Production & Supply Chain
Clean Hydrogen Production by Ultrasound (Sonochemistry): The Effect of Noble Gases
Feb 2022
Publication
Power ultrasonic (> 100 kHz) splits water into free radicals and hydrogen. As a result water sonochemistry is considered as an alternative clean and fossil-fuel-free hydrogen production technique. In this research work the impact of rare gases (Xe Ar and He) on the sonochemical production of hydrogen as well as the population of active bubbles has been investigated computationally for various sonicated frequencies (213-515 kHz) and intensities (1-2 W/cm²). It has been found that both the H2 yielding and the bubble population size for H2 yielding are in the order Xe>Ar>He whatever the imposed sonolytic parameters (i.e. frequency and power). These findings were principally ascribed to the thermal conductivity of the saturating gases which is in the reverse order (He>Ar>Xe). Besides the difference between Ar and Xe is condensed in comparison with the He gas. For wave frequencies larger than 213 kHz however all saturating gases (Xe Ar and He) behave identically with the influence of thermal conductivity of these gases on the optimal radius muted. At 213 kHz however this impact is plainly visible (Ropt (Ar and Xe)>Ropt (He)). As per the results obtained helium's inefficiency as a saturating gas for hydrogen production is verified but xenon's maximal efficacy is reached when water is saturated with it. These results support the fewer experimental data reported in this emerging branch of sonochemistry while the discussed results in the present (i.e. noble gases effect on sono-hydrogen production) are treated for the first time consequently our work is considered as a guideline for increasing the efficacy of hydrogen production in a sonochemical reactor.
Techno-economic Assessment of Hydrogen Production from Seawater
Nov 2022
Publication
Population growth and the expansion of industries have increased energy demand and the use of fossil fuels as an energy source resulting in release of greenhouse gases (GHG) and increased air pollution. Countries are therefore looking for alternatives to fossil fuels for energy generation. Using hydrogen as an energy carrier is one of the most promising alternatives to replace fossil fuels in electricity generation. It is therefore essential to know how hydrogen is produced. Hydrogen can be produced by splitting the water molecules in an electrolyser using the abondand water resources which are covering around ⅔ of the Earth's surface. Electrolysers however require high-quality water with conductivity in the range of 0.1–1 μS/cm. In January 2018 there were 184 offshore oil and gas rigs in the North Sea which may be excellent sites for hydrogen production from seawater. The hydrogen production process reported in this paper is based on a proton exchange membrane (PEM) electrolyser with an input flow rate of 300 L/h. A financially optimal system for producing demineralized water from seawater with conductivity in the range of 0.1–1 μS/cm as the input for electrolyser by WAVE (Water Application Value Engine) design software was studied. The costs of producing hydrogen using the optimised system was calculated to be US$3.51/kg H2. The best option for low-cost power generation using renewable resources such as photovoltaic (PV) devices wind turbines as well as electricity from the grid was assessed considering the location of the case considered. All calculations were based on assumption of existing cable from the grid to the offshore meaning that the cost of cables and distribution infrastructure were not considered. Models were created using HOMER Pro (Hybrid Optimisation of Multiple Energy Resources) software to optimise the microgrids and the distributed energy resources under the assumption of a nominal discount rate inflation rate project lifetime and CO2 tax in Norway. Eight different scenarios were examined using HOMER Pro and the main findings being as follows:<br/>The cost of producing water with quality required by the electrolyser is low compared with the cost of electricity for operation of the electrolyser and therefore has little effect on the total cost of hydrogen production (less than 1%).<br/>The optimal solution was shown to be electricity from the grid which has the lowest levelised cost of energy (LCOE) of the options considered. The hydrogen production cost using electricity from the grid was about US$ 5/kg H2.<br/>Grid based electricity resulted in the lowest hydrogen production cost even when costs for CO2 emissions in Norway that will start to apply in 2025 was considered being approximately US$7.7/kg H2.<br/>From economical point of view wind energy was found to be a more economical than solar.
Electrosynthesized Ni-P Nanospheres with High Activity and Selectivity Towards Photoelectrochemical Plastics Reforming
May 2021
Publication
Photoelectrochemical reforming of plastic waste offers an environmentally-benign and sustainable route for hydrogen generation. Nonetheless little attention was paid to develop electrocatalysts that can efficiently and selectively catalyze oxidative transformation of valueless plastic wastes into valued chemicals. Herein we report on facile electrosynthesis of nickel-phosphorus nanospheres (nanoNi-P) and their versatility in catalyzing hydrogen generation water oxidation and reforming of polyethylene terephthalate (PET). Notably composite of nanoNi-P with carbon nanotubes (CNT/nanoNi-P) requires −180 mV overpotential to drive hydrogen generation at -100 mA cm−2. Besides CV-activated nanoNi-P (nanoNi-P(CV)) was shown to be capable of reforming PET into formate with high selectivity (Faradic efficiency= ∼100 %). Efficient and selective generation of hydrogen and formate from PET reforming is realized utilizing an Earth-abundant photoelectrochemical platform based on nanoNi-P(CV)-modified TiO2 nanorods photoanode and CNT/nanoNi-P cathode. This work paves a path for developing artificial leaf for simultaneous environmental mitigation and photosynthesis of renewable fuels and valued chemicals.
Hydrogen Gas Quality for Gas Network Injection: State of the Art of Three Hydrogen Production Methods
Jun 2021
Publication
The widescale distribution of hydrogen through gas networks is promoted as a viable and cost-efficient option for optimising its application in heat industry and transport. It is a key step towards achieving decarbonisation targets in the UK. A key consideration before the injection of hydrogen into the UK gas networks is an assessment of the difference in hydrogen contaminants presence from different production methods. This information is essential for gas regulation and for further purification requirements. This study investigates the level of ISO 14687 Grade D contaminants in hydrogen from steam methane reforming proton exchange membrane water electrolysis and alkaline electrolysis. Sampling and analysis of hydrogen were carried out by the National Physical Laboratory following ISO 21087 guidance. The results of analysis indicated the presence of nitrogen in hydrogen from electrolysis and water carbon dioxide and particles in all samples analysed. The contaminants were at levels below or at the threshold limits set by ISO 14687 Grade D. This indicates that the investigated production methods are not a source of contaminants for the eventual utilisation of hydrogen in different applications including fuel cell electric vehicles (FCEV’s). The gas network infrastructure will require a similar analysis to determine the likelihood of contamination to hydrogen gas.
Spin Pinning Effect to Reconstructed Oxyhydroxide Layer on Ferromagnetic Oxides for Enhanced Water Oxidation
Jun 2021
Publication
Producing hydrogen by water electrolysis suffers from the kinetic barriers in the oxygen evolution reaction (OER) that limits the overall efficiency. With spin-dependent kinetics in OER to manipulate the spin ordering of ferromagnetic OER catalysts (e.g. by magnetization) can reduce the kinetic barrier. However most active OER catalysts are not ferromagnetic which makes the spin manipulation challenging. In this work we report a strategy with spin pinning effect to make the spins in paramagnetic oxyhydroxides more aligned for higher intrinsic OER activity. The spin pinning effect is established in oxideFM/oxyhydroxide interface which is realized by a controlled surface reconstruction of ferromagnetic oxides. Under spin pinning simple magnetization further increases the spin alignment and thus the OER activity which validates the spin effect in rate-limiting OER step. The spin polarization in OER highly relies on oxyl radicals (O∙) created by 1st dehydrogenation to reduce the barrier for subsequent O-O coupling.
Controlled Biosynthesis of ZnCdS Quantum Dots with Visible-Light-Driven Photocatalytic Hydrogen Production Activity
May 2021
Publication
The development of visible-light-responsive photocatalysts with high efficiency stability and eco-friendly nature is beneficial to the large-scale application of solar hydrogen production. In this work the production of biosynthetic ternary ZnCdS photocatalysts (Eg = 2.35–2.72 eV) by sulfate-reducing bacteria (SRB) under mild conditions was carried out for the first time. The huge amount of biogenic S2− and inherent extracellular proteins (EPs) secreted by SRB are important components of rapid extracellular biosynthesis. The ternary ZnCdS QDs at different molar ratios of Zn2+and Cd2+ from 15:1 to 1:1 were monodisperse spheres with good crystallinity and average crystallite size of 6.12 nm independent of the molar ratio of Cd2+ to Zn2+. All the ZnCdS QDs had remarkable photocatalytic activity and stability for hydrogen evolution under visible light without noble metal cocatalysts. Especially ZnCdS QDs at Zn/Cd = 3:1 showed the highest H2 production activity of 3.752 mmol·h−1·g−1. This excellent performance was due to the high absorption of visible light the high specific surface area and the lower recombination rate between photoexcited electrons and holes. The adhered inherent EPs on the ZnCdS QDs slowed down the photocorrosion and improved the stability in photocatalytic hydrogen evolution. This study provides a new direction for solar hydrogen production.
Nickel-Based Electrocatalysts for Water Electrolysis
Feb 2022
Publication
Currently hydrogen production is based on the reforming process leading to the emission of pollutants; therefore a substitute production method is imminently required. Water electrolysis is an ideal alternative for large-scale hydrogen production as it does not produce any carbon-based pollutant byproducts. The production of green hydrogen from water electrolysis using intermittent sources (e.g. solar and eolic sources) would facilitate clean energy storage. However the electrocatalysts currently required for water electrolysis are noble metals making this potential option expensive and inaccessible for industrial applications. Therefore there is a need to develop electrocatalysts based on earth-abundant and low-cost metals. Nickel-based electrocatalysts are a fitting alternative because they are economically accessible. Extensive research has focused on developing nickel-based electrocatalysts for hydrogen and oxygen evolution. Theoretical and experimental work have addressed the elucidation of these electrochemical processes and the role of heteroatoms structure and morphology. Even though some works tend to be contradictory they have lit up the path for the development of efficient nickel-based electrocatalysts. For these reasons a review of recent progress is presented herein.
Energy Optimization of a Sulfur-Iodine Thermochemical Nuclear Hydrogen Production Cycle
Dec 2021
Publication
The use of nuclear reactors is a large studied possible solution for thermochemical water splitting cycles. Nevertheless there are several problems that have to be solved. One of them is to increase the efficiency of the cycles. Hence in this paper a thermal energy optimization of a SulfureIodine nuclear hydrogen production cycle was performed by means a heuristic method with the aim of minimizing the energy targets of the heat exchanger network at different minimum temperature differences. With this method four different heat exchanger networks are proposed. A reduction of the energy requirements for cooling ranges between 58.9-59.8% and 52.6-53.3% heating compared to the reference design with no heat exchanger network. With this reduction the thermal efficiency of the cycle increased in about 10% in average compared to the reference efficiency. This improves the use of thermal energy of the cycle.
Cogeneration of Green Hydrogen in a Cascade Hydropower Plant
Apr 2021
Publication
Hydrogen is today an indispensable feedstock in various process industries but the method of its production is mostly not in line with accepted environmental guidelines. With emerging electro-energetic systems with a large share of renewable sources hydrogen is also becoming an important energy carrier which with the possibility of storing surplus energy ensures greater stability of power system operation and energy supply. Therefore the use of electricity from renewable sources is important for the production of green hydrogen using electrolysis. The first part of the article describes the possibilities for hydrogen cogeneration in one of the run-of-river hydropower plants in Slovenia. The implementation costs of the necessary equipment for hydrogen production in the case-study power plant its production costs and the profitability of hydrogen production compared to the sale of electricity are estimated. The criteria according to which the production of hydrogen is more profitable than the sale of electricity at current prices and guaranteed sales is also defined. In the second part of the article a scenario for the use of hydrogen for heating and mobility needs in the nearby local community is presented. For the regular supply of hydrogen in the range of up to 30 kg/h the necessary investment costs for the installation of the appropriate equipment in the hydropower plant are calculated along with an estimation of the payback period of the investment.
Electric Field Effects on Photoelectrochemical Water Splitting: Perspectives and Outlook
Feb 2022
Publication
The grand challenges in renewable energy lie in our ability to comprehend efficient energy conversion systems together with dealing with the problem of intermittency via scalable energy storage systems. Relatively little progress has been made on this at grid scale and two overriding challenges still need to be addressed: (i) limiting damage to the environment and (ii) the question of environmentally friendly energy conversion. The present review focuses on a novel route for producing hydrogen the ultimate clean fuel from the Sun and renewable energy source. Hydrogen can be produced by light-driven photoelectrochemical (PEC) water splitting but it is very inefficient; rather we focus here on how electric fields can be applied to metal oxide/water systems in tailoring the interplay with their intrinsic electric fields and in how this can alter and boost PEC activity drawing both on experiment and non-equilibrium molecular simulation.
Remarkable Visible-light Induced Hydrogen Generation with ZnIn2S4 Microspheres/CuInS2 Quantum Dots Photocatalytic System
Oct 2020
Publication
A new and active material in the form of ZnIn2S4 microspheres decorated by CuInS2 quantum dots have been obtained by hydrothermal method for the first time. The optimum amount of CuInS2 quantum dots (1.13 wt.%) introduced into rection medium during ZnIn2S4 microspheres synthesis increased the photocatalytic H2 generation rate by 2.5 times than that of bare ZnIn2S4 photocatalysis under visible light irradiation. This sample exhibited strong photoactivity in the extended visible range up to 540 nm with 30.6% apparent quantum efficiency (λ = 420 nm).
Advanced Optimal Planning for Microgrid Technologies Including Hydrogen and Mobility at a Real Microgrid Testbed
Apr 2021
Publication
This paper investigates the optimal planning of microgrids including the hydrogen energy system through mixed-integer linear programming model. A real case study is analyzed by extending the only microgrid lab facility in Austria. The case study considers the hydrogen production via electrolysis seasonal storage and fuelling station for meeting the hydrogen fuel demand of fuel cell vehicles busses and trucks. The optimization is performed relative to two different reference cases which satisfy the mobility demand by diesel fuel and utility electricity based hydrogen fuel production respectively. The key results indicate that the low emission hydrogen mobility framework is achieved by high share of renewable energy sources and seasonal hydrogen storage in the microgrid. The investment optimization scenarios provide at least 66% and at most 99% carbon emission savings at increased costs of 30% and 100% respectively relative to the costs of the diesel reference case (current situation)
Water Photo-Oxidation Reaction on Clean and Doped Two-Dimensional Graphitic C2N
Apr 2020
Publication
In the search for new efficient photo-catalysts for hydrogen production through water splitting the main attention has been paid to tuning the band gap width and its position with respect to vacuum level. However actual electro-catalytic activity for the water oxidation reaction on a catalyst surface is no less important than those quantities. In this work we evaluate from first principles the thermodynamics of the reaction on relatively new candidates for water splitting: two-dimensional C2N and that doped with phosphorus. We find that the 4-step reaction usually expected for water splitting will not proceed on these systems resulting in oxygen atoms left strongly adsorbed to the surface. Another option a 3-step reaction is also found to be unfavorable. We also test an effect of higher oxygen coverage on the reaction thermodynamics as suggested elsewhere. We find that indeed the doubled O-coverage makes the 4-step reaction feasible for the doped C2N. However an unacceptably high anode potential is required to make this reaction proceed. We thus conclude that the materials under consideration may not be efficient electro-catalysts for water splitting.
Analysing Future Demand, Supply, and Transport of Hydrogen
Jun 2021
Publication
Hydrogen is crucial to Europe’s transformation into a climate-neutral continent by mid-century. This study concludes that the European Union (EU) and UK could see a hydrogen demand of 2300 TWh (2150-2750 TWh) by 2050. This corresponds to 20-25% of EU and UK final energy consumption by 2050. Achieving this future role of hydrogen depends on many factors including market frameworks legislation technology readiness and consumer choice.
The document can be download on their website
The document can be download on their website
Discussion on the Feasibility of the Integration of Wind Power and Coal Chemical Industries for Hydrogen Production
Oct 2021
Publication
To improve the utilization rate of the energy industry and reduce high energy consumption and pollution caused by coal chemical industries in north western China a planning scheme of a wind‐coal coupling energy system was developed. This scheme involved the analysis method evaluation criteria planning method and optimization operation check for the integration of a comprehensive evaluation framework. A system was established to plan the total cycle revenue to maximize the net present value of the goal programming model and overcome challenges associated with the development of new forms of energy. Subsequently the proposed scheme is demonstrated using a 500‐MW wind farm. The annual capacity of a coal‐to‐methanol system is 50000. Results show that the reliability of the wind farm capacity and the investment subject are the main factors affecting the feasibility of the wind‐coal coupled system. Wind power hydrogen production generates O2 and H2 which are used for methanol preparation and electricity production in coal chemical systems respectively. Considering electricity price constraints and environmental benefits a methanol production plant can construct its own wind farm matching its output to facilitate a more economical wind‐coal coupled system. Owing to the high investment cost of wind power plants an incentive mechanism for saving energy and reducing emissions should be provided for the wind‐ coal coupled system to ensure economic feasibility and promote clean energy transformation.
Hybrid Hydrogen PEM Fuel Cell and Batteries Without DC–DC Converter
Sep 2013
Publication
Concerns about greenhouse gases as well as the price and security of oil supply have acted as a spur to sustainable automobile development. The hydrogen fuel cells electric vehicle (HFCEV) is generally recognised by leading automobile manufacturers and scientists as one of the optimum technologies for long-term future low carbon vehicle. In a typical HFCEV power train a DC–DC converter is required to balance the voltage difference between the fuel cells (FCs) stack and batteries. However research shows that a considerable amount of energy generated by the hydrogen FCs stack is deplete during this conversion process as heat. This experiment aims to improve the power train efficiency by eliminating the DC–DC converter by finding the best combination of FC stack and batteries matching the size and capacity of the electrical components.
Autonomous Hydrogen Production for Proton Exchange Membrane Fuel Cells PEMFC
Apr 2020
Publication
This paper focuses on hydrogen production for green mobility applications (other applications are currently under investigation). Firstly a brief state of the art of hydrogen generation by hydrolysis with magnesium is shown. The hydrolysis performance of Magnesium powder ball–milled along with different additives (graphite and transition metals TM = Ni Fe and Al) is taken for comparison. The best performance was observed with Mg–10 wt.% g mixtures (95% of theoretical hydrogen generation yield in about 3 min). An efficient solution to control this hydrolysis reaction is proposed to produce hydrogen on demand and to feed a PEM fuel cell. Tests on a bench fitted with a 100 W Proton Exchange Membrane (PEM) fuel cell have demonstrated the technological potential of this solution for electric assistance applications in the field of light mobility.
Energy, Exergy, and Environmental Analyses of Renewable Hydrogen Production Through Plasma Gasification of Microalgal Biomass
Feb 2021
Publication
In this study an energy exergy and environmental (3E) analyses of a plasma-assisted hydrogen production process from microalgae is investigated. Four different microalgal biomass fuels namely raw microalgae (RM) and three torrefied microalgal fuels (TM200 TM250 and TM300) are used as the feedstock for steam plasma gasification to generate syngas and hydrogen. The effects of steam-tobiomass (S/B) ratio on the syngas and hydrogen yields and energy and exergy efficiencies of plasma gasification (hEn;PG hEx;PG) and hydrogen production(hEn;H2 hEx;H2 ) are taken into account. Results show that the optimal S/B ratios of RM TM200 TM250 and TM300 are 0.354 0.443 0.593 and 0.760 respectively occurring at the carbon boundary points (CBPs) where the maximum values of hEn;PG hEx;PG hEn;H2 and hEx;H2 are also achieved. At CBPs torrefied microalgae as feedstock lower thehEn;PG hEx;PG hEn;H2 and hEx;H2 because of their improved calorific value after undergoing torrefaction and the increased plasma energy demand compared to the RM. However beyond CBPs the torrefied feedstock displays better performance. A comparative life cycle analysis indicates that TM300 exhibits the highest greenhouse gases (GHG) emissions and the lowest net energy ratio (NER) due to the indirect emissions associated with electricity consumption.
Evaluation of a New Combined Energy System Performance to Produce Electricity and Hydrogen with Energy Storage Option
Mar 2021
Publication
According to new findings the use of alternative energy sources such as wind energy is needed to supply the energy demand of future generations. On the other hand combined renewable energy systems can be more efficient than their stand-alone systems. Therefore clean energy-based hybrid energy systems can be a suitable solution for fossil fuels. However for their widespread commercialization more detailed and powerful studies are needed. On the other hand in order to attain sustainable development for the use of renewable energy sources due to their nature energy storage is required. The motivation of this study is introduce and examine a new energy system performance for the production of electricity and hydrogen fuel as well as energy storage. So this paper presents the energy and exergy operation of a hybrid wind turbine water electrolyzer and Pumped-hydro-compressed air system. The electricity produced by the wind turbine is used to produce hydrogen fuel in electrolyzer and the excess energy is stored using the storage system. It was found that the electrolyzer needed 512.6 W of electricity to generate 5 mol/h of hydrogen fuel which was supplied by a 10 kW-wind turbine. In such a context the efficiency of the process was 74.93%. Furthermore on average the isothermal process requires 17.53% less storage capacity than the isentropic process. The effect of key parameters such as rate of hydrogen fuel production operating pressures wind speed and components efficiency on the process operation is also examined.
Synergetic Effect of Multiple Phases on Hydrogen Desorption Kinetics and Cycle Durability in Ball Milled MgH2–PrF3–Al–Ni Composite
Jan 2021
Publication
A new MgH2–PrF3–Al–Ni composite was prepared by ball milling under hydrogen atmosphere. After initial dehydrogenation and rehydrogenation Pr3Al11 MgF2 PrH3 and Mg2NiH4 nanoparticles formed accompanying the main phase MgH2. The hydrogen absorption-desorption properties were measured by using a Sieverts-type apparatus. The results showed that the MgH2–PrF3–Al–Ni composite improved cycle stability and enhanced hydrogen desorption kinetics. The improvement of hydrogen absorption-desorption properties is ascribed to the synergetic effect of the in situ formed Pr3Al11 MgF2 PrH3 and Mg2NiH4 nanoparticles. This work provides an important inspiration for the improvement of hydrogen storage properties in Mg-based materials.
No more items...