Policy & Socio-Economics
Global Hydrogen Flows
Oct 2022
Publication
Authored by the Hydrogen Council in collaboration with McKinsey and Company Global Hydrogen Flows addresses the midstream challenge of aligning and optimizing global supply and demand. It finds that trade can reduce overall system costs.
In doing so it provides a perspective on how the global trade of hydrogen and derivatives including hydrogen carriers ammonia methanol synthetic kerosene and green steel (which uses hydrogen in its production) can develop as well as the investments needed to unlock the full potential of global hydrogen and derivatives trade.
Our hope is that this report offers stakeholders – suppliers buyers original equipment manufacturers (OEMs) investors and governments – a thorough and quantitative perspective that will help them make the decisions required to accelerate the uptake of hydrogen.
Key messages from the report:
Hydrogen and its derivatives will become heavily traded: 400 out of the 660 million tons (MT) of hydrogen needed for carbon neutrality by 2050 will be transported over long distances with 190 MT crossing international borders.
In a cost-optimal world around 50% of trade uses pipelines while synthetic fuels ammonia and sponge iron transported on ships account for approximately 45%. Europe and countries in the Far East will rely on imports while North America and China are mostly self-reliant.
Trade has huge benefits: It can lower the cost of hydrogen supply by 25% or as much as US$6 trillion of investments from now until 2050. This will accelerate the hydrogen transition which can abate 80 gigatons of CO2 until 2050.
The paper can be found on their website.
In doing so it provides a perspective on how the global trade of hydrogen and derivatives including hydrogen carriers ammonia methanol synthetic kerosene and green steel (which uses hydrogen in its production) can develop as well as the investments needed to unlock the full potential of global hydrogen and derivatives trade.
Our hope is that this report offers stakeholders – suppliers buyers original equipment manufacturers (OEMs) investors and governments – a thorough and quantitative perspective that will help them make the decisions required to accelerate the uptake of hydrogen.
Key messages from the report:
Hydrogen and its derivatives will become heavily traded: 400 out of the 660 million tons (MT) of hydrogen needed for carbon neutrality by 2050 will be transported over long distances with 190 MT crossing international borders.
In a cost-optimal world around 50% of trade uses pipelines while synthetic fuels ammonia and sponge iron transported on ships account for approximately 45%. Europe and countries in the Far East will rely on imports while North America and China are mostly self-reliant.
Trade has huge benefits: It can lower the cost of hydrogen supply by 25% or as much as US$6 trillion of investments from now until 2050. This will accelerate the hydrogen transition which can abate 80 gigatons of CO2 until 2050.
The paper can be found on their website.
Hydrogen Recovery from Waste Gas Streams to Feed (High-Temperature PEM) Fuel Cells: Environmental Performance under a Life-Cycle Thinking Approach
Oct 2020
Publication
Fossil fuels are being progressively substituted by a cleaner and more environmentally friendly form of energy where hydrogen fuel cells stand out. However the implementation of a competitive hydrogen economy still presents several challenges related to economic costs required infrastructures and environmental performance. In this context the objective of this work is to determine the environmental performance of the recovery of hydrogen from industrial waste gas streams to feed high-temperature proton exchange membrane fuel cells for stationary applications. The life-cycle assessment (LCA) analyzed alternative scenarios with different process configurations considering as functional unit 1 kg of hydrogen produced 1 kWh of energy obtained and 1 kg of inlet flow. The results make the recovery of hydrogen from waste streams environmentally preferable over alternative processes like methane reforming or coal gasification. The production of the fuel cell device resulted in high contributions in the abiotic depletion potential and acidification potential mainly due to the presence of platinum metal in the anode and cathode. The design and operation conditions that defined a more favorable scenario are the availability of a pressurized waste gas stream the use of photovoltaic electricity and the implementation of an energy recovery system for the residual methane stream.
A Step towards the Hydrogen Economy—A Life Cycle Cost Analysis of A Hydrogen Refueling Station
May 2017
Publication
This study was aimed to define a methodology based on existing literature and evaluate the levelized cost of hydrogen (LCOH) for a decentralized hydrogen refueling station (HRS) in Halle Belgium. The results are based on a comprehensive data collection along with real cost information. The main results indicated that a LCOH of 10.3 €/kg at the HRS can be reached over a lifetime of 20 years if an average electricity cost of 0.04 €/kWh could be achieved and if the operating hours are maximized. Furthermore if the initial capital costs can be reduced by 80% in the case of direct subsidy the LCOH could even fall to 6.7 €/k
Cost of Long-Distance Energy Transmission by Different Carriers
Nov 2021
Publication
This paper compares the relative cost of long-distance large-scale energy transmission by electricity and by gaseous and liquid carriers (e-fuels). The results indicate that the cost of electrical transmission per delivered MWh can be up to eight times higher than for hydrogen pipelines about eleven times higher than for natural gas pipelines and twenty to fifty times higher than for liquid fuels pipelines. These differences generally hold for shorter distances as well. The higher cost of electrical transmission is primarily due to lower carrying capacity (MW per line) of electrical transmission lines compared to the energy carrying capacity of the pipelines for gaseous and liquid fuels. The differences in the cost of transmission are important but often unrecognized and should be considered as a significant cost component in the analysis of various renewable energy production distribution and utilization scenarios.
Environmental and Socio-Economic Analysis of Naphtha Reforming Hydrogen Energy Using Input-Output Tables: A Case Study from Japan
Aug 2017
Publication
Comprehensive risk assessment across multiple fields is required to assess the potential utility of hydrogen energy technology. In this research we analyzed environmental and socio-economic effects during the entire life cycle of a hydrogen energy system using input-output tables. The target system included hydrogen production by naphtha reforming transportation to hydrogen stations and FCV (Fuel Cell Vehicle) refilling. The results indicated that 31% 44% and 9% of the production employment and greenhouse gas (GHG) emission effects respectively during the manufacturing and construction stages were temporary. During the continuous operation and maintenance stages these values were found to be 69% 56% and 91% respectively. The effect of naphtha reforming was dominant in GHG emissions and the effect of electrical power input on the entire system was significant. Production and employment had notable effects in both the direct and indirect sectors including manufacturing (pumps compressors and chemical machinery) and services (equipment maintenance and trade). This study used data to introduce a life cycle perspective to environmental and socio-economic analysis of hydrogen energy systems and the results will contribute to their comprehensive risk assessment in the future.
Impact and Challenges of Reducing Petroleum Consumption for Decarbonization
Apr 2022
Publication
This study aimed to identify the impact of achieving the 1.5 ◦C target on the petroleum supply chain in Japan and discuss the feasibility and challenges of decarbonization. First a national material flow was established for the petroleum supply chain in Japan including processes for crude petroleum refining petroleum product manufacturing plastic resin and product manufacturing and by-product manufacturing. In particular by-product manufacturing processes such as hydrogen gaseous carbon dioxide and sulfur were selected because they are utilized in other industries. Next the outlook for the production of plastic resin hydrogen dry ice produced from carbon dioxide gas and sulfur until 2050 was estimated for reducing petroleum consumption required to achieve the 1.5 ◦C target. As a result national petroleum treatment is expected to reduce from 177048.00 thousand kl in 2019 to 126643.00 thousand kl in 2030 if the reduction in petroleum consumption is established. Along with this decrease plastic resin production is expected to decrease from 10500.00 thousand ton in 2019 to 7511.00 thousand ton by 2030. Conversely the plastic market is expected to grow steadily and the estimated plastic resin production in 2030 is expected to be 20079.00 thousand ton. This result indicates that there is a large output gap between plastic supply and demand. To mitigate this gap strongly promoting the recycling of waste plastics and making the price competitiveness of biomass plastics equal to that of petroleum-derived plastics are necessary
The Industry Transformation from Fossil Fuels to Hydrogen will Reorganize Value Chains: Big Picture and Case Studies for Germany
Jan 2024
Publication
In many industries low-carbon hydrogen will substitute fossil fuels in the course of the transformation to climate neutrality. This paper contributes to understanding this transformation. This paper provides an overview of energy- and emission-intensive industry sectors with great potential to defossilize their production processes with hydrogen. An assessment of future hydrogen demand for various defossilization strategies in Germany that rely on hydrogen as a feedstock or as an energy carrier to a different extent in the sectors steel chemicals cement lime glass as well as pulp and paper is carried out. Results indicate that aggregate industrial hydrogen demand in those industries would range between 197 TWh and 298 TWh if production did not relocate abroad for any industry sector. The range for hydrogen demand is mainly due to differences in the extent of hydrogen utilization as compared to alternative transformation paths for example based on electrification. The attractiveness of production abroad is then assessed based on the prospective comparative cost advantage of relocating parts of the value chain to excellent production sites for low-carbon hydrogen. Case studies are provided for the steel industry as well as the chemical industry with ethylene production through methanol and the production of urea on the basis of ammonia. The energy cost of the respective value chains in Germany is then compared to the case of value chains partly located in regions with excellent conditions for renewable energies and hydrogen production. The results illustrate that at least for some processes – as ammonia production – relocation to those favorable regions may occur due to substantial comparative cost advantages.
What Does the Public Know About Technological Solutions for Achieving Carbon Neutrality? Citizens' Knowledge of Energy Transition and the Role of Media
Aug 2023
Publication
The present study explores the relation between media use and knowledge in the context of the energy transition. To identify relevant knowledge categories we relied on the expertise of an interdisciplinary research team. Based on this expertise we identified awareness-knowledge of changes in the energy system and principles-knowledge of hydrogen as important knowledge categories. With data obtained from a nationwide online survey of the German-speaking population (n = 2025) conducted in August 2021 we examined the level of knowledge concerning both categories in the German population. Furthermore we studied its associations with exposure to journalistic media and direct communication from non-media actors (e.g. scientists). Our results revealed a considerable lack of knowledge for both categories. Considering the media variables we found only weak and in some cases even negative relations with the use of journalistic media or other actors that spread information online. However we found comparably strong associations between both knowledge categories and the control variables of sex education and personal interest. We use these results to open up a general discussion of the role of the media in knowledge acquisition processes.
An Overview of Challenges for the Future of Hydrogen
Oct 2023
Publication
Hydrogen’s wide availability and versatile production methods establish it as a primary green energy source driving substantial interest among the public industry and governments due to its future fuel potential. Notable investment is directed toward hydrogen research and material innovation for transmission storage fuel cells and sensors. Ensuring safe and dependable hydrogen facilities is paramount given the challenges in accident control. Addressing material compatibility issues within hydrogen systems remains a critical focus. Challenges roadmaps and scenarios steer long-term planning and technology outlooks. Strategic visions align actions and policies encompassing societal and ecological dimensions. The confluence of hydrogen’s promise with material progress holds the prospect of reshaping our energy landscape sustainably. Forming collective future perspectives to foresee this emerging technology’s potential benefits is valuable. Our review article comprehensively explores the forthcoming challenges in hydrogen technology. We extensively examine the challenges and opportunities associated with hydrogen production incorporating CO2 capture technology. Furthermore the interaction of materials and composites with hydrogen particularly in the context of hydrogen transmission pipeline and infrastructure are discussed to understand the interplay between materials and hydrogen dynamics. Additionally the exploration extends to the embrittlement phenomena during storage and transmission coupled with a comprehensive examination of the advancements and hurdles intrinsic to hydrogen fuel cells. Finally our exploration encompasses addressing hydrogen safety from an industrial perspective. By illuminating these dimensions our article provides a panoramic view of the evolving hydrogen landscape.
Advancing a Hydrogen Economy in Australia: Public Perceptions and Aspirations
Nov 2023
Publication
Supporters of hydrogen energy urge scaling up technology and reducing costs for competitiveness. This paper explores how hydrogen energy technologies (HET) are perceived by Australia’s general population and considers the way members of the public imagine their role in the implementation of hydrogen energy now and into the future. The study combines a nationally representative survey (n = 403) and semi-structured interviews (n = 30). Results show age and gender relationships with self-reported hydrogen knowledge. Half of the participants obtained hydrogen information from televised media. Strong support was observed for renewable hydrogen while coal (26%) and natural gas (41%) versions had less backing. Participants sought more safety-related information (41% expressed concern). Most felt uncertain about influencing hydrogen decisions and did not necessarily recognise they had agency beyond their front fence. Exploring the link between political identity and agency in energy decision-making is needed with energy democracy a potentially productive direction.
Impact of Large-scale Hydrogen Electrification and Retrofitting of Natural Gas Infrastructure on the European Power System
Nov 2023
Publication
In this paper we aim to analyse the impact of hydrogen production decarbonisation and electrification scenarios on the infrastructure development generation mix CO2 emissions and system costs of the European power system considering the retrofit of the natural gas infrastructure. We define a reference scenario for the European power system in 2050 and use scenario variants to obtain additional insights by breaking down the effects of different assumptions. The scenarios were analysed using the European electricity market model COMPETES including a proposed formulation to consider retrofitting existing natural gas networks to transport hydrogen instead of methane. According to the results 60% of the EU’s hydrogen demand is electrified and approximately 30% of the total electricity demand will be to cover that hydrogen demand. The primary source of this electricity would be non-polluting technologies. Moreover hydrogen flexibility significantly increases variable renewable energy investment and production and reduces CO2 emissions. In contrast relying on only electricity transmission increases costs and CO2 emissions emphasising the importance of investing in an H2 network through retrofitting or new pipelines. In conclusion this paper shows that electrifying hydrogen is necessary and cost-effective to achieve the EU’s objective of reducing long-term emissions.
Fuelling the Transition Podcast: Building the UK Hydrogen Backbone
Feb 2022
Publication
In this episode Tony Green Hydrogen Director at National Grid and John Williams Head of Hydrogen Expertise Cluster at AFRYManagement Consulting join us to discuss the challenges in implementing hydrogen. Tony is involved in two exciting hydrogen projects: FutureGrid andProject Union. FutureGrid involves building a facility to create a representative whole-network to trial hydrogen. Project Union will develop a UK hydrogen ‘backbone’ joining together clusters around the country potentially creating a 2000km hydrogen network.
In addition to discussing these projects this episode will explore the following issues:
♦ Managing the transition and challenges in repurposing natural gas pipelines to hydrogen
♦ The potential for blending and de-blending hydrogen
♦ The impact of hydrogen on National Grid’s regulatory approach
♦ How to take the first steps towards a hydrogen wholesale market"
The podcast can be found on their website.
In addition to discussing these projects this episode will explore the following issues:
♦ Managing the transition and challenges in repurposing natural gas pipelines to hydrogen
♦ The potential for blending and de-blending hydrogen
♦ The impact of hydrogen on National Grid’s regulatory approach
♦ How to take the first steps towards a hydrogen wholesale market"
The podcast can be found on their website.
Addressing Environmental Challenges: The Role of Hydrogen Technologies in a Sustainable Future
Dec 2023
Publication
Energy and environmental issues are of great importance in the present era. The transition to renewable energy sources necessitates technological political and behavioral transformations. Hydrogen is a promising solution and many countries are investing in the hydrogen economy. Global demand for hydrogen is expected to reach 120 million tonnes by 2024. The incorporation of hydrogen for efficient energy transport and storage and its integration into the transport sector are crucial measures. However to fully develop a hydrogen-based economy the sustainability and safety of hydrogen in all its applications must be ensured. This work describes and compares different technologies for hydrogen production storage and utilization (especially in fuel cell applications) with focus on the research activities under study at SaRAH group of the University of Naples Federico II. More precisely the focus is on the production of hydrogen from bio-alcohols and its storage in formate solutions produced from renewable sources such as biomass or carbon dioxide. In addition the use of materials inspired by nature including biowaste as feedstock to produce porous electrodes for fuel cell applications is presented. We hope that this review can be useful to stimulate more focused and fruitful research in this area and that it can open new avenues for the development of sustainable hydrogen technologies.
Regime-driven Niches and Institutional Entrepreneurs: Adding Hydrogen to Regional Energy Systems in Germany
Nov 2023
Publication
In recent years production and supply of hydrogen has gained significant attention within the German energy transition. This is due to increasingly urgent pressures to mitigate climate change and geopolitical imperatives to substitute natural gas. Hydrogen is seen as an important cross-sectoral energy carrier serving multiple functions including heat production for industry and households fuel for transportation and energy storage for stabilization of electricity supply. In the context of various funding mechanisms on several administrative levels regional value chains for green hydrogen supply are emerging. To date however few studies analyzing regional hydrogen systems exist. Due to its high projected demand of energy sources for heating industrial processes and mobility Germany appears to be a very relevant research area in this emerging field. Situated within the concept of the multi-level perspective this article examines the way how regional “niches” of green hydrogen evolve and how they are organized. The study takes an evolutionary perspective in analyzing processes of embedding green hydrogen infrastructures in regional energy regimes which entered “re-configuration”-pathways. It argues that the congruence of available resources for renewable electricity established networks of institutional entrepreneurs and access to higher level funding are conditions which put incumbent regime-actors in favorable positions to implement green hydrogen niches. Conversely the embedding of green hydrogen infrastructures in regional energy systems is a case in point of how the attributes of niches in particular technological domains can be used to explain the transition pathway entered by a surrounding energy regime.
Modern Hydrogen Technologies in the Face of Climate Change—Analysis of Strategy and Development in Polish Conditions
Aug 2023
Publication
The energy production market based on hydrogen technologies is an innovative solution that will allow the industry to achieve climate neutrality in the future in Poland and in the world. The paper presents the idea of using hydrogen as a modern energy carrier and devices that in cooperation with renewable energy sources produce the so-called green hydrogen and the applicable legal acts that allow for the implementation of the new technology were analyzed. Energy transformation is inevitable and according to reports on good practices in European Union countries hydrogen and the hydrogen value chain (production transport and transmission storage use in transport and energy) have wide potential. Thanks to joint projects and subsidies from the EU initiatives supporting hydrogen technologies are created such as hydrogen clusters and hydrogen valleys and EU and national strategic programs set the main goals. Poland is one of the leaders in hydrogen production both in the world and in Europe. Domestic tycoons from the energy refining and chemical industries are involved in the projects. Eight hydrogen valleys that have recently been created in Poland successfully implement the assumptions of the “Polish Hydrogen Strategy until 2030 with a perspective until 2040” and “Energy Policy of Poland until 2040” which are in line with the assumptions of the most important legal acts of the EU including the European Union’s energy and climate policy the Green Deal and the Fit for 55 Package. The review of the analysis of the development of hydrogen technologies in Poland shows that Poland does not differ from other European countries. As part of the assumptions of the European Hydrogen Strategy and the trend related to the management of energy surpluses electrolyzers with a capacity of at least 6 GW will be installed in Poland in 2020–2024. It is also assumed that in the next phase planned for 2025–2030 hydrogen will be a carrier in the energy system in Poland. Poland as a member of the EU is the creator of documents that take into account the assumptions of the European Union Commission and systematically implement the assumed goals. The strategy of activities supporting the development of hydrogen technologies in Poland and the value chain includes very extensive activities related to among others obtaining hydrogen using hydrogen in transport energy and industry developing human resources for the new economy supporting the activities of hydrogen valley stakeholders building hydrogen refueling stations and cooperation among Poland Slovakia and the Czech Republic as part of the HydrogenEagle project.
Cost Projection of Global Green Hydrogen Production Scenarios
Nov 2023
Publication
A sustainable future hydrogen economy hinges on the development of green hydrogen and the shift away from grey hydrogen but this is highly reliant on reducing production costs which are currently too high for green hydrogen to be competitive. This study predicts the cost trajectory of alkaline and proton exchange membrane (PEM) electrolyzers based on ongoing research and development (R&D) scale effects and experiential learning consequently influencing the levelized cost of hydrogen (LCOH) projections. Electrolyzer capital costs are estimated to drop to 88 USD/kW for alkaline and 60 USD/kW for PEM under an optimistic scenario by 2050 or 388 USD/kW and 286 USD/kW respectively under a pessimistic scenario with PEM potentially dominating the market. Through a combination of declining electrolyzer costs and a levelized cost of electricity (LCOE) the global LCOH of green hydrogen is projected to fall below 5 USD/kgH2 for solar onshore and offshore wind energy sources under both scenarios by 2030. To facilitate a quicker transition the implementation of financial strategies such as additional revenue streams a hydrogen/carbon credit system and an oxygen one (a minimum retail price of 2 USD/kgO2 ) and regulations such as a carbon tax (minimum 100 USD/tonCO2 for 40 USD/MWh electricity) and a contract-for-difference scheme could be pivotal. These initiatives would act as financial catalysts accelerating the transition to a greener hydrogen economy.
Green Hydrogen Credit Subsidized Renewable Energy-hydrogen Business Models for Achieving the Carbon Netural Future
Feb 2024
Publication
The global resurgence of hydrogen as a clean energy source particularly green hydrogen derived from renewable energy is pivotal for achieving a carbon-neutral future. However scalability poses a significant challenge. This research proposes innovative business models leveraging the low-emission property of green hydrogen to reduce its financial costs thereby fostering its widespread adoption. Key components of the business workflow are elaborated mathematical formulations of market parameters are derived and case studies are presented to demonstrate the feasibility and efficiency of these models. Results demonstrate that the substantial costs associated with the current hydrogen industry can be effectively subsidized via the implementation of proposed business models. When the carbon emission price falls within the range of approximately 86–105 USD/ton free access to hydrogen becomes a viable option for end-users. This highlights the significance and promising potential of the proposed business models within the green hydrogen credit framework.
A Brief on Nano-Based Hydrogen Energy Transition
Sep 2023
Publication
Considering the clean renewable and ecologically friendly characteristics of hydrogen gas as well as its high energy density hydrogen energy is thought to be the most potent contender to locally replace fossil fuels. The creation of a sustainable energy system is currently one of the critical industrial challenges and electrocatalytic hydrogen evolution associated with appropriate safe storage techniques are key strategies to implement systems based on hydrogen technologies. The recent progress made possible through nanotechnology incorporation either in terms of innovative methods of hydrogen storage or production methods is a guarantee of future breakthroughs in energy sustainability. This manuscript addresses concisely and originally the importance of including nanotechnology in both green electroproduction of hydrogen and hydrogen storage in solid media. This work is mainly focused on these issues and eventually intends to change beliefs that hydrogen technologies are being imposed only for reasons of sustainability and not for the intrinsic value of the technology itself. Moreover nanophysics and nano-engineering have the potential to significantly change the paradigm of conventional hydrogen technologies.
Hydrogen-Based Energy Systems: Current Technology Development Status, Opportunities and Challenges
Dec 2023
Publication
The use of hydrogen as an energy carrier within the scope of the decarbonisation of the world’s energy production and utilisation is seen by many as an integral part of this endeavour. However the discussion around hydrogen technologies often lacks some perspective on the currently available technologies their Technology Readiness Level (TRL) scope of application and important performance parameters such as energy density or conversion efficiency. This makes it difficult for the policy makers and investors to evaluate the technologies that are most promising. The present study aims to provide help in this respect by assessing the available technologies in which hydrogen is used as an energy carrier including its main challenges needs and opportunities in a scenario in which fossil fuels still dominate global energy sources but in which renewables are expected to assume a progressively vital role in the future. The production of green hydrogen using water electrolysis technologies is described in detail. Various methods of hydrogen storage are referred including underground storage physical storage and material-based storage. Hydrogen transportation technologies are examined taking into account different storage methods volume requirements and transportation distances. Lastly an assessment of well-known technologies for harnessing energy from hydrogen is undertaken including gas turbines reciprocating internal combustion engines and fuel cells. It seems that the many of the technologies assessed have already achieved a satisfactory degree of development such as several solutions for high-pressure hydrogen storage while others still require some maturation such as the still limited life and/or excessive cost of the various fuel cell technologies or the suitable operation of gas turbines and reciprocating internal combustion engines operating with hydrogen. Costs below 200 USD/kWproduced lives above 50 kh and conversion efficiencies approaching 80% are being aimed at green hydrogen production or electricity production from hydrogen fuel cells. Nonetheless notable advances have been achieved in these technologies in recent years. For instance electrolysis with solid oxide cells may now sometimes reach up to 85% efficiency although with a life still in the range of 20 kh. Conversely proton exchange membrane fuel cells (PEMFCs) working as electrolysers are able to sometimes achieve a life in the range of 80 kh with efficiencies up to 68%. Regarding electricity production from hydrogen the maximum efficiencies are slightly lower (72% and 55% respectively). The combination of the energy losses due to hydrogen production compression storage and electricity production yields overall efficiencies that could be as low as 25% although smart applications such as those that can use available process or waste heat could substantially improve the overall energy efficiency figures. Despite the challenges the foreseeable future seems to hold significant potential for hydrogen as a clean energy carrier as the demand for hydrogen continues to grow particularly in transportation building heating and power generation new business prospects emerge. However this should be done with careful regard to the fact that many of these technologies still need to increase their technological readiness level before they become viable options. For this an emphasis needs to be put on research innovation and collaboration among industry academia and policymakers to unlock the full potential of hydrogen as an energy vector in the sustainable economy.
Hydrogen Towards Sustainable Transition: A Review of Production, Economic, Environmental Impact and Scaling Factors
Sep 2023
Publication
Currently meeting the global energy demand is largely dependent on fossil fuels such as natural gas coal and oil. Fossil fuels represent a danger to the Earth’s environment and its biological systems. The utilisation of these fuels results in a rise in atmospheric CO2 levels which in turn triggers global warming and adverse changes in the climate. Furthermore these represent finite energy resources that will eventually deplete. There is a pressing need to identify and harness renewable energy sources as a replacement for fossil fuels in the near future. This shift is expected to have a minimal environmental impact and would contribute to ensuring energy security. Hydrogen is considered a highly desirable fuel option with the potential to substitute depleting hydrocarbon resources. This concise review explores diverse methods of renewable hydrogen production with a primary focus on solar wind geothermal and mainly water-splitting techniques such as electrolysis thermolysis photolysis and biomass-related processes. It addresses their limitations and key challenges hampering the global hydrogen economy’s growth including clean value chain creation storage transportation production costs standards and investment risks. The study concludes with research recommendations to enhance production efficiencies and policy suggestions for governments to mitigate investment risks while scaling up the hydrogen economy.
No more items...