Policy & Socio-Economics
Power Sector Scenarios for the Fifth Carbon Budget
Oct 2015
Publication
This report sets out scenarios for the UK power sector in 2030 as an input to the Committee’s advice on the fifth carbon budget.<br/>These scenarios are not intended to set out a prescriptive path. Instead they provide a tool for the Committee to verify that its advice can be achieved with manageable impacts in order to meet the criteria set out in the Climate Change Act including competitiveness affordability and energy security.
Reducing UK Emissions – 2019 Progress Report to Parliament
Jul 2019
Publication
This is the Committee’s annual report to Parliament assessing progress in reducing UK emissions over the past year. It finds that UK action to curb greenhouse gas emissions is lagging behind what is needed to meet legally-binding emissions targets. Since June 2018 Government has delivered only 1 of 25 critical policies needed to get emissions reductions back on track.
The Fourth Carbon Budget Review – Part 1 Assessment of Climate Risk and the International Response
Nov 2013
Publication
This is the first document of a two-part review of the Fourth Carbon Budget which covers 2023 to 2027. The Fourth Carbon Budget agreed by the Government in June 2011 was scheduled to be reviewed in 2014. The second part of the review is available here: The Fourth Carbon Budget Review – part 2: the cost effective path to the 2050 target (December 2013).<br/>According to the Climate Change Act 2008 carbon budgets can only be altered if there is a significant change in circumstances upon which the budget was set. Any such change in circumstances must be demonstrated through evidence and analysis.<br/>The Fourth Carbon Budget Review – part 1 focuses on developments in three categories of circumstance on which the budget was set: climate science international circumstances and European Union pathways. The report also looks at findings by the Intergovernmental Panel on Climate Change and assesses the implications for carbon budgets.
Hydrogen Technologies and Developments in Japan
Jan 2019
Publication
The successful development of hydrogen-energy technologies has several advantages and benefits. Hydrogen energy development could prevent global warming as well as ensure energy security for countries without adequate energy resources. The successful development of hydrogen would provide energy for transportation and electric power. It is a unique energy carrier as it can be produced from various energy sources such as wind fossil fuels and biomass and when it is combusted it emits no CO2 emissions. The other advantage is the wide distribution of resources globally that can be used to produce hydrogen. In Japan the Ministry of Economy Trade and Industry (METI) published a ‘Strategic Roadmap for Hydrogen and Fuel Cells’ in 2014 with a revised update published in March 2016. The goal of the roadmap is to achieve a hydrogen society. The roadmap aims to resolve technical problems and secure economic efficiency. The roadmap has been organized into the following three phases: Phase 1—Installation of fuel cells; Phase 2—Hydrogen power plant/mass supply chain; Phase 3—CO2- free hydrogen. This paper reports on the current status of fuel cells and fuel-cell vehicles in Japan and gives a description and status of the R&D programmes along with the results of global energy model study towards 2050.
Hydrogen Energy Demand Growth Prediction and Assessment (2021–2050) Using a System Thinking and System Dynamics Approach
Jan 2022
Publication
Adoption of hydrogen energy as an alternative to fossil fuels could be a major step towards decarbonising and fulfilling the needs of the energy sector. Hydrogen can be an ideal alternative for many fields compared with other alternatives. However there are many potential environmental challenges that are not limited to production and distribution systems but they also focus on how hydrogen is used through fuel cells and combustion pathways. The use of hydrogen has received little attention in research and policy which may explain the widely claimed belief that nothing but water is released as a by-product when hydrogen energy is used. We adopt systems thinking and system dynamics approaches to construct a conceptual model for hydrogen energy with a special focus on the pathways of hydrogen use to assess the potential unintended consequences and possible interventions; to highlight the possible growth of hydrogen energy by 2050. The results indicate that the combustion pathway may increase the risk of the adoption of hydrogen as a combustion fuel as it produces NOx which is a key air pollutant that causes environmental deterioration which may limit the application of a combustion pathway if no intervention is made. The results indicate that the potential range of global hydrogen demand is rising ranging from 73 to 158 Mt in 2030 73 to 300 Mt in 2040 and 73 to 568 Mt in 2050 depending on the scenario presented.
Lock-In Effects on the Energy Sector: Evidence from Hydrogen Patenting Activities
Apr 2022
Publication
The aim of the paper is to analyze how regulatory design and its framework’s topics other than macroeconomic factors might impact green innovation by taking into consideration a brand-new renewable source of energy that is becoming more and more important in recent years: hydrogen and fuel cell patenting activities. Such activities have been used as a proxy for green technological change in a panel data of 52 countries over a 6-year period. A series of sectorial energy regulation and macroeconomic variables were tested to assess their impact on that technological frontier of green energy transition policy. As might have been expected the empirical analysis carried out with the model that was prefigured confirms significant evidence of lock-in effects on fossil fuel policies. The model confirms however another evidence: countries already investing in renewables might be willing to invest in hydrogen projects. A sort of reinforcement to the further development of green sustainable strategies seems to derive from having already concretely undertaken this direction. Future research should exploit different approaches to the research question and address the econometric criticalities mentioned in the paper along with exploiting results of the paper with further investigations.
Business Models for Low Carbon Hydrogen Production: A Report for BEIS
Aug 2020
Publication
Low carbon hydrogen could have a significant role to play in meeting the UK’s Net Zero target: the Committee on Climate Change (CCC) estimates that up to 270TWh of low carbon hydrogen could be needed in its ‘Further Ambition’ scenario. However at present there is no large-scale production of low carbon hydrogen in the UK not least as it is more costly than most high carbon alternatives. For hydrogen to be the viable option envisaged by the CCC projects may need to be deployed from the 2020s.<br/>BEIS has commissioned Frontier Economics to develop business models to support low carbon hydrogen production. This report builds on the earlier Carbon Capture Usage and Storage (CCUS) business models consultation2 and develops business models for BEIS to consider further. This report is a milestone in BEIS’ longer term process of developing hydrogen business models. It forms a part of BEIS’ wider research into a range of decarbonisation options across the economy.<br/>Further analysis will be required before a final decision is made.
Comparison of Hydrogen and Battery Electric Trucks
Jul 2020
Publication
Only emissions-free vehicles which include battery electric (BEVs) and hydrogen fuel cell trucks (FCEVs) can provide for a credible long-term pathway towards the full decarbonisation of the road freight sector. This document lays out the methodology and assumptions which were used to calculate the total cost of ownership (TCO) of the two vehicle technologies for regional delivery and long-haul truck applications. It also discusses other criteria such as refuelling and recharging times as well as potential payload losses.
Link to Document Download on Transport & Environment website
Link to Document Download on Transport & Environment website
Hydrogen - A Pipeline to the Future
Sep 2020
Publication
Scotland’s Achievements and Ambitions for Clean Hydrogen - a joint webinar between the Scottish Hydrogen and Fuel Cell Association and the Pipeline Industries Guild (Scottish branch).
Nigel Holmes. CEO Scottish Hydrogen & Fuel Cell Association provides an update on Scotland’s ambitions backed up by progress in key areas. This will show the potential for hydrogen at scale to support the delivery of policy targets highlighting areas of key strengths for Scotland.
You will also hear about the need to build up scale for hydrogen production and supply in tandem with hydrogen pipeline and distribution networks in order to meet demand for low carbon energy and achieve key milestones on the pathway to Net Zero by 2045.
Nigel Holmes. CEO Scottish Hydrogen & Fuel Cell Association provides an update on Scotland’s ambitions backed up by progress in key areas. This will show the potential for hydrogen at scale to support the delivery of policy targets highlighting areas of key strengths for Scotland.
You will also hear about the need to build up scale for hydrogen production and supply in tandem with hydrogen pipeline and distribution networks in order to meet demand for low carbon energy and achieve key milestones on the pathway to Net Zero by 2045.
Hydrogen Europe 2020
Dec 2020
Publication
2020: a great year for hydrogen! Among other things 2020 has been exceptional for H2 technology deployment and policy development. The European Commission’s hydrogen strategy is just one of many crowning achievements! What does the future hold?
H2FC SUPERGEN- Opportunities for Hydrogen and Fuel Cell Technologies to Contribute to Clean Growth in the UK
May 2020
Publication
Hydrogen is expected to have an important role in decarbonising several parts of the UK energy system. This white paper examines the opportunities for hydrogen and fuel cell technologies (H2FC) to contribute to clean growth in the UK.
We assess the strength of the sector by surveying 196 companies working in the area and using other key metrics (for example publication citations and patents). There is already a nascent fuel cell industry working at the cutting edge of global innovation. The UK has an opportunity to grow this industry and to develop an export-focused hydrogen industry over the next few decades. However this will require public nurturing and support. We make a series of recommendations that include:
We assess the strength of the sector by surveying 196 companies working in the area and using other key metrics (for example publication citations and patents). There is already a nascent fuel cell industry working at the cutting edge of global innovation. The UK has an opportunity to grow this industry and to develop an export-focused hydrogen industry over the next few decades. However this will require public nurturing and support. We make a series of recommendations that include:
- Creating separate national fuel cell and hydrogen strategies. These should take UK energy needs capabilities and export opportunities into account. There is a need to coordinate public R&D support and to manage the consequences if European funding and collaboration opportunities become unavailable due to Brexit.
- Creating a public–private “Hydrogen Partnership” to accelerate a shift to hydrogen energy systems in the UK and to stimulate opportunities for businesses.
- Putting in place infrastructure to underpin nascent fuel cell and hydrogen markets including a national refuelling station network and a green hydrogen standard scheme.
- Study what would constitute critical mass in the hydrogen and fuel cell sectors in terms of industry and academic capacity and the skills and knowledge base and consider how critical mass could be achieved most efficiently.
- Consider creating a “Hydrogen Institute” and an “Electrochemical Centre” to coordinate and underpin national innovation over the next decade.
Modelling the UK Energy System: Practical Insights for Technology Development and Policy Making
Jun 2014
Publication
The Energy Technologies Institute (ETI) has developed an internationally peer-reviewed model of the UK’s national energy system extending across power heat transport and infrastructure. The Energy System Modelling Environment (ESME) is a policy neutral system-wide optimisation model. It models the key technology and engineering choices taking account of cost engineering spatial and temporal factors.
Key points:
Key points:
- A system-wide perspective informed by modelling is highly relevant because complex energy systems are made more inter-dependent by emissions reduction objectives
- Efforts to cut emissions are substitutable across a national energy system encompassing power heat transport and infrastructure.
- Energy systems are subject to key decision points and it is important to make the right choices in major long lived investments
- Policy makers should place policy in a system-wide context.
- Decarbonisation can be achieved affordably (at around 0.6% of GDP) provided that the most cost effective technologies and strategies to reduce emissions are deployed
- A broad portfolio of technologies is needed to deliver emissions reductions with bio-energy and carbon capture and storage of particular system-wide importance
Trends in Investments, Jobs and Turnover in the Fuel Cells and Hydrogen Sector
Mar 2013
Publication
The Fuel Cells and Hydrogen Joint Undertaking (FCH JU) commissioned this report to a consultancy to get a better understanding of the past and future evolution of the European Fuel Cell and Hydrogen (FC&H) sector and the role that public support has in that evolution.
The results of this report are based on three data sources:
The results of this report are based on three data sources:
- Survey results: A survey was sent out to 458 companies that are liaised to the FCH JU. 154 people responded. (see list in annex)
- Desk research: A wide range of industry reports was consulted to supplement and cross check the results of the survey. However given the still nascent state of the industry the information gathered with this exercise was limited.
- Interviews: Key stakeholders in the European FC&H sector were interviewed to get the qualitative story behind the results from the survey and the desk research. These stakeholders varied from fuel cell manufacturers to government officials from energy companies to automotive OEMs
Opportunities for Hydrogen Energy Technologies Considering the National Energy & Climate Plans
Aug 2020
Publication
The study analyses the role of hydrogen in the National Energy and Climate Plans (NECPs) and identifies and highlights opportunities for hydrogen technologies to contribute to effective and efficient achievement of the 2030 climate and energy targets of the EU and its Member States.<br/>The study focuses on the potential and opportunities of renewable hydrogen produced by electrolysers using renewable electricity and of low-carbon hydrogen produced by steam methane reforming combined with CCS. The opportunities for and impacts of hydrogen deployment are assessed and summarised in individual fiches per Member State.<br/>The study analyses to what extent policy measures and industrial initiatives are already being taken to facilitate large-scale implementation of hydrogen in the current and the next decades. The study concludes by determining the CO2 reduction potential beyond what is foreseen in the NECPs through hydrogen energy technologies estimating the reduction of fossil fuel imports and reliance the prospective cost and the value added and jobs created. National teams working on decarbonisation roadmaps and updates of the NECPs are welcome to consider the opportunities and benefits of hydrogen deployment identified in this study.
Hydrogen Strategy for Canada: Seizing the Opportunities for Hydrogen - A Call to Action
Dec 2020
Publication
For more than a century our nation’s brightest minds have been working on the technology to turn the invisible promise of hydrogen into tangible solutions. Canadian ingenuity and innovation has once again brought us to a pivotal moment. As we rebuild our economy from the impacts of COVID-19 and fight the existential threat of climate change the development of low-carbon hydrogen is a strategic priority for Canada. The time to act is now.<br/>The Hydrogen Strategy for Canada lays out an ambitious framework for actions that will cement hydrogen as a tool to achieve our goal of net-zero emissions by 2050 and position Canada as a global industrial leader of clean renewable fuels. This strategy shows us that by 2050 clean hydrogen can help us achieve our net-zero goal—all while creating jobs growing our economy and protecting our environment. This will involve switching from conventional gasoline diesel and natural gas to zero-emissions fuel sources taking advantage of new regulatory environments and embracing new technologies to give Canadians more choice of zero emission alternatives.<br/>As one of the top 10 hydrogen producers in the world today we are rich in the feedstocks that produce hydrogen. We are blessed with a strong energy sector and the geographic assets that will propel Canada to be a major exporter of hydrogen and hydrogen technologies. Hydrogen might be nature’s smallest molecule but its potential is enormous. It provides new markets for our conventional energy resources and holds the potential to decarbonize many sectors of our economy including resource extraction freight transportation power generation manufacturing and the production of steel and cement. This Strategy is a call to action. It will spur investments and strategic partnerships across the country and beyond our borders. It will position Canada to seize economic and environmental opportunities that exist coast to coast. Expanding our exports. Creating as many as 350000 good green jobs over the next three decades. All while dramatically reducing our greenhouse gas emissions. And putting a net-zero future within our reach.<br/>The importance of Canada’s resource industries and our clean technology sectors has been magnified during the pandemic. We must harness our combined will expertise and financial resources to fully seize the opportunities that hydrogen presents. This strategy is the product of three years of study and analysis including extensive engagement sessions where we heard from more than 1500 of our country’s leading experts and stakeholders. But its release is not the end of a process. This is only the beginning. Together we will use this Strategy to guide our actions and investments. By working with provinces and territories Indigenous partners and the private-sector and by leveraging our many advantages we will create the prosperity we all want protect the planet we all cherish and we will ensure we leave no one behind.
Hydrogen - Decarbonising Heat
Feb 2020
Publication
<br/>Our industry is beginning its journey on the transition to providing the world with sufficient sustainable affordable and low emission energy.<br/><br/>Decarbonisation is now a key priority. Steps range from reducing emissions from traditional oil and gas operations to investing in renewable energy and supplementing natural gas supplies with greener gasses such as hydrogen.<br/><br/>This paper looks at the role hydrogen could play in decarbonisation.
Energy Innovation Needs Assessment: Carbon Capture Usage & Storage
Nov 2019
Publication
The Energy Innovation Needs Assessment (EINA) aims to identify the key innovation needs across the UK’s energy system to inform the prioritisation of public sector investment in low-carbon innovation. Using an analytical methodology developed by the Department for Business Energy & Industrial Strategy (BEIS) the EINA takes a system level approach and values innovations in a technology in terms of the system-level benefits a technology innovation provides. This whole system modelling in line with BEIS’s EINA methodology was delivered by the Energy Systems Catapult (ESC) using the Energy System Modelling Environment (ESMETM) as the primary modelling tool.
To support the overall prioritisation of innovation activity the EINA process analyses key technologies in more detail. These technologies are grouped together into sub-themes according to the primary role they fulfil in the energy system. For key technologies within a sub-theme innovations and business opportunities are identified. The main findings at the technology level are summarised in sub-theme reports. An overview report will combine the findings from each sub-theme to provide a broad system-level perspective and prioritisation.
This EINA analysis is based on a combination of desk research by a consortium of economic and engineering consultants and stakeholder engagement. The prioritisation of innovation and business opportunities presented is informed by a workshop organised for each sub-theme assembling key stakeholders from the academic community industry and government.
This report was commissioned prior to advice being received from the CCC on meeting a net zero target and reflects priorities to meet the previous 80% target in 2050. The newly legislated net zero target is not expected to change the set of innovation priorities rather it will make them all more valuable overall. Further work is required to assess detailed implications.
To support the overall prioritisation of innovation activity the EINA process analyses key technologies in more detail. These technologies are grouped together into sub-themes according to the primary role they fulfil in the energy system. For key technologies within a sub-theme innovations and business opportunities are identified. The main findings at the technology level are summarised in sub-theme reports. An overview report will combine the findings from each sub-theme to provide a broad system-level perspective and prioritisation.
This EINA analysis is based on a combination of desk research by a consortium of economic and engineering consultants and stakeholder engagement. The prioritisation of innovation and business opportunities presented is informed by a workshop organised for each sub-theme assembling key stakeholders from the academic community industry and government.
This report was commissioned prior to advice being received from the CCC on meeting a net zero target and reflects priorities to meet the previous 80% target in 2050. The newly legislated net zero target is not expected to change the set of innovation priorities rather it will make them all more valuable overall. Further work is required to assess detailed implications.
The Road to Zero: Next Steps Towards Cleaner Road Transport and Delivering our Industrial Strategy
Jul 2018
Publication
Our mission is to put the UK at the forefront of the design and manufacturing of zero emission vehicles and for all new cars and vans to be effectively zero emission by 2040. As set out in the NO2 plan we will end the sale of new conventional petrol and diesel cars and vans by 2040. By then we expect the majority of new cars and vans sold to be 100% zero emission and all new cars and vans to have significant zero emission capability. By 2050 we want almost every car and van to be zero emission. We want to see at least 50% and as many as 70% of new car sales and up to 40% of new van sales being ultra low emission by 2030.<br/>We expect this transition to be industry and consumer led supported in the coming years by the measures set out in this strategy. We will review progress towards our ambitions by 2025. Against a rapidly evolving international context we will seek to maintain the UK’s leadership position and meet our ambitions and will consider what interventions are required if not enough progress is being made.
The Clean Growth Strategy: Leading the Way to a Low Carbon Future
Oct 2017
Publication
Seizing the clean growth opportunity. The move to cleaner economic growth is one of the greatest industrial opportunities of our time. This Strategy will ensure Britain is ready to seize that opportunity. Our modern Industrial Strategy is about increasing the earning power of people in every part of the country. We need to do that while not just protecting but improving the environment on which our economic success depends. In short we need higher growth with lower carbon emissions. This approach is at the heart of our Strategy for clean growth. The opportunity for people and business across the country is huge. The low carbon economy could grow 11 per cent per year between 2015 and 2030 four times faster than the projected growth of the economy as a whole. This is spread across a large number of sectors: from low cost low carbon power generators to more efficient farms; from innovators creating better batteries to the factories putting them in less polluting cars; from builders improving our homes so they are cheaper to run to helping businesses become more productive. This growth will not just be seen in the UK. Following the success of the Paris Agreement where Britain played such an important role in securing the landmark deal the transition to a global low carbon economy is gathering momentum. We want the UK to capture every economic opportunity it can from this global shift in technologies and services.<br/>Our approach to clean growth is an important element of our modern Industrial Strategy: building on the UK’s strengths; improving productivity across the country; and ensuring we are the best place for innovators and new businesses to start up and grow. A good example of this is offshore wind where costs have halved in just a few years. A combination of sustained commitment – across different Governments – and targeted public sector innovation support harnessing the expertise of UK engineers working in offshore conditions and private sector ingenuity has created the conditions for a new industry to flourish while cutting emissions. We need to replicate this success in sectors across our economy. This Strategy delivers on the challenge that Britain embraced when Parliament passed the Climate Change Act. If we get it right we will not just deliver reduced emissions but also cleaner air lower energy bills for households and businesses an enhanced natural environment good jobs and industrial opportunity. It is an opportunity we will seize.
Prospects and Challenges for Green Hydrogen Production and Utilization in the Philippines
Apr 2022
Publication
The Philippines is exploring different alternative sources of energy to make the country less dependent on imported fossil fuels and to reduce significantly the country's CO2 emissions. Given the abundance of renewable energy potential in the country green hydrogen from renewables is a promising fuel because it can be utilized as an energy carrier and can provide a source of clean and sustainable energy with no emissions. This paper aims to review the prospects and challenges for the potential use of green hydrogen in several production and utilization pathways in the Philippines. The study identified green hydrogen production routes from available renewable energy sources in the country including geothermal hydropower wind solar biomass and ocean. Opportunities for several utilization pathways include transportation industry utility and energy storage. From the analysis this study proposes a roadmap for a green hydrogen economy in the country by 2050 divided into three phases: green hydrogen as industrial feedstock green hydrogen as fuel cell technology and commercialization of green hydrogen. On the other hand the analysis identified several challenges including technical economic and social aspects as well as the corresponding policy implications for the realization of a green hydrogen economy that can be applied in the Philippines and other developing countries.
No more items...