has been conducting R&D of the thermochemical water splitting iodine-sulfur (IS) process since the end of 1980s. This paper presents the recent study on the IS process in JAEA. In 2005-2009 test-fabrication of components collection of design database improvement of process components for higher thermal efficiency and proposition of composition measurement method were carried out. On the basis of them the integrity test of process components is carried out in 2010-2014 to examine their integrities in severe process environments. At present a Bunsen reactor which produces acids and incidental equipments has been already manufactured using corrosion resistant materials such as glass lining steel and fluoroplastic lining steel. Flow tests to examine the functionality and integrity of the materials are planned in 2012.
Projecting the Future Cost of PEM and Alkaline Water Electrolysers; a CAPEX Model Including Electrolyser Plant Size and Technology Department
Oct 2022
Publication
The investment costs of water electrolysis represent one key challenge for the realisation of renewable hydrogen-based energy systems. This work presents a technology cost assessment and outlook towards 2030 for alkaline electrolysers (AEL) and PEM electrolysers (PEMEL) in the MW to GW range taking into consideration the effects of plant size and expected technology developments. Critical selected data was fitted to a modified power law to describe the cost of an electrolyser plant based on the overall capacity and a learning/technology development rate to derive cost estimations for different PEMEL and AEL plant capacities towards 2030. The analysis predicts that the CAPEX gap between AEL and PEMEL technologies will decrease significantly towards 2030 with plant size until 1 e10 MW range. Beyond this only marginal cost reductions can be expected with CAPEX values approaching 320e400 $/kW for large scale (greater than 100 MW) plants by 2030 with subsequent cost reductions possible. Learning rates for electrolysers were estimated at 25 e30% for both AEL and PEMEL which are significantly higher than the learning rates reported in previous literature.
Main Trends and Research Directions in Hydrogen Generation Using Low Temperature Electrolysis: A Systematic Literature Review
Aug 2022
Publication
Hydrogen (H2 ) is the most abundant element in the universe and it is also a neutral energy carrier meaning the environmental effects of using it are strictly related to the effects of creating the means of producing of that amount of Hydrogen. So far the H2 generation by water electrolysis research field did not manage to break the efficiency barrier in order to consider H2 production as a technology that sustains financially its self-development. However given the complexity of this technology and the overall environmental impacts an up-to-date research and development status review is critical. Thus this study aims to identify the main trends achievements and research directions of the H2 generation using pure and alkaline water electrolysis providing a review of the state of the art in the specific literature. Methods: In order to deliver this a Systematic Literature Review was carried out using PRISMA methodology highlighting the research trends and results in peer review publish articles over more than two years (2020–2022). Findings: This review identifies niches and actual status of the H2 generation by water and alkaline water electrolysis and points out in numbers the boundaries of the 2020–2022 timeline research.
Polymer Electrolyte Membrane Electrolyzer and Fuel Cell System Characterization for Power System Frequency Control
Mar 2022
Publication
This work focuses on tests for control reserve of a novel Power-to-Gas-to-Power platform based on proton exchange membrane technologies and on pure oxygen instead of air in the re-electrification process. The technologies are intended as a further option to stabilize the power system therefore helping integrating renewable energy into the power system. The tests are based on the pre-qualification tests used by Swissgrid but are not identical in order to capture the maximum dynamics by the plants. The main characteristics identified are the ramping capabilities of ±8% per unit per second for the electrolyzer system and ±33% per unit per second for the fuel cell system. The ramping capabilities are mainly limited by the underlying processes of polymer electrolyte membrane technologies. Additionally the current and projected round-trip efficiencies for Power-to-Gas-to-Power of 39% in 2025 and 48% in 2040 are derived. Furthermore during the successful tests the usage of oxygen in the present Power-to-Gas and Gas-to-Power processes and its influence on the dynamics and the round-trip efficiency was assessed. In consequence fundamental data on the efficiency and the dynamics of the Power-to-Gas-to-Power technologies is presented. This data can serve as basis for prospective assessments on the suitability of the technologies investigated for frequency control in power systems.
Recent Advances in Hybrid Water Electrolysis for Energy-saving Hydrogen Production
Nov 2022
Publication
Electricity-driven water splitting to convert water into hydrogen (H2) has been widely regarded as an efficient approach for H2 production. Nevertheless the energy conversion efficiency of it is greatly limited due to the disadvantage of the sluggish kinetic of oxidation evolution reaction (OER). To effectively address the issue a novel concept of hybrid water electrolysis has been developed for energy– saving H2 production. This strategy aims to replace the sluggish kinetics of OER by utilizing thermodynamically favorable organics oxidation reaction to replace OER. Herein recent advances in such water splitting system for boosting H2 evolution under low cell voltage are systematically summarized. Some notable progress of different organics oxidation reactions coupled with hydrogen evolution reaction (HER) are discussed in detail. To facilitate the development of hybrid water electrolysis the major challenges and perspectives are also proposed.
On the Potential of Blue Hydrogen Production in Colombia: A Fossil Resource-Based Assessment for Low-Emission Hydrogen
Sep 2022
Publication
Latin America is starting its energy transition. In Colombia with its abundant natural resources and fossil fuel reserves hydrogen (H2 ) could play a key role. This contribution analyzes the potential of blue H2 production in Colombia as a possible driver of the H2 economy. The study assesses the natural resources available to produce blue H2 in the context of the recently launched National Hydrogen Roadmap. Results indicate that there is great potential for low-emission blue H2 production in Colombia using coal as feedstock. Such potential besides allowing a more sustainable use of non-renewable resources would pave the way for green H2 deployment in Colombia. Blue H2 production from coal could range from 700 to 8000 ktH2 /year by 2050 under conservative and ambitious scenarios respectively which could supply up to 1.5% of the global H2 demand by 2050. However while feedstock availability is promising for blue H2 production carbon dioxide (CO2 ) capture capacities and investment costs could limit this potential in Colombia. Indeed results of this work indicate that capture capacities of 15 to 180 MtCO2 /year (conservative and ambitious scenarios) need to be developed by 2050 and that the required investment for H2 deployment would be above that initially envisioned by the government. Further studies on carbon capture utilization and storage capacity implementation of a clear public policy and a more detailed hydrogen strategy for the inclusion of blue H2 in the energy mix are required for establishing a low-emission H2 economy in the country.
Recent Advances in Methane Pyrolysis: Turquoise Hydrogen with Solid Carbon Production
Aug 2022
Publication
Beside steam reforming methane pyrolysis is an alternative method for hydrogen production. ‘Turquoise’ hydrogen with solid carbon is formed in the pyrolysis process contrary to ‘grey’ or ‘blue’ hydrogen via steam methane reforming where waste carbon dioxide is produced. Thermal pyrolysis is conducted at higher temperatures but catalytic decomposition of methane (CDM) is a promising route for sustainable hydrogen production. CDM is generally carried out over four types of catalyst: nickel carbon noble metal and iron. The applied reactors can be fixed bed fluidized bed plasma bed or molten-metal reactors. Two main advantages of CDM are that (i) carbon-oxide free hydrogen ideal for fuel cell applications is formed and (ii) the by-product can be tailored into carbon with advanced morphology (e.g. nanofibers nanotubes). The aim of this review is to reveal the very recent research advances of the last two years achieved in the field of this promising prospective technology.
From Biogas to Hydrogen: A Techno-Economic Study on the Production of Turquoise Hydrogen and Solid Carbons
Sep 2022
Publication
Biogas is a renewable feedstock that can be used to produce hydrogen through the decomposition of biomethane. However the economics of the process are not well studied and understood especially in cases where solid carbons are also produced and which have a detrimental effect on the performance of the catalysts. The scale as well as product diversification of a biogas plant to produce hydrogen and other value-added carbons plays a crucial role in determining the feasibility of biogasto-hydrogen projects. Through a techno-economic study using the discounted cash flow method it has been shown that there are no feasible sizes of plants that can produce hydrogen at the target price of USD 3/kg or lower. However for self-funded anaerobic digestor plants retrofitting modular units for hydrogen production would only make financial sense at biogas production capacities of more than 412 m3/h. A sensitivity analysis has also shown that the cost competitiveness is dependent on the type of carbon formed and low-grade carbon black has a negative effect on economic feasibility. Hydrogen produced from biogas would thus not be able to compete with grey hydrogen production but rather with current green hydrogen production costs.
Technical Evaluation of the Flexibility of Water Electrolysis Systems to Increase Energy Flexibility: A Review
Jan 2023
Publication
The goal of achieving water electrolysis on a gigawatt scale faces numerous challenges regarding technological feasibility and market application. Here the flexibility of operation scenarios such as load changes and capacity of electrolysis plays a key role. This raises the question of how flexible electrolysis systems currently are and what possibilities there are to increase flexibility. In order to be able to answer this question in the following a systematic literature research was carried out with the aim to show the current technical possibilities to adapt load and capacity of electrolysis technologies and to determine limits. The result of the systematic literature research is an overview matrix of the electrolysis types AEL PEMEL HTEL and AEMEL already applied in the market. Technical data on the operation of the respective electrolysis stacks as well as details and materials for the respective stack structure (cathode anode electrolyte) were summarized. The flexibility of the individual technologies is addressed by expressing it in values such as load flexibility and startup-times. The overview matrix contains values from various sour1ces in order to make electrolysis comparable at the stack level and to be able to make statements about flexibility. The result of the overview article shows the still open need for research and development to make electrolysis more flexible.
No more items...