Production & Supply Chain
Smart Designs of Mo Based Electrocatalysts for Hydrogen Evolution Reaction
Dec 2021
Publication
As a sustainable and clean energy source hydrogen can be generated by electrolytic water splitting (i.e. a hydrogen evolution reaction HER). Compared with conventional noble metal catalysts (e.g. Pt) Mo based materials have been deemed as a promising alternative with a relatively low cost and comparable catalytic performances. In this review we demonstrate a comprehensive summary of various Mo based materials such as MoO2 MoS2 and Mo2C. Moreover state of the art designs of the catalyst structures are presented to improve the activity and stability for hydrogen evolution including Mo based carbon composites heteroatom doping and heterostructure construction. The structure–performance relationships relating to the number of active sites electron/ion conductivity H/H2O binding and activation energy as well as hydrophilicity are discussed in depth. Finally conclusive remarks and future works are proposed.
Kinetics Study and Modelling of Steam Methane Reforming Process Over a NiO/Al2O3 Catalyst in an Adiabatic Packed Bed Reactor
Dec 2016
Publication
Kinetic rate data for steam methane reforming (SMR) coupled with water gas shift (WGS) over an 18 wt. % NiO/α-Al2O3 catalyst are presented in the temperature range of 300–700 °C at 1 bar. The experiments were performed in a plug flow reactor under the conditions of diffusion limitations and away from the equilibrium conditions. The kinetic model was implemented in a one-dimensional heterogeneous mathematical model of catalytic packed bed reactor developed on gPROMS model builder 4.1.0®. The mathematical model of SMR process was simulated and the model was validated by comparing the results with the experimental values. The simulation results were in excellent agreement with the experimental results. The effect of various operating parameters such as temperature pressure and steam to carbon ratio on fuel and water conversion (%) H2 yield (wt. % of CH4) and H2 purity was modelled and compared with the equilibrium values.
Production of H2-rich Syngas from Excavated Landfill Waste through Steam Co-gasification with Biochar
Jun 2020
Publication
Gasification of excavated landfill waste is one of the promising options to improve the added-value chain during remediation of problematic old landfill sites. Steam gasification is considered as a favorable route to convert landfill waste into H2-rich syngas. Co-gasification of such a poor quality landfill waste with biochar or biomass would be beneficial to enhance the H2 concentration in the syngas as well as to improve the gasification performance. In this work steam co-gasification of landfill waste with biochar or biomass was carried out in a lab-scale reactor. The effect of the fuel blending ratio was investigated by varying the auxiliary fuel content in the range of 15e35 wt%. Moreover co-gasification tests were carried out at temperatures between 800 and 1000°C. The results indicate that adding either biomass or biochar enhances the H2 yield where the latter accounts for the syngas with the highest H2 concentration. At 800°C the addition of 35 wt% biochar can enhance the H2 concentration from 38 to 54 vol% and lowering the tar yield from 0.050 to 0.014 g/g-fuel-daf. No apparent synergetic effect was observed in the case of biomass co-gasification which might cause by the high Si content of landfill waste. In contrast the H2 production increases non-linearly with the biochar share in the fuel which indicates that a significant synergetic effect occurs during co-gasification due to the reforming of tar over biochar. Increasing the temperature of biochar co-gasification from 800 to 1000°C elevates the H2 concentration but decreases the H2/CO ratio and increases the tar yield. Furthermore the addition of biochar also enhances the gasification efficiency as indicated by increased values of the energy yield ratio.
Advanced Hydrogen and CO2 Capture Technology for Sour Syngas
Apr 2011
Publication
A key challenge for future clean power or hydrogen projects via gasification is the need to reduce the overall cost while achieving significant levels of CO2 capture. The current state of the art technology for capturing CO2 from sour syngas uses a physical solvent absorption process (acid gas removal–AGR) such as Selexol™ or Rectisol® to selectively separate H2S and CO2 from the H2. These two processes are expensive and require significant utility consumption during operation which only escalates with increasing levels of CO2 capture. Importantly Air Products has developed an alternative option that can achieve a higher level of CO2 capture than the conventional technologies at significantly lower capital and operating costs. Overall the system is expected to reduce the cost of CO2 capture by over 25%.<br/>Air Products developed this novel technology by leveraging years of experience in the design and operation of H2 pressure swing adsorption (PSA) systems in its numerous steam methane reformers. Commercial PSAs typically operate on clean syngas and thus need an upstream AGR unit to operate in a gasification process. Air Products recognized that a H2 PSA technology adapted to handle sour feedgas (Sour PSA) would enable a new and enhanced improvement to a gasification system. The complete Air Products CO2 Capture technology (CCT) for sour syngas consists of a Sour PSA unit followed by a low-BTU sour oxycombustion unit and finally a CO2 purification / compression system.
Operational Challenges for Low and High Temperature Electrolyzers Exploiting Curtailed Wind Energy for Hydrogen Production
Jan 2021
Publication
Understanding the system performance of different electrolyzers could aid potential investors achieve maximum return on their investment. To realize this system response characteristics to 4 different summarized data sets of curtailed renewable energy is obtained from the Irish network and was investigated using models of both a Low Temperature Electrolyzer (LTE) and a High Temperature Electrolyzer (HTE). The results indicate that statistical parameters intrinsic to the method of data extraction along with the thermal response time of the electrolyzers influence the hydrogen output. A maximum hydrogen production of 5.97 kTonne/year is generated by a 0.5 MW HTE when the electrical current is sent as a yearly average. Additionally the high thermal response time in a HTE causes a maximum change in the overall flowrate of 65.7% between the 4 scenarios when compared to 7.7% in the LTE. This evaluation of electrolyzer performance will aid investors in determining scenario specific application of P2G for maximizing hydrogen production.
Direct Route from Ethanol to Pure Hydrogen through Autothermal Reforming in a Membrane Reactor: Experimental Demonstration, Reactor Modelling and Design
Nov 2020
Publication
This work reports the integration of thin (~3e4 mm thick) Pd-based membranes for H2 separation in a fluidized bed catalytic reactor for ethanol auto-thermal reforming. The performance of a fluidized bed membrane reactor has been investigated from an experimental and numerical point of view. The demonstration of the technology has been carried out over 50 h under reactive conditions using 5 thin Pd-based alumina-supported membranes and a 3 wt%Pt-10 wt%Ni catalyst deposited on a mixed CeO2/SiO2 support. The results have confirmed the feasibility of the concept in particular the capacity to reach a hydrogen recovery factor up to 70% while the operation at different fluidization regimes oxygen-to-ethanol and steam-to-ethanol ratios feed pressures and reactor temperatures have been studied. The most critical part of the system is the sealing of the membranes where most of the gas leakage was detected. A fluidized bed membrane reactor model for ethanol reforming has been developed and validated with the obtained experimental results. The model has been subsequently used to design a small reactor unit for domestic use showing that 0.45 m2 membrane area is needed to produce the amount of H2 required for a 5 kWe PEM fuel-cell based micro-CHP system.
Hydrogen Production as a Clean Energy Carrier through Heterojunction Semiconductors for Environmental Remediation
Apr 2022
Publication
Today as a result of the advancement of technology and increasing environmental problems the need for clean energy has considerably increased. In this regard hydrogen which is a clean and sustainable energy carrier with high energy density is among the well-regarded and effective means to deliver and store energy and can also be used for environmental remediation purposes. Renewable hydrogen energy carriers can successfully substitute fossil fuels and decrease carbon dioxide (CO2 ) emissions and reduce the rate of global warming. Hydrogen generation from sustainable solar energy and water sources is an environmentally friendly resolution for growing global energy demands. Among various solar hydrogen production routes semiconductor-based photocatalysis seems a promising scheme that is mainly performed using two kinds of homogeneous and heterogeneous methods of which the latter is more advantageous. During semiconductor-based heterogeneous photocatalysis a solid material is stimulated by exposure to light and generates an electron–hole pair that subsequently takes part in redox reactions leading to hydrogen production. This review paper tries to thoroughly introduce and discuss various semiconductor-based photocatalysis processes for environmental remediation with a specific focus on heterojunction semiconductors with the hope that it will pave the way for new designs with higher performance to protect the environment.
A Novel Exergy-based Assessment on a Multi-production Plant of Power, Heat and Hydrogen: Integration of Solid Oxide Fuel Cell, Solid Oxide Electrolyzer Cell and Rankine Steam Cycle
Feb 2021
Publication
Multi-production plant is an idea highlighting cost- and energy-saving purposes. However just integrating different sub-systems is not desired and the output and performance based on evaluation criteria must be assessed. In this study an integrated energy conversion system composed of solid oxide fuel cell (SOFC) solid oxide electrolyzer cell (SOEC) and Rankine steam cycle is proposed to develop a multi-production system of power heat and hydrogen to alleviate energy dissipation and to preserve the environment by utilizing and extracting the most possible products from the available energy source. With this regard natural gas and water are used to drive the SOEC and the Rankine steam cycle respectively. The required heat and power demand of the electrolyzer are designed to be provided by the fuel cell and the Rankine cycle. The feasibility of the designed integrated system is evaluated through comprehensive exergy-based analysis. The technical performance of the system is evaluated through exergy assessment and it is obtained that the SOFC and the SOEC can achieve to the high exergy efficiency of 84.8% and 63.7% respectively. The designed system provides 1.79 kg/h of hydrogen at 125 kPa. In addition the effective designed variables on the performance of the designed integrated system are monitored to optimize the system’s performance in terms of technical efficiency cost-effectivity and environmental considerations. This assessment shows that 59.4 kW of the available exergy is destructed in the combustion chamber. Besides the techno-economic analysis and exergoenvironmental assessment demonstrate the selected compressors should be re-designed to improve the cost-effectivity and decline the negative environmental impact of the designed integrated energy conversion system. In addition it is calculated that the SOEC has the highest total cost and also the highest negative impact on the environment compared to other designed units in the proposed integrated energy conversion system.
Integration of Gas Switching Combustion and Membrane Reactors for Exceeding 50% Efficiency in Flexible IGCC Plants with Near-zero CO2 Emissions
Jul 2020
Publication
Thermal power plants face substantial challenges to remain competitive in energy systems with high shares of variable renewables especially inflexible integrated gasification combined cycles (IGCC). This study addresses this challenge through the integration of Gas Switching Combustion (GSC) and Membrane Assisted Water Gas Shift (MAWGS) reactors in an IGCC plant for flexible electricity and/or H2 production with inherent CO2 capture. When electricity prices are high H2 from the MAWGS reactor is used for added firing after the GSC reactors to reach the high turbine inlet temperature of the H-class gas turbine. In periods of low electricity prices the turbine operates at 10% of its rated power to satisfy the internal electricity demand while a large portion of the syngas heating value is extracted as H2 in the MAWGS reactor and sold to the market. This product flexibility allows the inflexible process units such as gasification gas treating air separation unit and CO2 compression transport and storage to operate continuously while the plant supplies variable power output. Two configurations of the GSC-MAWGS plant are presented. The base configuration achieves 47.2% electric efficiency and 56.6% equivalent hydrogen production efficiency with 94.8–95.6% CO2 capture. An advanced scheme using the GSC reduction gases for coal-water slurry preheating and pre-gasification reached an electric efficiency of 50.3% hydrogen efficiency of 62.4% and CO2 capture ratio of 98.1–99.5%. The efficiency is 8.4%-points higher than the pre-combustion CO2 capture benchmark and only 1.9%-points below the unabated IGCC benchmark.
Studies of the Impact of Hydrogen on the Stability of Gaseous Mixtures of THT
Dec 2020
Publication
One of the most important requirements concerning the quality of natural gases guaranteeing their safe use involves providing the proper level of their odorization. This allows for the detection of uncontrolled leakages of gases from gas networks installations and devices. The concentration of an odorant should be adjusted in such a manner that the gas odor in a mixture with air would be noticeable by users (gas receivers). A permanent odor of gas is guaranteed by the stability of the odorant molecule and its resistance to changes in the composition of odorized gases. The article presents the results of experimental research on the impact of a hydrogen additive on the stability of tetrahydrothiophene (THT) mixtures in methane and in natural gas with a hydrogen additive. The objective of the work was to determine the readiness of measurement infrastructures routinely used in monitoring the process of odorizing natural gas for potential changes in its composition. One of the elements of this infrastructure includes the reference mixtures of THT used to verify the correctness of the readings of measurement devices. The performed experimental tests address possible changes in the composition of gases supplied via a distribution network resulting from the introduction of hydrogen. The lack of interaction between hydrogen and THT has been verified indirectly by assessing the stability of its mixtures with methane and natural gas containing hydrogen. The results of the presented tests permitted the identification of potential hazards for the safe use of gas from a distribution network resulting from changes in its composition caused by the addition of hydrogen.
Role of the Sulphur Source in the Solvothermal Synthesis of Ag-CdS Photocatalysts: Effects on the Structure and Photoactivity for Hydrogen Production
Dec 2020
Publication
The aim of this work is to study the influence of the sulphur source (elemental sulphur thiourea and L-cysteine) in the solvothermal synthesis of Ag-CdS over its growth structuration and state of Ag and how these changes influence on its photoactivity. The differences in the generation rate of the S2− from the sulphur sources during the solvothermal synthesis determine the nucleation and growth pathways of CdS affecting to the silver state and its incorporation into the CdS lattice. The hydrogen production on Ag-CdS photocatalysts decreases according the sequence: thiourea > elemental sulphur >> L-cysteine. The changes in the photoactivity of Ag-CdS samples are analysed in terms of the differences in the insertion of Ag+ into the CdS lattice the formation of composites between CdS and Ag2S and the formation of CdS crystalline domains with strong confinement effect derived from the different sulphur source used in the solvothermal synthesis
Biomass Steam Gasification with In-Situ CO2 Capture for Enriched Hydrogen Gas Production: A Reaction Kinetics Modelling Approach
Aug 2010
Publication
Due to energy and environmental issues hydrogen has become a more attractive clean fuel. Furthermore there is high interest in producing hydrogen from biomass with a view to sustainability. The thermochemical process for hydrogen production i.e. gasification is the focus of this work. This paper discusses the mathematical modeling of hydrogen production process via biomass steam gasification with calcium oxide as sorbent in a gasifier. A modelling framework consisting of kinetics models for char gasification methanation Boudouard methane reforming water gas shift and carbonation reactions to represent the gasification and CO2 adsorption in the gasifier is developed and implemented in MATLAB. The scope of the work includes an investigation of the influence of the temperature steam/biomass ratio and sorbent/biomass ratio on the amount of hydrogen produced product gas compositions and carbon conversion. The importance of different reactions involved in the process is also discussed. It is observed that hydrogen production and carbon conversion increase with increasing temperature and steam/biomass ratio. The model predicts a maximum hydrogen mole fraction in the product gas of 0.81 occurring at 950 K steam/biomass ratio of 3.0 and sorbent/biomass ratio of 1.0. In addition at sorbent/biomass ratio of 1.52 purity of H2 can be increased to 0.98 mole fraction with all CO2 present in the system adsorbed.
Instantaneous Hydrogen Production from Ammonia by Non-thermal Arc Plasma Combining with Catalyst
Jul 2021
Publication
Owing to the storage and transportation problems of hydrogen fuel exploring new methods of the realtime hydrogen production from ammonia becomes attractive. In this paper non-thermal arc plasma (NTAP) combining with NiO/Al2O3 catalyst is developed to produce hydrogen from ammonia with high efficiency and large scale. The effects of ammonia gas flow rate and discharge power on the gas temperature electron density the hydrogen production rate and energy efficiency were investigated. Experimental results show that the optical emission spectrum of NTAP working with pure ammonia medium was dominated by the atom spectrum of Hα Hβ and molecular spectrum of NH component. Under the optimum experimental condition of plasma discharge the highest energy efficiency of hydrogen production reached 783.4 L/kW·h at NH3 gas flow rate of 30 SLM. When the catalyst was added and heated by the NTAP simultaneously the energy efficiency further increased to 1080.0 L/kW·h.
H2 Green Hydrogen Discussion Paper: Victorian Hydrogen Investment Program
Nov 2019
Publication
This discussion paper is for stakeholders who would like to shape the development of Victoria’s emerging green hydrogen sector identifying competitive advantages and priority focus areas for industry and the Victorian Government.<br/>The Victorian Government is using this paper to focus on the economic growth and sector development opportunities emerging for a Victorian hydrogen industry powered by renewable energy also known as ‘green’ hydrogen. In addition this paper seeks input from all stakeholders on how where and when the Victorian Government can act to establish a thriving green hydrogen economy.<br/>Although green hydrogen is the only type of hydrogen production within the scope of this discussion paper the development of the VHIP aligns with the policies projects and initiatives which support these other forms of hydrogen production. The VHIP is considering the broad policy landscape and actively coordinating with related hydrogen programs policies and strategies under development including the Council of Australian Governments (COAG) Energy Council’s National Hydrogen Strategy to ensure a complementary approach. In Victoria there are several programs and strategies in development and underway that have linkages with hydrogen and the VHIP.
Improvement in Hydrogen Production with Plasma Reformer System
Jun 2016
Publication
In our previous studies of a plasma reformer system the effects of temperature of the reactants and input voltage have not been considered. In the present investigation the plasma reformer system has been modified to study the influence of the reactants’ temperature and input voltage on hydrogen production experimentally. The plasma reformer system includes a supersonic atomizer a plasma generator and a controlling device. In the experiment the operating parameters include the temperature of the reactants and the input voltage. The temperature of the reactants varies from 25 °C to 50 °C and the input voltage ranges from 12.5 V to 14.5 V. Results show that the increase in temperature of the reactants and input voltage will improve the production of hydrogen. In addition the improvement of heating on the reactants shows significant influence on hydrogen production.
Towards an Understanding of Hydrogen Supply Chains: A Structured Literature Review Regarding Sustainability Evaluation
Oct 2021
Publication
Hydrogen technologies have received increased attention in research and development to foster the shift towards carbon-neutral energy systems. Depending on the specific production techniques transportation concepts and application areas hydrogen supply chains (HSCs) can be anything from part of the energy transition problem to part of the solution: Even more than battery-driven electric mobility hydrogen is a polyvalent technology and can be used in very different contexts with specific positive or negative sustainability impacts. Thus a detailed sustainability evaluation is crucial for decision making in the context of hydrogen technology and its diverse application fields. This article provides a comprehensive structured literature review in the context of HSCs along the triple bottom line dimensions of environmental economic and social sustainability analyzing a total of 288 research papers. As a result we identify research gaps mostly regarding social sustainability and the supply chain stages of hydrogen distribution and usage. We suggest further research to concentrate on these gaps thus strengthening our understanding of comprehensive sustainability evaluations for HSCs especially in social sustainability evaluation. In addition we provide an additional approach for discussion by adding literature review results from neighboring fields highlighting the joint challenges and insights regarding sustainability evaluation.
Platinum Single-atom Catalyst Coupled with Transition Metal/Metal Oxide Heterostructure for Accelerating Alkaline Hydrogen Evolution Reaction
Jun 2021
Publication
Single-atom catalysts provide an effective approach to reduce the amount of precious metals meanwhile maintain their catalytic activity. However the sluggish activity of the catalysts for alkaline water dissociation has hampered advances in highly efficient hydrogen production. Herein we develop a single-atom platinum immobilized NiO/Ni heterostructure (PtSA-NiO/Ni) as an alkaline hydrogen evolution catalyst. It is found that Pt single atom coupled with NiO/Ni heterostructure enables the tunable binding abilities of hydroxyl ions (OH*) and hydrogen (H*) which efficiently tailors the water dissociation energy and promotes the H* conversion for accelerating alkaline hydrogen evolution reaction. A further enhancement is achieved by constructing PtSA-NiO/Ni nanosheets on Ag nanowires to form a hierarchical three-dimensional morphology. Consequently the fabricated PtSA-NiO/Ni catalyst displays high alkaline hydrogen evolution performances with a quite high mass activity of 20.6 A mg−1 for Pt at the overpotential of 100 mV significantly outperforming the reported catalysts.
Origin of the Catalytic Activity at Graphite Electrodes in Vanadium Flow Batteries
Jun 2021
Publication
For many electrochemical devices that use carbon-based materials such as electrolyzers supercapacitors and batteries oxygen functional groups (OFGs) are considered essential to facilitate electron transfer. Researchers implement surface-active OFGs to improve the electrocatalytic properties of graphite felt electrodes in vanadium flow batteries. Herein we show that graphitic defects and not OFGs are responsible for lowering the activation energy barrier and thus enhance the charge transfer properties. This is proven by a thermal deoxygenation procedure in which specific OFGs are removed before electrochemical cycling. The electronic and microstructural changes associated with deoxygenation are studied by quasi in situ X-ray photoelectron and Raman spectroscopy. The removal of oxygen groups at basal and edge planes improves the activity by introducing new active edge sites and carbon vacancies. OFGs hinder the charge transfer at the graphite–electrolyte interface. This is further proven by modifying the sp2 plane of graphite felt electrodes with oxygen-containing pyrene derivatives. The electrochemical evolution of OFGs and graphitic defects are studied during polarization and long-term cycling conditions. The hypothesis of increased activity caused by OFGs was refuted and hydrogenated graphitic edge sites were identified as the true reason for this increase.
Charge Carrier Mapping for Z-scheme Photocatalytic Water-splitting Sheet via Categorization of Microscopic Time-resolved Image Sequences
Jun 2021
Publication
Photocatalytic water splitting system using particulate semiconductor materials is a promising strategy for converting solar energy into hydrogen and oxygen. In particular visible-light-driven ‘Z-scheme’ printable photocatalyst sheets are cost-effective and scalable. However little is known about the fundamental photophysical processes which are key to explaining and promoting the photoactivity. Here we applied the pattern-illumination time-resolved phase microscopy for a photocatalyst sheet composed of Mo-doped BiVO4 and Rh-doped SrTiO3 with indium tin oxide as the electron mediator to investigate photo-generated charge carrier dynamics. Using this method we successfully observed the position- and structure-dependent charge carrier behavior and visualized the active/inactive sites in the sheets under the light irradiation via the time sequence images and the clustering analysis. This combination methodology could provide the material/synthesis optimization methods for the maximum performance of the photocatalyst sheets.
Highly Selective Porous Separator with Thin Skin Layer for Alkaline Water Electrolysis
Feb 2022
Publication
Advanced porous separators with thin selective skin layers to reduce the hydrogen permeation are developed for applications in alkaline water electrolysis. A thin skin layer based on crosslinked polyvinyl alcohol (cPVA) is fabricated on a porous substrate by a facile and scalable ultrasonic spray coating process. As the number of ultrasonic spraying cycles increases the resulting separator demonstrates a decrease in the large-diameter pore fraction an increase in the bubble-point pressure and a reduction in the hydrogen permeability without a significant increase in the areal resistance. As a result the optimized separator with a cPVA skin layer combines a low ionic resistance of 0.267 Ω cm2 a high bubble point pressure of 2.71 bar and a low hydrogen permeability of 1.12 × 10− 11 mol cm− 2 s − 1 bar− 1 . The electrolytic cell assembled with cPVAZ-30 achieves current densities of 861 mA cm− 2 and 1890 mA cm− 2 at 2.0 V and 2.6 V respectively in a 30 wt% KOH electrolyte solution at 80 ◦C.
No more items...