Production & Supply Chain
Techno-economic Analysis of On-site Blue Hydrogen Production Based on Vacuum Pressure Adsorption: Practical Application to Real-world Hydrogen Refueling Stations
Feb 2023
Publication
Although climate change can be efficiently curbed by shifting to low-carbon (blue) hydrogen as an energy carrier to achieve carbon neutrality current hydrogen production mainly proceeds via the gray pathway i.e. generates large amounts of CO2 as a byproduct. To address the need for cleaner hydrogen production we herein propose novel CO2 capture processes based on the integration of vacuum pressure swing adsorption into a gray hydrogen production process and perform retrofitting to a blue hydrogen production process for on-site hydrogen refueling stations. Techno-economic analysis reveals that the implementation of the proposed capture processes allows one to significantly reduce CO2 emission while preserving thermal efficiency and the economic feasibility of this implementation in different scenarios is determined by computing the levelized cost of hydrogen. As a result blue hydrogen is shown to hold great promise for the realization of sustainable energy usage and the net-zero transition.
Everything About Hydrogen Podcast: Reaching for the Stars
Mar 2023
Publication
Today Everything About Hydrogen had a chance to speak with Paul Barrett the CEO of Hysata and dig into what makes this electrolysis company different.
The podcast can be found on their website.
The podcast can be found on their website.
Urban Hydrogen Production Model Using Environmental Infrastructures to Achieve the Net Zero Goal
Dec 2022
Publication
Land available for energy production is limited in cities owing to high population density. To reach the net zero goal cities contributing 70% of overall greenhouse gas emissions need to dramatically reduce emissions and increase self-sufficiency in energy production. Environmental infrastructures such as sewage treatment and incineration plants can be used as energy production facilities in cities. This study attempted to examine the effect of using environmental infrastructure such as energy production facilities to contribute toward the carbon neutrality goal through urban energy systems. In particular since the facilities are suitable for hydrogen supply in cities the analysis was conducted focusing on the possibility of hydrogen production. First the current status of energy supply and demand and additional energy production potential in sewage treatment and incineration plants in Seoul were analyzed. Then the role of these environmental infrastructures toward energy self-sufficiency in the urban system was examined. This study confirmed that the facilities can contribute to the city’s energy self-sufficiency and the achievement of its net-zero goal.
A Numerical Study on Turquoise Hydrogen Production by Catalytic Decomposition of Methane
Feb 2023
Publication
Catalytic decomposition of methane (CDM) is a novel technology for turquoise hydrogen production with solid carbon as the by-product instead of CO2. A computational fluid dynamics model was developed to simulate the CDM process in a 3D fixed bed reactor accounting for the impact of carbon deposition on catalytic activity. The model was validated with experimental data and demonstrated its capability to predict hydrogen concentration and catalyst deactivation time under varying operating temperatures and methane flow rates. The catalyst lifespan was characterized by the maximum carbon yield (i.e. gC/gcat) which is a crucial indicator for determining the cost of hydrogen generation. Parametric studies were performed to analyse the effect of inlet gas composition and operating pressure on CDM performance. Various CH4/H2 ratios were simulated to improve the methane conversion efficiency generating a higher amount of hydrogen while increasing the maximum carbon yield up to 49.5 gC/gcat. Additionally higher operating pressure resulted in higher methane decomposition rates which reflects the nature of the chemical kinetics.
Optimization of Small-Scale Hydrogen Production with Membrane Reactors
Mar 2023
Publication
In the pathway towards decarbonization hydrogen can provide valid support in different sectors such as transportation iron and steel industries and domestic heating concurrently reducing air pollution. Thanks to its versatility hydrogen can be produced in different ways among which steam reforming of natural gas is still the most commonly used method. Today less than 0.7% of global hydrogen production can be considered low-carbon-emission. Among the various solutions under investigation for low-carbon hydrogen production membrane reactor technology has the potential especially at a small scale to efficiently convert biogas into green hydrogen leading to a substantial process intensification. Fluidized bed membrane reactors for autothermal reforming of biogas have reached industrial maturity. Reliable modelling support is thus necessary to develop their full potential. In this work a mathematical model of the reactor is used to provide guidelines for their design and operations in off-design conditions. The analysis shows the influence of temperature pressures catalyst and steam amounts and inlet temperature. Moreover the influence of different membrane lengths numbers and pitches is investigated. From the results guidelines are provided to properly design the geometry to obtain a set recovery factor value and hydrogen production. For a given reactor geometry and fluidization velocity operating the reactor at 12 bar and the permeate-side pressure of 0.1 bar while increasing reactor temperature from 450 to 500 °C leads to an increase of 33% in hydrogen production and about 40% in HRF. At a reactor temperature of 500 °C going from 8 to 20 bar inside the reactor doubled hydrogen production with a loss in recovery factor of about 16%. With the reactor at 12 bar a vacuum pressure of 0.5 bar reduces hydrogen production by 43% and HRF by 45%. With the given catalyst it is sufficient to have only 20% of solids filled into the reactor being catalytic particles. With the fixed operating conditions it is worth mentioning that by adding membranes and maintaining the same spacing it is possible to increase hydrogen production proportionally to the membrane area maintaining the same HRF.
Blue, Green, and Turquoise Pathways for Minimizing Hydrogen Production Costs from Steam Methane Reforming with CO2 Capture
Nov 2022
Publication
Rising climate change ambitions require large-scale clean hydrogen production in the near term. “Blue” hydrogen from conventional steam methane reforming (SMR) with pre-combustion CO2 capture can fulfil this role. This study therefore presents techno-economic assessments of a range of SMR process configurations to minimize hydrogen production costs. Results showed that pre-combustion capture can avoid up to 80% of CO2 emissions cheaply at 35 €/ton but the final 20% of CO2 capture is much more expensive at a marginal CO2 avoidance cost around 150 €/ton. Thus post-combustion CO2 capture should be a better solution for avoiding the final 20% of CO2. Furthermore an advanced heat integration scheme that recovers most of the steam condensation enthalpy before the CO2 capture unit can reduce hydrogen production costs by about 6%. Two hybrid hydrogen production options were also assessed. First a “blue-green” hydrogen plant that uses clean electricity to heat the reformer achieved similar hydrogen production costs to the pure blue configuration. Second a “blue turquoise” configuration that replaces the pre-reformer with molten salt pyrolysis for converting higher hydrocarbons to a pure carbon product can significantly reduce costs if carbon has a similar value to hydrogen. In conclusion conventional pre-combustion CO2 capture from SMR is confirmed as a good solution for kickstarting the hydrogen economy and it can be tailored to various market conditions with respect to CO2 electricity and pure carbon prices.
Techno-economic Model and Feasibility Assessment of Green Hydrogen Projects Based on Electrolysis Supplied by Photovoltaic PPAs
Nov 2022
Publication
The use of hydrogen produced from renewable energy enables the reduction of greenhouse gas (GHG) emissions pursued in different international strategies. The use of power purchase agreements (PPAs) to supply renewable electricity to hydrogen production plants is an approach that can improve the feasibility of projects. This paper presents a model applicable to hydrogen projects regarding the technical and economic perspective and applies it to the Spanish case where pioneering projects are taking place via photovoltaic PPAs. The results show that PPAs are an enabling mechanism for sustaining green hydrogen projects.
Techno-economic Assessment of Green Ammonia Production with Different Wind and Solar Potentials
Nov 2022
Publication
This paper focuses on developing a fast-solving open-source model for dynamic power-to-X plant techno-economic analysis and analysing the method bias that occurs when using other state-of-the-art power-to-X cost calculation methods. The model is a least-cost optimisation of investments and operation-costs taking as input techno-economic data varying power profiles and hourly grid prices. The fuel analysed is ammonia synthesised from electrolytic hydrogen produced with electricity from photovoltaics wind turbines or the grid. Various weather profiles and electrolyser technologies are compared. The calculated costs are compared with those derived using methods and assumptions prevailing in most literature. Optimisation results show that a semi-islanded set-up is the cheapest option and can reduce the costs up to 23% compared to off-grid systems but leads to e-fuels GHG emissions similar to fossil fuels with today’s electricity blend. For off-grid systems estimating costs using solar or wind levelized cost of electricity and capacity factors to derive operating hours leads to costs overestimation up to 30%. The cheapest off-grid configuration reaches production costs of 842 e/t3 . For comparison the "grey" ammonia price was 250 e/t3 in January 2021 and 1500 e/t3 in April 2022 (Western Europe). The optimal power mix is found to always include photovoltaic with 1-axis tracking and sometimes different types of onshore wind turbines at the same site. For systems fully grid connected approximating a highly fluctuating electricity price by a yearly average and assuming a constant operation leads to a small cost.
Electrochemical Ammonia: Power to Ammonia Ratio and Balance of Plant Requirements for Two Different Electrolysis Approaches
Nov 2021
Publication
Electrochemical ammonia generation allows direct low pressure synthesis of ammonia as an alternative to the established Haber-Bosch process. The increasing need to drive industry with renewable electricity central to decarbonisation and electrochemical ammonia synthesis offers a possible efficient and low emission route for this increasingly important chemical. It also provides a potential route for more distributed and small-scale ammonia synthesis with a reduced production footprint. Electrochemical ammonia synthesis is still early stage but has seen recent acceleration in fundamental understanding. In this work two different ammonia electrolysis systems are considered. Balance of plant (BOP) requirements are presented and modelled to compare performance and determine trade-offs. The first option (water fed cell) uses direct ammonia synthesis from water and air. The second (hydrogen-fed cell) involves a two-step electrolysis approach firstly producing hydrogen followed by electrochemical ammonia generation. Results indicate that the water fed approach shows the most promise in achieving low energy demand for direct electrochemical ammonia generation. Breaking the reaction into two steps for the hydrogen fed approach introduces a source of inefficiency which is not overcome by reduced BOP energy demands and will only be an attractive pathway for reactors which promise both high efficiency and increased ammonia formation rate compared to water fed cells. The most optimised scenario investigated here with 90% faradaic efficiency (FE) and 1.5 V cell potential (75% nitrogen utilisation) gives a power to ammonia value of 15 kWh/kg NH3 for a water fed cell. For the best hydrogen fed arrangement the requirement is 19 kWh/kg NH3. This is achieved with 0.5 V cell potential and 75% utilisation of both hydrogen and nitrogen (90% FE). Modelling demonstrated that balance of plant requirements for electrochemical ammonia are significant. Electrochemical energy inputs dominate energy requirements at low FE however in cases of high FE the BOP accounts for approximately 50% of the total energy demand mostly from ammonia separation requirements. In the hydrogen fed cell arrangement it was also demonstrated that recycle of unconverted hydrogen is essential for efficient operation even in the case where this increases BOP energy inputs
Decarbonization in Ammonia Production, New Technological Methods in Industrial Scale Ammonia Production and Critical Evaluations
Oct 2021
Publication
With the synthesis of ammonia with chemical methods global carbon emission is the biggest threat to global warming. However the dependence of the agricultural industry on ammonia production brings with it various research studies in order to minimize the carbon emission that occurs with the ammonia synthesis process. In order to completely eliminate the carbon emissions from ammonia production both the hydrogen and the energy needed for the operation of the process must be obtained from renewable sources. Thus hydrogen can be produced commercially in a variety of ways. Many processes are discussed to accompany the Haber Bosch process in ammonia production as potential competitors. In addition to parameters such as temperature and pressure various plasma catalysts are being studied to accelerate the ammonia production reaction. In this study various alternative processes for the capture storage and complete removal of carbon gas released during the current ammonia production are evaluated and the current conditions related to the applicability of these processes are discussed. In addition it has been discussed under which conditions it is possible to produce larger capacities as needed in the processes studied in order to reduce carbon gas emissions during ammonia production in order to provide raw material source for fertilizer production and energy sector. However if the hydrogen gas required for ammonia production is produced using a solid oxide electrolysis cell the reduction in the energy requirement of the process and in this case the reduction of energy costs shows that it will play an important role in determining the method to be used for ammonia production. In addition it is predicted that working at lower temperature (<400 °C) and pressure (<10 bar) values in existing ammonia production technologies despite increasing possible energy costs will significantly reduce process operating costs.
Thermodynamic Analysis of Solid Oxide Electrolyzer Integration with Engine Waste Heat Recovery for Hydrogen Production
Jul 2021
Publication
Water electrolysis based on solid oxide electrolysis cell (SOEC) exhibits high conversion efficiency due to part of energy demand can be derived from thermal energy. Therefore it can be integrated with other sources of thermal energy to reduce the consumption of electrical energy. In this paper a diesel engine is integrated with the SOEC stacks for heat recovery steam generator (HRSG). The thermal energy from the engine exhaust gas used to heat the inlet H2O of the SOEC is carried out as the integration case. A SOEC plant using electricity as the thermal heat input is selected as the base case. Thermodynamic analysis of the benchmark and integration scheme reveals that an electrical efficiency of 73.12% and 85.17% can be achieved respectively. The diesel to power efficiency can be increased to 70% when the exhaust gas is completely utilized by the SOEC system. The impacts of some key parameters including current density and operating temperature on system performance have also been conducted and found that the system has optimized parameters of current density and operating temperature to achieve better performance.
Review of Power-to-X Demonstration Projects in Europe
Sep 2020
Publication
At the heart of most Power-to-X (PtX) concepts is the utilization of renewable electricity to produce hydrogen through the electrolysis of water. This hydrogen can be used directly as a final energy carrier or it can be converted into for example methane synthesis gas liquid fuels electricity or chemicals. Technical demonstration and systems integration are of major importance for integrating PtX into energy systems. As of June 2020 a total of 220 PtX research and demonstration projects in Europe have either been realized completed or are currently being planned. The central aim of this review is to identify and assess relevant projects in terms of their year of commissioning location electricity and carbon dioxide sources applied technologies for electrolysis capacity type of hydrogen post-processing and the targeted field of application. The latter aspect has changed over the years. At first the targeted field of application was fuel production for example for hydrogen buses combined heat and power generation and subsequent injection into the natural gas grid. Today alongside fuel production industrial applications are also important. Synthetic gaseous fuels are the focus of fuel production while liquid fuel production is severely under-represented. Solid oxide electrolyzer cells (SOECs) represent a very small proportion of projects compared to polymer electrolyte membranes (PEMs) and alkaline electrolyzers. This is also reflected by the difference in installed capacities. While alkaline electrolyzers are installed with capacities between 50 and 5000 kW (2019/20) and PEM electrolyzers between 100 and 6000 kW SOECs have a capacity of 150 kW. France and Germany are undertaking the biggest efforts to develop PtX technologies compared to other European countries. On the whole however activities have progressed at a considerably faster rate than had been predicted just a couple of years ago.
Coal Decarbonization: A State-of-the-art Review of Enhanced Hydrogen Production in Underground Coal Gasification
Aug 2022
Publication
The world is endowed with a tremendous amount of coal resources which are unevenly distributed in a few nations. While sustainable energy resources are being developed and deployed fossil fuels dominate the current world energy consumption. Thus low-carbon clean technologies like underground coal gasification (UCG) ought to play a vital role in energy supply and ensuring energy security in the foreseeable future. This paper provides a state-of-the-art review of the world's development of UCG for enhanced hydrogen production. It is revealed that the world has an active interest in decarbonizing the coal industry for hydrogen-oriented research in the context of UCG. While research is ongoing in multiple coal-rich nations China dominates the world's efforts in both industrial-scale UCG pilots and laboratory experiments. A variety of coal ranks were tested in UCG for enhanced hydrogen output and the possibilities of linking UCG with other prospective technologies had been proposed and critically scrutinized. Moreover it is found that transborder collaborations are in dire need to propel a faster commercialization of UCG in an ever-more carbon-conscious world. Furthermore governmental and financial support is necessary to incentivize further UCG development for large-scale hydrogen production.
Review and Harmonization of the Life-Cycle Global Warming Impact of PV-Powered Hydrogen Production by Electrolysis
Sep 2021
Publication
This work presents a review of life-cycle assessment (LCA) studies of hydrogen electrolysis using power from photovoltaic (PV) systems. The paper discusses the assumptions strengths and weaknesses of 13 LCA studies and identifies the causes of the environmental impact. Differences in assumptions of system boundaries system sizes evaluation methods and functional units make it challenging to directly compare the Global Warming Potential (GWP) resulting from different studies. To simplify this process 13 selected LCA studies on PV-powered hydrogen production have been harmonized following a consistent framework described by this paper. The harmonized GWP values vary from 0.7 to 6.6 kg CO2-eq/kg H2 which can be considered a wide range. The maximum absolute difference between the original and harmonized GWP results of a study is 1.5 kg CO2-eq/kg H2. Yet even the highest GWP of this study is over four times lower than the GWP of grid-powered electrolysis in Germany. Due to the lack of transparency of most LCAs included in this review full identification of the sources of discrepancies (methods applied assumed production conditions) is not possible. Overall it can be concluded that the environmental impact of the electrolytic hydrogen production process is mainly caused by the GWP of the electricity supply. For future environmental impact studies on hydrogen production systems it is highly recommended to 1) divide the whole system into well-defined subsystems using compression as the final stage of the LCA and 2) to provide energy inputs/GWP results for the different subsystems.
Thermocatalytic Hydrogen Production Through Decomposition of Methane-A Review
Oct 2021
Publication
Consumption of fossil fuels especially in transport and energy-dependent sectors has led to large greenhouse gas production. Hydrogen is an exciting energy source that can serve our energy purposes and decrease toxic waste production. Decomposition of methane yields hydrogen devoid of COx components thereby aiding as an eco-friendly approach towards large-scale hydrogen production. This review article is focused on hydrogen production through thermocatalytic methane decomposition (TMD) for hydrogen production. The thermodynamics of this approach has been highlighted. Various methods of hydrogen production from fossil fuels and renewable resources were discussed. Methods including steam methane reforming partial oxidation of methane auto thermal reforming direct biomass gasification thermal water splitting methane pyrolysis aqueous reforming and coal gasification have been reported in this article. A detailed overview of the different types of catalysts available the reasons behind their deactivation and their possible regeneration methods were discussed. Finally we presented the challenges and future perspectives for hydrogen production via TMD. This review concluded that among all catalysts nickel ruthenium and platinum-based catalysts show the highest activity and catalytic efficiency and gave carbon-free hydrogen products during the TMD process. However their rapid deactivation at high temperatures still needs the attention of the scientific community.
Climate Change Impacts on Gaseous Hydrogen (H2) Potential Produced by Photovoltaic Electrolysis for Stand-Alone or Grid Applications in Europe
Dec 2022
Publication
The EU’s hydrogen strategy consists of studying the potential for renewable hydrogen to help decarbonize the EU in a cost-effective way. Today hydrogen accounts for less than 2% of Europe’s energy consumption. It is primarily used to produce chemical products. However 96% of this hydrogen production is through natural gas leading to significant amounts of CO2 emissions. In this paper we investigated PV electrolysis H2 gas (noted H2(g)) production for mapping this resource at Europe’s scale. The Cordex/Copernicus RCPs scenarios allow for evaluating the impact of climate changes on the H2 -produced mass and the equivalent energy according to both extreme RCPs scenarios. New linear regressions are investigated to study the great dependence in H2(g) produced masses (kg·yr−1 ) and equivalent energies (MWh·yr−1 ) for European countries. Computational scenarios are investigated from a reference year (2005) to the end of the century (2100) by steps of 5 years. According to RCPs 2.6 (favorable)/8.5 (extreme) 31.7% and 77.4% of Europe’s area presents a decrease of H2(g)-produced masses between 2005 and 2100. For the unfavorable scenario (8.5) only a few regions located in the northeast of France Germany Austria Romania Bulgaria and Greece present a positive balance in H2(g) production for supplying remote houses or smart grids in electricity and heat energy.
Aluminum-Based Fuels as Energy Carriers for Controllable Power and Hydrogen Generation—A Review
Dec 2022
Publication
Metallic aluminum is widely used in propellants energy-containing materials and batteries due to its high energy density. In addition to burning in the air aluminum can react with water to generate hydrogen. Aluminum is carbon-free and the solid-phase products can be recycled easily after the reaction. Micron aluminum powder is stable in the air and enables global trade. Aluminum metal is considered to be a viable recyclable carrier for clean energy. Based on the reaction characteristics of aluminum fuel in air and water this work summarizes the energy conversion system of aluminum fuel the combustion characteristics of aluminum and the recycling of aluminum. The conversion path and application direction of electric energy and chemistry in the aluminum energy conversion system are described. The reaction properties of aluminum in the air are described as well as the mode of activation and the effects of the aluminum-water reaction. In situ hydrogen production is achievable through the aluminum-water reaction. The development of low-carbon and energy-saving electrolytic aluminum technology is introduced. The work also analyzes the current difficulties and development directions for the large-scale application of aluminum fuel energy storage technology. The development of energy storage technology based on aluminum is conducive to transforming the energy structure.
Hydrogen Production Using Advanced Reactors by Steam Methane Reforming: A Review
Apr 2023
Publication
The present review focuses on the current progress on harnessing the potential of hydrogen production by Methane Steam Reforming (MSR). First based on the prominent literature in last few years the overall research efforts of hydrogen production using different feed stocks like ethanol ammonia glycerol methanol and methane is presented. The presented data is based on reactor type reactor operating conditions catalyst used and yield of hydrogen to provide a general overview. Then the most widely used process [steam methane reforming (SMR)/ methane steam reforming (MSR)] are discussed. Major advanced reactors the membrane reactors Sorption Enhanced methane steam reforming reactors and micro-reactors are evaluated. The evaluation has been done based on parameters like residence time surface area scale-up coke formation conversion space velocity and yield of hydrogen. The kinetic models available in recently published literature for each of these reactors have been presented with the rate constants and other parameters. The mechanism of coke formation and the rate expressions for the same have also been presented. While membrane reactors and sorption enhanced reactors have lot of advantages in terms of process intensification scale-up to industrial scale is still a challenge due to factors like membrane stability and fouling (in membrane reactors) decrease in yield with increasing WHSV (in case of Sorption Enhanced Reactors). Micro-reactors pose a higher potential in terms of higher yield and very low residence time in seconds though the volumes might be substantially lower than present industrial scale conventional reactors.
Utilization of Food Waste for Hydrogen-based Power Generation: Evidence from Four Cities in Ghana
Mar 2023
Publication
Hydrogen gas will be an essential energy carrier for global energy systems in the future. However non-renewable sources account for 96% of the production. Food wastes have high hydrogen generation potential which can positively influence global production and reduce greenhouse gas (GHG) emissions. The study evaluates the potential of food waste hydrogen-based power generation through biogas steam reforming and its environmental and economic impact in major Ghanaian cities. The results highlight that the annual hydrogen generation in Kumasi had the highest share of 40.73 kt followed by Accra with 31.62 kt while the least potential was in Tamale (3.41 kt). About 2073.38 kt was generated in all the major cities. Hydrogen output is predicted to increase from 54.61 kt in 2007 to 119.80 kt by 2030. Kumasi produced 977.54 kt of hydrogen throughout the 24-year period followed by Accra with 759.76 kt Secondi-Takoradi with 255.23 kt and Tamale with 81.85 kt. According to the current study Kumasi had the largest percentage contribution of hydrogen (47.15%) followed by Accra (36.60%) Secondi-Takoradi (12.31%) and Tamale (3.95%). The annual power generation potential in Kumasi and Accra was 73.24 GWh and 56.85 GWh. Kumasi and Accra could offset 8.19% and 6.36% of Ghana's electricity consumption. The total electricity potential of 3728.35 GWh could displace 17.37% of Ghana's power consumption. This electricity generated had a fossil diesel displacement capacity of 1125.90 ML and could reduce GHG emissions by 3060.20 kt CO2 eq. Based on the findings the total GHG savings could offset 8.13% of Ghana's carbon emissions. The cost of power generation from hydrogen is $ 0.074/kWh with an annual positive net present value of $ 658.80 million and a benefit-to-cost ratio of 3.43. The study lays the foundation and opens policy windows for sustainable hydrogen power generation in Ghana and other African countries.
Optimizing the Installation of a Centralized Green Hydrogen Production Facility in the Island of Crete, Greece
Apr 2024
Publication
The European Union is committed to a 55% reduction in greenhouse gas emissions by 2030 as outlined in the Green Deal and Climate Law initiatives. In response to geopolitical events the RePowerEU initiative aims to enhance energy self-sufficiency reduce reliance on Russian natural gas and promote hydrogen utilization. Hydrogen valleys localized ecosystems integrating various hydrogen supply chain elements play a key role in this transition particularly benefiting isolated regions like islands. This manuscript focuses on optimizing a Centralized Green Hydrogen Production Facility (CGHPF) on the island of Crete. A mixed-integer linear programming framework is proposed to optimize the CGHPF considering factors such as land area wind and solar potential costs and efficiency. Additionally an in-depth sensitivity analysis is conducted to explore the impact of key factors on the economic feasibility of hydrogen investments. The findings suggest that hydrogen can be sold in Crete at prices as low as 3.5 EUR/kg. Specifically it was found in the base scenario that selling hydrogen at 3.5 EUR/kg the net profit of the investment could be as high as EUR 6.19 million while the capacity of the solar and wind installation supplying the grid hydrogen facility would be 23.51 MW and 52.97 MW respectively. It is noted that the high profitability is justified by the extraordinary renewable potential of Crete. Finally based on our study a policy recommendation to allow a maximum of 20% direct penetration of renewable sources of green hydrogen facilities into the grid is suggested to encourage and accelerate green hydrogen expansion.
No more items...