Production & Supply Chain
Technical and Economic Performance Assessment of Blue Hydrogen Production Using New Configuration Through Modelling and Simulation
Mar 2024
Publication
Steam methane reforming (SMR) is the dominant process for hydrogen production which produce large amount of carbon dioxide (CO2) as a by-product. To address concerns about carbon emissions there is an increasing focus on blue hydrogen to mitigate carbon emissions during hydrogen production. However the commercialization of blue hydrogen production (BHP) is hindered by the challenges of high cost and energy consumption. This study proposes a new configuration to address these challenges which is characterized by: (a) the use of piperazine (PZ) as a solvent which has a high CO2 absorption efficiency; (b) a more efficient heat exchange configuration which recovers the waste exergy from flue gas; (c) the advanced flash stripper (AFS) was adopted to reduce the capital cost due to its simpler stripper configuration. In addition the technical and economic performance of the proposed energy and cost-saving blue hydrogen production (ECSB) process is investigated and compared with the standard SMR process. The detailed models of the SMR process and the post-combustion carbon capture (PCC) process were developed and integrated in Aspen plus® V11. The results of the technical analysis showed that the ECSB process with 30 wt.% PZ achieves a 36.3 % reduction in energy penalty when compared to the standard process with 30 wt.% Monoethanolamine (MEA). The results of the economic analysis showed that the lowest levelized cost of blue hydrogen (LCBH) was achieved by the ECSB process with 30 wt.% PZ. Compared to the BHP process with 30 wt.% MEA the LCBH was reduced by 19.7 %.
A Study of Thermoelectric Generation Coupled with Methanol Steam Reforming for Hydrogen Production
Nov 2022
Publication
Waste heat recovery was considered as a promising candidate for energy conservation and emission reduction. Methanol steam reforming was considered to be an effective means for hydrogen production because of its advantages. In this work a micro reactor was constructed and thermoelectric generation coupled with hydrogen production from methanol steam reforming was innovatively used to recycle waste heat which was simulated by hot air from a hot air gun. The waste heat was converted into electricity and hydrogen at the same time. The characteristic of thermoelectric generation coupled with methanol steam reforming was investigated. It was experimentally verified that both the hydrogen production rate and methanol conversion increased with the increasing inlet temperature but thermal efficiency increased firstly and then decreased with the increasing temperature. The methanol steam reforming could effectively maintain cold side temperature distribution of thermoelectric generation. In the case of the thermoelectric module (1) the highest temperature difference of 37 ◦C was determined and the maximum open circuit voltage of 2 V was observed. The highest methanol conversion of 64.26% was achieved at a space velocity of 0.98 h−1 when the temperature was 543 K comprehensively considering the CO content and thermal efficiency.
Techno-economic Assessment of Electrolytic Hydrogen in China Considering Wind-solar-load Characteristic
Jan 2023
Publication
Hydrogen production by electrolysis is considered an essential means of consuming renewable energy in the future. However the current assessment of the potential of renewable energy electrolysis for hydrogen production is relatively simple and the perspective is not comprehensive. Here we established a Combined Wind and Solar Electrolytic Hydrogen system considering the influence of regional wind-solar-load characteristics and transmission costs to evaluate the hydrogen production potential of 31 provincial-level regions in China in 2050. The results show that in 2050 the levelized cost of hydrogen (LCOH) in China’s provincial regions will still be higher than 10 ¥/kg which is not cost-competitive compared to the current hydrogen production from fossil fuels. It is more cost-effective to deploy wind turbines than photovoltaic in areas with similar wind and solar resources or rich in wind resources. Wind-solar differences impact LCOH equipment capacity configuration and transmission cost composition while load fluctuation significantly impacts LCOH and electricity storage configuration. In addition the sensitivity analysis of 11 technical and economic parameters showed differences in the response performance of LCOH changes to different parameters and the electrolyzer conversion efficiency had the most severe impact. The analysis of subsidy policy shows that for most regions (except Chongqing and Xizang) subsidizing the unit investment cost of wind turbines can minimize LCOH. Nevertheless from the perspective of comprehensive subsidy effect subsidy cost and hydrogen energy development it is more cost-effective to take subsidies for electrolysis equipment with the popularization of hydrogen
EU Harmonised Testing Procedure: Determination of Water Electrolyser Energy Performance
Jan 2023
Publication
The objective of this pre-normative research (PNR) document is to present a testing procedure for establishing the energy performance of water (steam) electrolyser systems (WE systems) whether grid-connected or off-grid and individual water electrolysers (WEs)/high-temperature electrolysers (HTEs) for the generation of hydrogen by water/steam electrolysis. The WE systems use electricity mostly from variable renewable energy sources. HTE may additionally utilise (waste) heat from energy conversion and other industrial processes. By applying this procedure the determination of the specific energy consumption per unit of hydrogen output under standard ambient temperature and pressure (SATP) conditions allows for an adequate comparison of different WE systems. Also the energy performance potential of WEs or WE systems employing low-temperature water electrolysis (LTWE) technologies compared to HTE employing high-temperature steam electrolysis (HTSEL) technologies may be established under actual hydrogen output conditions by applying this procedure. The test method is to evaluate the specific energy consumption during steady-state operation at specified conditions including rated input power pressure and temperature of hydrogen recommended by the manufacturer of the WE or WE system. The energy efficiency and the electrical efficiency based on higher and lower heating value of hydrogen can be derived from respectively the specific energy consumption and the specific electric energy consumption as additional energy performance indicators (EPIs). In a plant setting the specific energy consumption of an individual water electrolyser including HTE under hydrogen output conditions may also be determined using this testing procedure. This procedure is intended to be used as a general characterisation method for evaluating the energy performance of WEs including HTEs and systems by the research community and industry alike.
A Systematic Review of the Techno-economic Assessment of Various Hydrogen Production Methods of Power Generation
Oct 2022
Publication
Hydrogen is a low or zero-carbon energy source that is considered the most promising and potential energy carrier of the future. In this study the energy sources feedstocks and various methods of hydrogen production from power generation are comparatively investigated in detail. In addition this study presents an economic assessment to evaluate cost-effectiveness based on different economic indicators including sensitivity analysis and uncertainty analysis. Proton exchange membrane fuel cell (PEMFCs) technology has the most potential to be developed compared to several other technologies. PEMFCs have been widely used in various fields and have advantages (i.e. start-up zero-emissions high power density). Among the various sources of uncertainty in the sensitivity analysis the cost estimation method shows inflationary deviations from the proposed cost of capital. This is due to the selection process and untested technology. In addition the cost of electricity and raw materials as the main factors that are unpredictable.
A Review of Recent Advances in Water-gas Shift Catalysis for Hydrogen Production
Aug 2020
Publication
The water-gas shift reaction (WGSR) is an intermediate reaction in hydrocarbon reforming processes considered one of the most important reactions for hydrogen production. Here water and carbon monoxide molecules react to generate hydrogen and carbon dioxide. From the thermodynamics aspect pressure does not have an impact whereas low-temperature conditions are suitable for high hydrogen selectivity because of the exothermic nature of the WGSR reaction. The performance of this reaction can be greatly enhanced in the presence of suitable catalysts. The WGSR has been widely studied due do the industrial significance resulting in a good volume of open literature on reactor design and catalyst development. A number of review articles are also available on the fundamental aspects of the reaction including thermodynamic analysis reaction condition optimization catalyst design and deactivation studies. Over the past few decades there has been an exceptional development of the catalyst characterization techniques such as near-ambient x-ray photoelectron spectroscopy (NA-XPS) and in situ transmission electron microscopy (in situ TEM) providing atomic level information in presence of gases at elevated temperatures. These tools have been crucial in providing nanoscale structural details and the dynamic changes during reaction conditions which were not available before. The present review is an attempt to gather the recent progress particularly in the past decade on the catalysts for low-temperature WGSR and their structural properties leading to new insights that can be used in the future for effective catalyst design. For the ease of reading the article is divided into subsections based on metals (noble and transition metal) oxide supports and carbon-based supports. It also aims at providing a brief overview of the reaction conditions by including a table of catalysts with synthesis methods reaction conditions and key observations for a quick reference. Based on our study of literature on noble metal catalysts atomic Pt substituted Mn3O4 shows almost full CO conversion at 260 °C itself with zero methane formation. In the case of transition metals group the inclusion of Cu in catalytic system seems to influence the CO conversion significantly and in some cases with CO conversion improvement by 65% at 280 °C. Moreover mesoporous ceria as a catalyst support shows great potential with reports of full CO conversion at a low temperature of 175 °C.
Green Hydrogen Production Potential in West Africa – Case of Niger
Jul 2022
Publication
Niger offers the possibility of producing green hydrogen due to its high solar energy potential. Due to the still growing domestic oil and coal industry the use of green hydrogen in the country currently seems unlikely at the higher costs of hydrogen as an energy vector. However the export of green hydrogen to industrialized countries could be an option. In 2020 a hydrogen partnership has been established between Germany and Niger. The potential import of green hydrogen represents an option for Germany and other European countries to decarbonize domestic energy supply. Currently there are no known projects for the electrolytic production of hydrogen in Niger. In this work potential hydrogen demand across electricity and transport sectors is forecasted until 2040. The electricity demand in 2040 is expected at 2934 GWh and the gasoline and diesel demand at 964 m3 and 2181 m3 respectively. Accordingly the total hydrogen needed to supply electricity and the transport sector (e.g. to replace 1% gasoline and diesel demand in 2040) is calculated at 0.0117 Mt. Only a small fraction of 5% of the land area in Niger would be sufficient to generate the required electricity from solar PV to produce hydrogen.
Utilization of Excess Water Accumulation for Green Hydrogen Production in a Run-ofTiver Hydropower Plant
Jun 2022
Publication
This paper discusses the potential for green-hydrogen production in a run-of-river 9 hydropower plant. This particular hydropower plant has no significant water accumulation but 10 there is the potential for limited hydrogen production due to a mismatch between the daily 11 predefined electricity production (known as the timetable) and the actual water inflows. The 12 timetable for the hydropower plant is prepared by the operator of the electro-energetic system 13 based on a model of the available production capacities forecasted consumption water 14 accumulation state of the river flows weather forecasts and the system operator’s strategy. The 15 uncertainty in the model’s input parameters is reflected in the output timetable for the 16 hydropower plant and for this reason a small reserve of water for potential exploitation is 17 envisaged. By using real data for the timetable and the water inflow we estimate the excess 18 hydropower that can be used for hydrogen cogeneration. Since the primary task of the 19 hydropower plant is to produce electricity according to the timetable the production of 20 hydrogen is only possible to a limited extent. Therefore we present a control algorithm that 21 regulates the amount of hydrogen production while considering the predefined timetable and 22 the real water accumulation. The second part of the paper deals with the economic viability of 23 hydrogen cogeneration in the case-study run-of-river hydropower plant and discusses the 24 possibility of using it for local public transport.
Optimal Renewable Energy Distribution Between Gasifier and Electrolyzer for Syngas Generation in a Power and Biomass-to-Liquid Fuel Process
Jan 2022
Publication
By adding energy as hydrogen to the biomass-to-liquid (BtL) process several published studies have shown that carbon efficiency can be increased substantially. Hydrogen can be produced from renewable electrical energy through the electrolysis of water or steam. Adding high-temperature thermal energy to the gasifier will also increase the overall carbon efficiency. Here an economic criterion is applied to find the optimal distribution of adding electrical energy directly to the gasifier as opposed to the electrolysis unit. Three different technologies for electrolysis are applied: solid oxide steam electrolysis (SOEC) alkaline water electrolysis (AEL) and proton exchange membrane (PEM). It is shown that the addition of part of the renewable energy to the gasifier using electric heaters is always beneficial and that the electrolysis unit operating costs are a significant portion of the costs. With renewable electricity supplied at a cost of 50 USD/MWh and a capital cost of 1500 USD/kW installed SOEC the operating costs of electric heaters and SOEC account for more than 70% of the total costs. The energy efficiency of the electrolyzer is found to be more important than the capital cost. The optimal amount of energy added to the gasifier is about 37–39% of the energy in the biomass feed. A BtL process using renewable hydrogen imports at 2.5 USD/kg H2 or SOEC for hydrogen production at reduced electricity prices gives the best values for the economic objective.
Advances in Methanol Production and Utilization, with Particular Emphasis toward Hydrogen Generation via Membrane Reactor Technology
Oct 2018
Publication
Methanol is currently considered one of the most useful chemical products and is a promising building block for obtaining more complex chemical compounds such as acetic acid methyl tertiary butyl ether dimethyl ether methylamine etc. Methanol is the simplest alcohol appearing as a colorless liquid and with a distinctive smell and can be produced by converting CO2 and H2 with the further benefit of significantly reducing CO2 emissions in the atmosphere. Indeed methanol synthesis currently represents the second largest source of hydrogen consumption after ammonia production. Furthermore a wide range of literature is focused on methanol utilization as a convenient energy carrier for hydrogen production via steam and autothermal reforming partial oxidation methanol decomposition or methanol–water electrolysis reactions. Last but not least methanol supply for direct methanol fuel cells is a well-established technology for power production. The aim of this work is to propose an overview on the commonly used feedstocks (natural gas CO2 or char/biomass) and methanol production processes (from BASF—Badische Anilin und Soda Fabrik to ICI—Imperial Chemical Industries process) as well as on membrane reactor technology utilization for generating high grade hydrogen from the catalytic conversion of methanol reviewing the most updated state of the art in this field.
Super Short Term Combined Power Prediction for Wind Power Hydrogen Production
Sep 2022
Publication
A combined ultra-short-term wind power prediction strategy with high robustness based on least squares support vector machine (LSSVM) has been proposed in order to solve the wind abandonment caused by wind power randomness and realize efficient hydrogen production under wide power fluctuation. Firstly the original wind power data is decomposed into sub-modes with different bandwidth by variational modal decomposition (VMD) which reduces the influence of random noise and mode mixing significantly. Then dragonfly algorithm (DA) is introduced to optimize LSSVM kernel function and the combined ultra-short-term wind power prediction strategy which meets the time resolution and accuracy requirements of electrolytic cell control has been established finally. This model is validated by a wind power hydrogen production demonstration project output in the middle east of China. The superior prediction accuracy for high volatility wind power data is verified and the algorithm provides theoretical basis to improve the control of wind power hydrogen production system
Water Electrolysis and Hydrogen in the European Union
Nov 2022
Publication
Renewable and low carbon hydrogen is both an energy carrier able to produce other fuels and downstream products such as the e-fuels or e-ammonia and a decarbonised gas produced through renewable electricity. It has the potential to decarbonise hard to abate sectors which are difficult to directly electrify and play a crucial role in achieving net zero emissions target in 2050. The European Commission has recently outlined the policy context and necessary actions for the development and deployment of renewable and low carbon hydrogen within the 2030 time horizon with the Hydrogen Strategy for a Climate Neutral Europe Communication (the Hydrogen Strategy). The REPowerEU Communication4 has further addressed the joint EU and Member State actions needed in the context of the crisis triggered by the invasion of Ukraine in February 2022 and the necessity to phase out dependence on Russian supplies. The EC has strengthened the policy narrative around hydrogen and increased objectives for a pan European framework accelerating and upscaling the production of RES and low-carbon hydrogen. The main objectives and actions of the REPowerEU Plan which build on the Hydrogen Strategy are the deployment of several tens of GW of electrolyser capacity and the production and imports of 10 Mt and 10 Mt respectively of renewable hydrogen by 2030. Currently the most mature and promising green hydrogen production technology is water electrolysis. The main technologies5 considered in this report are: Alkaline electrolysis Polymer Exchange Membrane (PEM) electrolysis Solid Oxide electrolysis and Anion Exchange Membrane electrolysers (AEM).
Novel Ways for Hydrogen Production Based on Methane Steam and Dry Reforming Integrated with Carbon Capture
Sep 2022
Publication
The combination of methane steam reforming technology and CCS (Carbon Capture and Storage) technology has great potential to reduce carbon emissions in the process of hydrogen production. Different from the traditional idea of capturing CO2 (Carbon Dioxide) in the exhaust gas with high work consumption this study simultaneously focuses on CO2 separation from fuel gas and recycling. A new hydrogen production system is developed by methane steam reforming coupled with carbon capture. Separated and captured high-purity carbon dioxide could be recycled for methane dry reforming; on this basis a new methane-dry-reforming-driven hydrogen production system with a carbon dioxide reinjection unit is innovatively proposed. In this study the energy flow and irreversible loss in the two newly developed systems are analyzed in detail through energy and exergy balance analysis. The advantages are explored from the perspective of hydrogen production rate natural gas consumption and work consumption. In addition in consideration of the integrated performance an optimal design analysis was conducted. In terms of hydrogen production the new system based on dry reforming is better with an advantage of 2.41%; however it is worth noting that the comprehensive thermal performance of the new steam reforming system is better reaching 10.95%. This study provides new ideas for hydrogen production from a low carbon emission perspective and also offers a new direction for future distributed energy system integration.
Design Strategies for Large Current Density Hydrogen Evolution Reaction
Apr 2022
Publication
Hydrogen energy is considered one of the cleanest and most promising alternatives to fossil fuel because the only combustion product is water. The development of water splitting electrocatalysts with Earth abundance cost-efficiency and high performance for large current density industrial applications is vital for H2 production. However most of the reported catalysts are usually tested within relatively small current densities (< 100 mA cm−2 ) which is far from satisfactory for industrial applications. In this minireview we summarize the latest progress of effective non-noble electrocatalysts for large current density hydrogen evolution reaction (HER) whose performance is comparable to that of noble metal-based catalysts. Then the design strategy of intrinsic activities and architecture design are discussed including self-supporting electrodes to avoid the detachment of active materials the superaerophobicity and superhydrophilicity to release H2 bubble in time and the mechanical properties to resist destructive stress. Finally some views on the further development of high current density HER electrocatalysts are proposed such as scale up of the synthesis process in situ characterization to reveal the micro mechanism and the implementation of catalysts into practical electrolyzers for the commercial application of as-developed catalysts. This review aimed to guide HER catalyst design and make large-scale hydrogen production one step further.
Hydrogen as Energy Carrier: Techno-economic Assessment of Decentralized Hydrogen Production in Germany
Jun 2021
Publication
Political and scientific discussions on changing German energy supply mix and challenges of such energy transition are already well established. At the supply level energy storage seems to be the biggest challenge ahead for such transition. Hydrogen could be one of the solutions for future energy transition if it is produced using renewable energy resources. In order to analyze the future role of hydrogen its economic performance analysis is inevitable. This has been done in this research for a case study site in Cologne. The potential of hydrogen production with the use of solar electricity powered electrolyzers (alkaline and proton exchange membrane (PEM)) has been analyzed. Both grid connected and off grid modes of solar hydrogen production are considered. Economic performance results are presented for six scenarios. Hydrogen produced with the grid connected solar photovoltaics system coupled with alkaline electrolyzers was found the cheapest with the levelized cost of hydrogen (LCOH) at 6.23 V/kg. These costs are comparable with the current hydrogen price at commercial refueling station in Cologne. On the other hand the LCOH of off grid systems with both alkaline and PEM electrolyzers is expensive as expected the most expensive LCOH among six scenarios reached to 57.61 V/kg.
Hydrogen Production by Solar Thermochemical Water-Splitting Cycle via a Beam Down Concentrator
May 2021
Publication
About 95% of the hydrogen presently produced is from natural gas and coal and the remaining 5% is generated as a by-product from the production of chlorine through electrolysis1 . In the hydrogen economy (Crabtree et al. 2004; Penner 2006; Marbán and Valdés-Solís 2007) hydrogen is produced entirely from renewable energy. The easiest approach to advance renewable energy production is through solar photovoltaic and electrolysis a pathway of high technology readiness level (TRL) suffering however from two downfalls. First of all electricity is already an energy carrier and transformation with a penalty into another energy carrier hydrogen is in principle flawed. The second problem is that the efficiency of commercial solar panels is relatively low. The cadmium telluride (CdTe) thin-film solar cells have a solar energy conversion efficiency of 17%. Production of hydrogen using the current best processes for water electrolysis has an efficiency of ∼70%. As here explained the concentrated solar energy may be used to produce hydrogen using thermochemical water-splitting cycles at much global higher efficiency (fuel energy to incident sun energy). This research and development (R&D) effort is therefore undertaken to increase the TRL of this approach as a viable and economical option.
Determination of the Optimal Power Ratio between Electrolysis and Renewable Energy to Investigate the Effects on the Hydrogen Production Costs
Sep 2022
Publication
Green hydrogen via renewable powered electrolysis has a high relevance in decarbonization and supply security. Achieving economically competitive hydrogen production costs is a major challenge in times of an energy price crisis. Our objective is to show the economically optimal installed capacity of electrolysers in relation to wind and solar power so swift and credible statements can be made regarding the system design. The ratio between renewable generation and electrolysis power as well as scaling effects operating behaviour and development of costs are considered. Hydrogen production costs are calculated for four exemplary real PV and wind sites and different ratios of electrolysis to renewable power for the year 2020. The ideal ratio for PV systems is between 14% and 73% and for wind between 3.3% and 143% for low and high full load hours. The lowest hydrogen production costs are identified at 2.53 €/kg for 50 MW wind power and 72 MW electrolysis power. The results provide plant constructors the possibility to create a cost-optimized design via an optimum ratio of electrolysis to renewable capacity. Therefore the procedures for planning and dimensioning of selected systems can be drastically simplified.
Feasibility Analysis of Hydrogen Production Potential from Rooftop Solar Power Plant for Industrial Zones in Vietnam
Nov 2022
Publication
Currently global energy transformation and the promotion of renewable energy use are being taken care of to minimize the harm to the environment. However the disadvantage of renewable energy is the random change which leads to the regulation of grid operations which is very difficult when the capacity of renewable energy sources accounts for a large proportion. The hydrogen production technology from wind and solar energy sources is one of the possible methods to minimize adverse impacts on the utility grid and serve the load demand of industrial zones. In this study the photovoltaic (PV) hydrogen production potential for industrial zones in Vietnam is analyzed. The Homer was used to simulate and calculate power output. The results showed that the Hai Duong province has the lowest solar radiation so the solar power output is 3600389 kWh/year and the amount of hydrogen generated is less so it mainly serves the hydrogen load while the fuel cell can only generate very low amounts of electricity of about 4150 kWh/year for direct current (DC) load. The hybrid power systems in the typical industrial plant in Quang Nam province Binh Thuan province Can Tho city can generate about 17386 kg/year to 17422 kg/year to supply the operation of fuel cells based on the value of solar radiation of each province. The better the area with solar potential the lower the net present cost (NPC) cost of energy (COE) and operation cost so the economical and technical efficiency of the PV–Fuel cell hybrid power system will increase.
Investigation on Green Hydrogen Generation Devices Dedicated for Integrated Renewable Energy Farm: Solar and Wind
Oct 2022
Publication
This study presents a comprehensive methodology to evaluate plants that integrate renewable energy sources and hydrogen generation devices. The paper focuses on presenting the methods for devices’ operation assessment taking into account the annual operation. Multiple effectiveness indices have been presented. On the basis of experimental investigation with the hydrogen generator the methods for assessing its operation during start-up phase and sudden change in the supply current were proposed. The results of the experiments and the provided mathematical models show that dynamics of the hydrogen generator should be taken into account when selecting the suitable device for cooperation with variable renewable energy. It is especially important for multiple start-ups throughout the day due to significant differences in the amount of hydrogen produced by devices characterized by the same efficiency yet various time constants. Methodology for selecting the optimal nominal power for hydrogen generator to cooperate with given renewable sources was developed. It was proven the optimal power depends on the type of the renewable source and minimal load of the hydrogen generator. Several case studies including the integration of wind and solar energy farms to yield a 10 MW renewable energy farm were considered and the minimal load of the hydrogen generator impacts the annual operation of the device has been presented. The paper provides a set of tools to contribute to the development of sustainable energy plants. The methods proposed in this paper are universal and can be used for various renewable energy sources.
Review—Identifying Critical Gaps for Polymer Electrolyte Water Electrolysis Development
Feb 2017
Publication
Although polymer electrolyte water electrolyzers (PEWEs) have been used in small-scale (kW to tens of kW range) applications for several decades PEWE technology for hydrogen production in energy applications (power-to-gas power-to-fuel etc.) requires significant improvements in the technology to address the challenges associated with cost performance and durability. Systems with power of hundreds of kW or even MWs corresponding to hydrogen production rates of around 10 to 20 kg/h have started to appear in the past 5 years. The thin (∼0.2 mm) polymer electrolyte in the PEWE with low ohmic resistance compared to the alkaline cell with liquid electrolyte allows operation at high current densities of 1–3 A/cm2 and high differential pressure. This article after an introductory overview of the operating principles of PEWE and state-of-the-art discusses the state of understanding of key phenomena determining and limiting performance durability and commercial readiness identifies important ‘gaps’ in understanding and essential development needs to bring PEWE science & engineering forward to prosper in the energy market as one of its future backbone technologies. For this to be successful science engineering and process development as well as business and market development need to go hand in hand.
No more items...