Production & Supply Chain
Review on Bubble Dynamics in Proton Exchange Membrane Water Electrolysis: Towards Optimal Green Hydrogen Yield
Dec 2023
Publication
Water electrolysis using a proton exchange membrane (PEM) holds substantial promise to produce green hydrogen with zero carbon discharge. Although various techniques are available to produce hydrogen gas the water electrolysis process tends to be more cost-effective with greater advantages for energy storage devices. However one of the challenges associated with PEM water electrolysis is the accumulation of gas bubbles which can impair cell performance and result in lower hydrogen output. Achieving an in-depth knowledge of bubble dynamics during electrolysis is essential for optimal cell performance. This review paper discusses bubble behaviors measuring techniques and other aspects of bubble dynamics in PEM water electrolysis. It also examines bubble behavior under different operating conditions as well as the system geometry. The current review paper will further improve the understanding of bubble dynamics in PEM water electrolysis facilitating more competent inexpensive and feasible green hydrogen production.
A Review on the Environmental Performance of Various Hydrogen Production Technologies: An Approach Towards Hydrogen Economy
Nov 2023
Publication
Demand for hydrogen has grown and continues to rise as a versatile energy carrier. Hydrogen can be produced from renewable and non-renewable energy sources. A wide range of technologies to produce hydrogen in an environmentally friendly way have been developed. As the life cycle assessment (LCA) approach has become popular recently including in the hydrogen energy system this paper comprehensively reviews the LCA of hydrogen production technology. A subdivision based on the trends in the LCA studies hydrogen production technology goal and scope definition system boundary and environmental performance of hydrogen production is discussed in this review. Thermochemical hydrogen production is the most studied technology in LCA. However utilizing natural resources especially wind power in the electrolysis process stands out as an environmentally preferable solution when compared to alternative production processes. It is crucial to rethink reactors and other production-related equipment to improve environmental performance and increase hydrogen production efficiency. Since most of the previous LCA studies were conducted in developed countries and only a few were from developing countries a way forward for LCA application on hydrogen in developing countries was also highlighted and discussed. This review provides a comprehensive insight for further research on hydrogen production technology from an LCA perspective.
Carbon-negative Hydrogen Production (HyBECCS): An Exemplary Techno-economic and Environmental Assessment
Sep 2023
Publication
An exemplary techno-economic and environmental assessment of carbon-negative hydrogen (H2) production is carried out in this work. It is based on the so-called “dark photosynthesis” with carbon dioxide (CO2) capture and geological storage. As a special feature of the assessment the economic consequences due to the impact on the global climate are taken into account. The results indicate that the example project would be capable of generating negative GHG emissions under the assumptions made. The amount is estimated to be 17.72 kgCO2 to be removed from the atmosphere per kilogram of H2 produced. The levelized costs of carbon-negative hydrogen are obtained considering the economic impact of greenhouse gas emissions and removals. They are estimated to be 0.013 EUR/kWhH2. Compared to grey hydrogen from natural gas (0.12 EUR/kWhH2) and green hydrogen from electrolysis using renewable electricity (0.18 EUR/kWhH2) this shows a potential environmental-economic advantage of the considered example. Even without internalization of GHG impacts an economic advantage of the project (0.12 EUR/kWhH2) over green hydrogen (0.17 EUR/kWhH2) is indicated. Compared to other NETs the GHG removal efficiency is at the lower end of both BECCS and DACCS approaches.
Optimal Siting and Sizing of Hydrogen Production Modules in Distribution Networks with Photovoltaic Uncertainties
Nov 2023
Publication
Hydrogen production modules (HPMs) play a crucial role in harnessing abundant photovoltaic power by producing and supplying hydrogen to factories resulting in significant operational cost reductions and efficient utilization of the photovoltaic panel output. However the output of photovoltaic power is stochastic which will affect the revenue of investing in an HPM. This paper presents a comprehensive analysis of HPMs starting with the modeling of their operational process and investigating their influence on distribution system operations. Building upon these discussions a deterministic optimization model is established to address the corresponding challenges. Furthermore a two-stage stochastic planning model is proposed to determine optimal locations and sizes of HPMs in distribution systems accounting for uncertainties. The objective of the twostage stochastic planning model is to minimize the distribution system’s operational costs plus the investment costs of the HPM subject to power flow constraints. To tackle the stochastic nature of photovoltaic power a data-driven algorithm is introduced to cluster historical data into representative scenarios effectively reducing the planning model’s scale. To ensure an efficient solution a Benders’ decomposition-based algorithm is proposed which is an iterative method with a fast convergence speed. The proposed model and algorithms are validated using a widely utilized IEEE 33-bus system through numerical experiments demonstrating the optimality of the HPM plan generated by the algorithm. The proposed model and algorithms offer an effective approach for decision-makers in managing uncertainties and optimizing HPM deployment paving the way for sustainable and efficient energy solutions in distribution systems. Sensitivity analysis verifies the optimality of the HPM’s siting and sizing obtained by the proposed algorithm which also reveals immense economic and environmental benefits.
Energy Performance Assessment of a Solar-driven Thermochemical Cycle Device for Green Hydrogen Production
Sep 2023
Publication
This paper presents a novel dynamic simulation model for assessing the energy performance of solar-driven systems employed in green hydrogen production. The system consists of a parabolic dish collector that focuses solar radiation on two cerium-based thermochemical reactors. The model is based on a transient finitedifference method to simulate the thermal behaviour of the system and it integrates a theoretical analysis of materials and operating principles. Different empirical data were considered for experimentally validating it: a good agreement between experimental and simulated results was obtained for the temperatures calculated inside the thermochemical reactor (R2 = 0.99 MAPE = 6.3%) and the hourly flow rates of hydrogen oxygen and carbon monoxide (R2 = 0.96 MAPE = 10%) inside the thermochemical reactor. The model was implemented in a MatLab tool for the system dynamic analysis under different boundary conditions. Subsequently to explore the capability of this approach the developed tool was used for analysing the examined device operating in twelve different weather zones. The obtained results comprise heat maps of specific crucial instants and hourly dynamic trends showing redox reaction cycles occurring into the thermochemical reactors. The yearly hydrogen production ranges from 1.19 m3 /y to 1.64 m3 /y according to the hourly incident solar radiations outdoor air temperatures and wind speeds. New graphic tools for rapid feasibility studies are presented. The developed tools and the obtained results can be useful to the basic design of this technology and for the multi-objective optimization of its layout and main design/operating parameters.
Environmental and Material Criticality Assessment of Hydrogen Production via Anion Exchange Membrane Electrolysis
Oct 2023
Publication
The need to drastically reduce greenhouse gas emissions is driving the development of existing and new technologies to produce and use hydrogen. Anion exchange membrane electrolysis is one of these rapidly developing technologies and presents promising characteristics for efficient hydrogen production. However the environmental performance and the material criticality of anion exchange membrane electrolysis must be assessed. In this work prospective life cycle assessment and criticality assessment are applied first to identify environmental and material criticality hotspots within the production of anion exchange membrane electrolysis units and second to benchmark hydrogen production against proton exchange membrane electrolysis. From an environmental point of view the catalyst spraying process heavily dominates the ozone depletion impact category while the production of the membrane represents a hotspot in terms of the photochemical ozone formation potential. For the other categories the environmental impacts are distributed across different components. The comparison of hydrogen production via anion exchange membrane electrolysis and proton exchange membrane electrolysis shows that both technologies involve a similar life-cycle environmental profile due to similar efficiencies and the leading role of electricity generation for the operation of electrolysis. Despite the fact that for proton exchange membrane electrolysis much less material is required due to a higher lifetime anion exchange membrane electrolysis shows significantly lower raw material criticality since it does not rely on platinum-group metals. Overall a promising environmental and material criticality performance of anion exchange membrane electrolysis for hydrogen production is concluded subject to the expected technical progress for this technology.
Research on Hydrogen Production System Technology Based on Photovoltaic-Photothermal Coupling Electrolyzer
Dec 2023
Publication
Solar hydrogen production technology is a key technology for building a clean low-carbon safe and efficient energy system. At present the intermittency and volatility of renewable energy have caused a lot of “wind and light.” By combining renewable energy with electrolytic water technology to produce high-purity hydrogen and oxygen which can be converted into electricity the utilization rate of renewable energy can be effectively improved while helping to improve the solar hydrogen production system. This paper summarizes and analyzes the research status and development direction of solar hydrogen production technology from three aspects. Energy supply mode: the role of solar PV systems and PT systems in this technology is analyzed. System control: the key technology and system structure of different types of electrolytic cells are introduced in detail. System economy: the economy and improvement measures of electrolytic cells are analyzed from the perspectives of cost consumption efficiency and durability. Finally the development prospects of solar hydrogen production systems in China are summarized and anticipated. This article reviews the current research status of photovoltaic-photothermal coupled electrolysis cell systems fills the current research gap and provides theoretical reference for the further development of solar hydrogen production systems.
A Simulation Study on Evaluating the Influence of Impurities on Hydrogen Production in Geological Carbon Dioxide Storage
Sep 2023
Publication
In this study we examined the effect of CO2 injection into deep saline aquifers considering impurities present in blue hydrogen production. A fluid model was designed for reservoir conditions with impurity concentrations of 3.5 and 20%. The results showed that methane caused density decreases of 95.16 and 76.16% at 3.5 and 20% respectively whereas H2S caused decreases of 99.56 and 98.77% respectively. Viscosity decreased from 0.045 to 0.037 cp with increasing methane content up to 20%; however H2S did not affect the viscosity. Notably CO2 with H2S impacted these properties less than methane. Our simulation model was based on the Gorae-V properties and simulated injections for 10 years followed by 100 years of monitoring. Compared with the pure CO2 injection methane reached its maximum pressure after eight years and eleven months at 3.5% and eight years at 20% whereas H2S reached maximum pressure after nine years and two months and nine years and six months respectively. These timings affected the amount of CO2 injected. With methane as an impurity injection efficiency decreased up to 73.16% whereas with H2S it decreased up to 81.99% with increasing impurity concentration. The efficiency of CO2 storage in the dissolution and residual traps was analyzed to examine the impact of impurities. The residual trap efficiency consistently decreased with methane but increased with H2S. At 20% concentration the methane trap exhibited higher efficiency at the end of injection; however H2S had a higher efficiency at the monitoring endpoint. In carbon capture and storage projects methane impurities require removal whereas H2S may not necessitate desulfurization due to its minimal impact on CO2 storage efficiency. Thus the application of carbon capture and storage (CCS) to CO2 emissions containing H2S as an impurity may enable economically viable operations by reducing additional costs.
Review of Next Generation Hydrogen Production from Offshore Wind Using Water Electrolysis
Dec 2023
Publication
Hydrogen produced using renewable energy from offshore wind provides a versatile method of energy storage and power-to-gas concepts. However few dedicated floating offshore electrolyser facilities currently exist and therefore conditions of the offshore environment on hydrogen production cost and efficiency remain uncertain. Therefore this review focuses on the conversion of electrical energy to hydrogen using water electrolysis located in offshore areas. The challenges associated with the remote locations fluctuating power and harsh conditions are highlighted and recommendations for future electrolysis system designs are suggested. The latest research in polymer electrolyte membrane alkaline and membraneless electrolysis are evaluated in order to understand their capital costs efficiency and current research status for achieving scaled manufacturing to the GW scale required in the next three decades. Operating fundamentals that govern the performance of each device are investigated and future recommendations of research specifically for the integration of water electrolysers with offshore wind turbines is presented.
Renewable Energy Sources for Green Hydrogen Generation in Colombia and Applicable Case of Studies
Nov 2023
Publication
Electrification using renewable energy sources represents a clear path toward solving the current global energy crisis. In Colombia this challenge also involves the diversification of the electrical energy sources to overcome the historical dependence on hydropower. In this context green hydrogen represents a key energy carrier enabling the storage of renewable energy as well as directly powering industrial and transportation sectors. This work explores the realistic potential of the main renewable energy sources including solar photovoltaics (8172 GW) hydropower (56 GW) wind (68 GW) and biomass (14 GW). In addition a case study from abroad is presented demonstrating the feasibility of using each type of renewable energy to generate green hydrogen in the country. At the end an analysis of the most likely regions in the country and paths to deploy green hydrogen projects are presented favoring hydropower in the short term and solar in the long run. By 2050 this energy potential will enable reaching a levelized cost of hydrogen (LCOH) of 1.7 1.5 3.1 and 1.4 USD/kg-H2 for solar photovoltaic wind hydropower and biomass respectively.
Contribution to Net Zero Emissions of Integrating Hydrogen Production in Wastewater Treatment Plants
Jul 2023
Publication
The reliability of renewable hydrogen supply for off-take applications is critical to the future sustainable energy economy. Integrated water electrolysis can be deployed at distributed municipal wastewater treatment plants (WWTP) creating opportunity for reduction in carbon emissions through direct and indirect use of the electrolysis output. A novel energy shifting process where the co-produced oxygen is compressed and stored to enhance the utilisation of intermittent renewable electricity is analysed. The hydrogen produced can be used in local fuel cell electric buses to replace incumbent diesel buses for public transport. However quantifying the extent of carbon emission reduction of this conceptual integrated system is key. In this study the integration of hydrogen production at a case study WWTP of 26000 EP capacity and using the hydrogen in buses was compared with two conventional systems: the base case of a WWTP with grid electricity consumption offset by solar PV and the community’s independent use of diesel buses for transport and the non-integrated configuration with hydrogen produced at the bus refuelling location operated independently of the WWTP. The system response was analysed using a Microsoft Excel simulation model with hourly time steps over a 12-month time frame. The model included a control scheme for the reliable supply of hydrogen for public transport and oxygen to the WWTP and considered expected reductions in carbon intensity of the national grid level of solar PV curtailment electrolyser efficiency and size of the solar PV system. Results showed that by 2031 when Australia’s national electricity is forecast to achieve a carbon intensity of less than 0.186 kg CO2-e/kWh integrating water electrolysis at a municipal WWTP for producing hydrogen for use in local hydrogen buses produced less carbon emissions than continuing to use diesel buses and offsetting emissions by exporting renewable electricity to the grid. By 2034 an annual reduction of 390 t–CO2–e is expected after changing to the integrated configuration. Considering electrolyser efficiency improvements and curtailment of renewable electricity the reduction increases to 872.8 t–CO2–e.
Effects of Surface Modification on a Proton Exchange Membrane for Improvements in Green Hydrogen Production
Oct 2023
Publication
Proton Exchange Membrane (PEM) electrolysis an advanced technique for producing hydrogen with efficiency and environmental friendliness signifies the forefront of progress in this domain. Compared to alkaline cells these electrolytic cells offer numerous advantages such as lower operating temperatures enhanced hydrogen production efficiency and eliminating the need for an aqueous solution. However PEM electrolysis still faces limitations due to the high cost of materials used for the membrane and catalysts resulting in elevated expenses for implementing large-scale systems. The pivotal factor in improving PEM electrolysis lies in the Platinum catalyst present on the membrane surface. Enhancing catalytic efficiency through various methods and advancements holds immense significance for the progress of this technology. This study investigates the use of patterned membranes to improve the performance of PEM electrolytic cells toward green hydrogen production. By increasing the Platinum loading across the membrane surface and enhancing catalytic performance these patterned membranes overcome challenges faced by conventionally fabricated counterparts. The findings of this research indicate that membranes with modified surfaces not only exhibit higher current draw but also achieve elevated rates of hydrogen production.
Techno-Economic Analysis of Hydrogen Production from Swine Manure Biogas via Steam Reforming in Pilot-Scale Installation
Sep 2023
Publication
The main purpose of this paper is the techno-economic analysis of hydrogen production from biogas via steam reforming in a pilot plant. Process flow modeling based on mass and energy balance is used to estimate the total equipment purchase and operating costs of hydrogen production. The pilot plant installation produced 250.67 kg/h hydrogen from 1260 kg/h biomethane obtained after purification of 4208 m3/h biogas using a heat and mass integration process. Despite the high investment cost the plant shows a great potential for biomethane reduction and conversion to hydrogen an attractive economic path with ecological possibilities. The conversion of waste into hydrogen is a possibility of increasing importance in the global energy economy. In the future such a plant will be expanded with a CO2 reduction module to increase economic efficiency and further reduce greenhouse gases in an economically viable manner.
Optimization of Renewable Energy Supply Chain for Sustainable Hydrogen Energy Production from Plastic Waste
Dec 2023
Publication
Disposing of plastic waste through burial or burning leads to air pollution issues while also contributing to gas emissions and plastic waste spreading underground into seas via springs. Henceforth this research aims at reducing plastic waste volume while simultaneously generating clean energy. Hydrogen energy is a promising fuel source that holds great value for humanity. However achieving clean hydrogen energy poses challenges including high costs and complex production processes especially on a national scale. This research focuses on Iran as a country capable of producing this energy examining the production process along with related challenges and the general supply chain. These challenges encompass selecting appropriate raw materials based on chosen technologies factory capacities storage methods and transportation flow among different provinces of the country. To deal with these challenges a mixed-integer linear programming model is developed to optimize the hydrogen supply chain and make optimal decisions about the mentioned problems. The supply chain model estimates an average cost—IRR 4 million (approximately USD 8)—per kilogram of hydrogen energy that is available in syngas during the initial period; however subsequent periods may see costs decrease to IRR 1 million (approximately USD 2) factoring in return-on-investment rates.
Massive Green Hydrogen Production Using Solar and Wind Energy: Comparison between Europe and the Middle East
Jul 2023
Publication
This comparative study examines the potential for green hydrogen production in Europe and the Middle East leveraging 3MWp solar and wind power plants. Experimental weather data from 2022 inform the selection of two representative cities namely Krakow Poland (Europe) and Diyala Iraq (Middle East). These cities are chosen as industrial–residential zones representing the respective regions’ characteristics. The research optimizes an alkaline water electrolyzer capacity in juxtaposition with the aforementioned power plants to maximize the green hydrogen output. Economic and environmental factors integral to green hydrogen production are assessed to identify the region offering the most advantageous conditions. The analysis reveals that the Middle East holds superior potential for green hydrogen production compared to Europe attributed to a higher prevalence of solar and wind resources coupled with reduced land and labor costs. Hydrogen production costs in Europe are found to range between USD 9.88 and USD 14.31 per kilogram in contrast to the Middle East where costs span from USD 6.54 to USD 12.66 per kilogram. Consequently the Middle East emerges as a more feasible region for green hydrogen production with the potential to curtail emissions enhance air quality and bolster energy security. The research findings highlight the advantages of the Middle East industrial–residential zone ‘Diyala’ and Europe industrial–residential zone ‘Krakow’ in terms of their potential for green hydrogen production.
Off-grid Wind/Hydrogen Systems with Multi-electrolyzers: Optimized Operational Strategies
Sep 2023
Publication
Optimized operation of wind/hydrogen systems can increase the system efficiency and further reduce the hydrogen production cost. In this regard extensive research has been done but there is a lack of detailed electrolyzer models and effective management of multiple electrolyzers considering their physical restrictions. This work proposes electrolyzer models that integrate the efficiency variation caused by load level change start–stop cycle (including hot and cold start) thermal management and degradation caused by frequent starts. Based on the proposed models three operational strategies are considered in this paper: two traditionally utilized methods simple start–stop and cycle rotation strategies and a newly proposed rolling optimizationbased strategy. The results from daily operation show that the new strategy results in a more balanced load level among the electrolyzers and a more stable temperature. Besides from a yearly operation perspective it is found that the proposed rolling optimization method results in more hydrogen production higher system efficiency and lower LCOH. The new method leads to hydrogen production of 311297 kg compared to 289278 kg and 303758 kg for simple start–stop and cycle rotation methods. Correspondingly the system efficiencies for the new simple start–stop and cycle rotation methods are 0.613 0.572 and 0.587. The resulting LCOH from the new method is 3.89 e/kg decreasing by 0.35 e/kg and 0.21 e/kg compared to the simple start–stop and cycle rotation methods. Finally the proposed model is compared with two conventional models to show its effectiveness in revealing more operational details and reliable results.
Hydrogen Production by Water Electrolysis Technologies: A Review
Sep 2023
Publication
Hydrogen as an energy source has been identified as an optimal pathway for mitigating climate change by combining renewable electricity with water electrolysis systems. Proton exchange membrane (PEM) technology has received a substantial amount of attention because of its ability to efficiently produce high-purity hydrogen while minimising challenges associated with handling and maintenance. Another hydrogen generation technology alkaline water electrolysis (AWE) has been widely used in commercial hydrogen production applications. Anion exchange membrane (AEM) technology can produce hydrogen at relatively low costs because the noble metal catalysts used in PEM and AWE systems are replaced with conventional low-cost electrocatalysts. Solid oxide electrolyzer cell (SOEC) technology is another electrolysis technology for producing hydrogen at relatively high conversion efficiencies low cost and with low associated emissions. However the operating temperatures of SOECs are high which necessitates long startup times. This review addresses the current state of technologies capable of using impure water in water electrolysis systems. Commercially available water electrolysis systems were extensively discussed and compared. The technical barriers of hydrogen production by PEM and AEM were also investigated. Furthermore commercial PEM stack electrolyzer performance was evaluated using artificial river water (soft water). An integrated system approach was recommended for meeting the power and pure water demands using reversible seawater by combining renewable electricity water electrolysis and fuel cells. AEM performance was considered to be low requiring further developments to enhance the membrane’s lifetime.
Emerging Trends and Challenges in Pink Hydrogen Research
May 2024
Publication
Pink hydrogen is the name given to the technological variant of hydrogen generation from nuclear energy. This technology aims to address the environmental challenges associated with conventional hydrogen production positioning itself as a more sustainable and eco-efficient alternative while offering a viable alternative to nuclear power as a source of electricity generation. The present research analyzes the landscape of pink hydrogen research an innovative strand of renewable energy research. The methodology included a comprehensive search of scientific databases which revealed a steady increase in the number of publications in recent years. This increase suggests a growing interest in and recognition of the importance of pink hydrogen in the transition to cleaner and more sustainable energy sources. The results reflect the immaturity of this technology where there is no single international strategy and where there is some diversity of research topic areas as well as a small number of relevant topics. It is estimated that the future development of Gen IV nuclear reactors as well as Small Modular Reactor (SMR) designs will also favor the implementation of pink hydrogen.
Up-to-Date Status of Geoscience in the Field of Natural Hydrogen with Consideration of Petroleum Issues
Sep 2023
Publication
The perspective of natural hydrogen as a clear carbon-free and renewable energy source appears very promising. There have been many studies reporting significant concentrations of natural hydrogen in different countries. However natural hydrogen is being extracted to generate electricity only in Mali. This issue originates from the fact that global attention has not been dedicated yet to the progression and promotion of the natural hydrogen field. Therefore being in the beginning stage natural hydrogen science needs further investigation especially in exploration techniques and exploitation technologies. The main incentive of this work is to analyze the latest advances and challenges pertinent to the natural hydrogen industry. The focus is on elaborating geological origins ground exposure types extraction techniques previous detections of natural hydrogen exploration methods and underground hydrogen storage (UHS). Thus the research strives to shed light on the current status of the natural hydrogen field chiefly from the geoscience perspective. The data collated in this review can be used as a useful reference for the scientists engineers and policymakers involved in this emerging renewable energy source.
Methane Pyrolysis in a Liquid Metal Bubble Column Reactor for CO2-Free Production of Hydrogen
Oct 2023
Publication
In light of the growing interest in hydrogen as an energy carrier and reducing agent various industries including the iron and steel sector are considering the increased adoption of hydrogen. To meet the rising demand in energy-intensive industries the production of hydrogen must be significantly expanded and further developed. However current hydrogen production heavily relies on fossil-fuel-based methods resulting in a considerable environmental burden with approximately 10 tons of CO2 emissions per ton of hydrogen. To address this challenge methane pyrolysis offers a promising approach for producing clean hydrogen with reduced CO2 emissions. This process involves converting methane (CH4 ) into hydrogen and solid carbon significantly lowering the carbon footprint. This work aims to enhance and broaden the understanding of methane pyrolysis in a liquid metal bubble column reactor (LMBCR) by utilizing an expanded and improved experimental setup based on the reactor concept previously proposed by authors from Montanuniversitaet in 2022 and 2023. The focus is on investigating the process parameters’ temperature and methane input rate with regard to their impact on methane conversion. The liquid metal temperature exhibits a strong influence increasing methane conversion from 35% at 1150 ◦C to 74% at 1250 ◦C. In contrast the effect of the methane flow rate remains relatively small in the investigated range. Moreover an investigation is conducted to assess the impact of carbon layers covering the surface of the liquid metal column. Additionally a comparative analysis between the LMBCR and a blank tube reactor (BTR) is presented.
No more items...