Policy & Socio-Economics
Everything About Hydrogen Podcast: Global Energy Majors in the Hydrogen Space
Jul 2022
Publication
On today’s episode of Everything About Hydrogen we are speaking with Paul Bogers Vice President for Hydrogen at Shell. As a company Shell needs no introduction but the company’s work and investments in the hydrogen space make it a global leader in the energy transition especially when it comes to the hydrogen component. Paul is amongst the executives at Shell that are working to bring their hydrogen vision to fruition and it is great to have him with us on the show today.
The podcast can be found on their website
The podcast can be found on their website
Deep Decarbonization of the Indian Economy: 2050 Prospects for Wind, Solar, and Green Hydrogen
May 2022
Publication
The paper explores options for a 2050 carbon free energy future for India. Onshore wind and solar sources are projected as the dominant primary contributions to this objective. The analysis envisages an important role for so-called green hydrogen produced by electrolysis fueled by these carbon free energy sources. This hydrogen source can be used to accommodate for the intrinsic variability of wind and solar complementing opportunities for storage of power by batteries and pumped hydro. The green source of hydrogen can be used also to supplant current industrial uses of grey hydrogen produced in the Indian context largely from natural gas with important related emissions of CO2. The paper explores further options for use of green hydrogen to lower emissions from otherwise difficult to abate sectors of both industry and transport. The analysis is applied to identify the least cost options to meet India’s zero carbon future.
Quantifying the Impacts of Heat Decarbonisation Pathways on the Future Electricity and Gas Demand
May 2022
Publication
The decarbonisation of heat supply will play a critical role in meeting the emissions reduction target. There is however great uncertainty associated with the achievable levels of heat decarbonisation and the optimal heat technology mix which can have serious implications for the future electricity and gas demand. This work employs an integrated gas electricity and heat supply model to quantify the impacts of heat decarbonisation pathways on the future electricity and gas demand. A case study in the Great Britain is performed considering two heat decarbonisation scenarios in 2050: one is the predominantly electrified heat supply and the other is the predominantly hydrogen-based heat supply. The electricity demand becomes more volatile in the electrified heat scenario as the peak surges to 107.3 GW compared to 51.1 GW in the 2018 reference scenario while the peak in hydrogen-based heat scenario is 78.4 GW. The peak gas demand declines from 247.6 GW for 2018 to 81.7 GW for electrified heat scenario and to 85.1 GW for hydrogen-based heat scenario confirming that the seasonality associated with heat demand is shifting away from the gas network and towards electricity network. Moreover a sensitivity analysis shows that the future electricity demand is highly sensitive to parameters such as relative heat demand coefficient of performance of air source heat pumps and share of electricity in hydrogen production. Finally the application of a load shifting strategy demonstrates that demand-side flexibility has the potential to maintain the electricity system balance and minimise the generation and network infrastructure requirements arising from heat electrification. While the case study presented in this paper is based on the Great Britain the findings regarding the future electricity and gas demand are relevant for the global energy transition.
Towards a Climate-neutral Energy System in the Netherlands
Jan 2022
Publication
This paper presents two different scenarios for the energy system of the Netherlands that achieve the Dutch government’s national target of near net-zero greenhouse gas emissions in 2050. Using the system optimisation model OPERA the authors have analysed the technology sector and cost implications of the assumptions underlying these scenarios. While the roles of a number of key energy technology and emission mitigation options are strongly dependent on the scenario and cost assumptions the analysis yields several common elements that appear in both scenarios and that consistently appear under differing cost assumptions. For example one of the main options for the decarbonisation of the Dutch energy system is electrification of energy use in end-use sectors and for the production of renewable hydrogen with electrolysers. As a result the level of electricity generation in 2050 will be three to four times higher than present generation levels. Ultimately renewable energy – particularly from wind turbines and solar panels – is projected to account for the vast majority of electricity generation around 99% in 2050. Imbalances between supply and demand resulting from this variable renewable electricity production can be managed via flexibility options including demand response and energy storage. Hydrogen also becomes an important energy carrier notably for transportation and in industry. If import prices are lower than costs of domestic production from natural gas with CCS or through electrolysis from renewable electricity (2.4–2.7 €/kgH2) the use of hydrogen increases especially in the built environment.
Pipeline to 2050 - Building the Foundations for a Harmonised Heat Strategy
Nov 2020
Publication
Following up on our report Uncomfortable Home Truths: why Britain urgently needs a low carbon heat strategy Pipeline to 2050 sets out recommendations for BEIS’ forthcoming Heat and Buildings Strategy. Based on the findings of five roundtables held between January and July 2020 with cross-party parliamentarians policy-makers and experts from industry academia and non-governmental organisations the publication calls for a joined-up approach that simultaneously addresses all aspects of heat decarbonisation.<br/>The report highlights that today there is a patchwork of heat policy initiatives. Although they might incentivise positive development in themselves are nevertheless too dispersed and not enough to drive the level of coordinated action that is needed given the complexity of heat decarbonisation. Setting out propositions to tackle challenges associated with the transition to low carbon heat in the areas of governance funding innovation and public engagement; the publication calls for a Heat and Buildings Strategy that shows a step change in terms of ambition for heat decarbonisation.<br/>The report recommends that the Heat and Buildings Strategy needs to put forward a systematic approach that joins up all policy aspects and principles needed for the transition to low carbon heat. Moreover given the cross-sectoral engagement needed between consumers industry research and various levels of the government it argues that the Strategy has to be constructed in a way that simultaneously catalyses action from all stakeholders that are needed to take part in the process for effective heat decarbonisation.
Challenges to the Future of LNG: Decarbonisation, Affordability, and Profitability
Oct 2019
Publication
Decarbonisation should be very much on the radar of new LNG projects currently taking FID commissioning around 2024-25 and planning to operate up to 2050. The LNG community needs to replace an `advocacy’ message – based on the generality of emissions from combustion of natural gas being lower than from other fossil fuels – with certified data on carbon and methane emissions from specific elements of the value chain for individual projects. As carbon reduction targets tighten over the coming decade LNG cargoes which do not have value chain emissions certified by accredited authorities or which fail to meet defined emission levels run the risk of progressively being deemed to have a lower commercial value and eventually being excluded from jurisdictions with the strictest standards. There will be no place in this process for confidentiality; nothing less than complete transparency of data and methodologies will be acceptable.<br/>In relation to affordability prospects for new projects look much better than they did three years ago. Cost estimates for most new projects suggest that they will be able to deliver profitably to most established and anticipated import markets at or below the wholesale prices prevailing in those markets over the past decade although affordability in south Asian countries may be challenging. But new projects need to factor in costs related to future decarbonisation requirements in both exporting and importing countries. To the extent that LNG suppliers can meet standards through relatively low-cost offsets – forest projects low-cost biogas and biomethane – this may not greatly impact their commercial viability. However any requirement to transform methane into hydrogen with CCS in either the exporting or importing country would substantially impact project economics and the affordability of LNG relative to other energy choices.
Recovery Through Reform: Advancing a Hydrogen Economy While Minimizing Fossil Fuel Subsidies
Feb 2021
Publication
This brief explores recent momentum on hydrogen and evaluates potential implications for subsidies for fossil fuel-based hydrogen given the government's commitments on fossil fuel subsidies.
Spending on hydrogen has the potential to significantly influence the direction taken by the world’s energy systems. In December 2020 Canada unveiled a national hydrogen strategy following the announcement of a strengthened climate plan. The strategy emphasized both blue and green hydrogen. As the government considers whether to provide subsidies for hydrogen we recommend government:
This brief is one of three International Institute for Sustainable Development (IISD) policy briefs in its Recovery Through Reform series which assesses how efforts to achieve a green recovery from COVID-19 in Canada rely on—and can contribute to—fossil fuel subsidy reform.
Spending on hydrogen has the potential to significantly influence the direction taken by the world’s energy systems. In December 2020 Canada unveiled a national hydrogen strategy following the announcement of a strengthened climate plan. The strategy emphasized both blue and green hydrogen. As the government considers whether to provide subsidies for hydrogen we recommend government:
- Ensure that any subsidies for hydrogen are in line with the government’s commitments to phase out inefficient fossil fuel subsidies by 2025 and meet net-zero by 2050.
- Thoroughly evaluate the potential efficiency of subsidies for hydrogen against robust social environmental and economic criteria. • Improve transparency by publicly reporting on direct spending and tax expenditures for hydrogen production.
- Follow international best practices being set by Canada’s peers. For example Germany and Spain have laid out hydrogen strategies prioritizing green hydrogen.
This brief is one of three International Institute for Sustainable Development (IISD) policy briefs in its Recovery Through Reform series which assesses how efforts to achieve a green recovery from COVID-19 in Canada rely on—and can contribute to—fossil fuel subsidy reform.
Hydrogen and Decarbonisation of Gas- False Dawn or Silver Bullet?
Mar 2020
Publication
This Insight continues the OIES series considering the future of gas. The clear message from previous papers is that on the (increasingly certain) assumption that governments in major European gas markets remain committed to decarbonisation targets the existing natural gas industry is under threat. It is therefore important to develop a decarbonisation narrative leading to a low- or zero-carbon gas implementation plan.
Previous papers have considered potential pathways for gas to decarbonise specifically considering biogas and biomethane and power-to-gas (electrolysis) . This paper goes on to consider the potential for production transport and use of hydrogen in the decarbonising energy system. Previous papers predominately focused on Europe which has been leading the way in decarbonisation. Hydrogen is now being considered more widely in various countries around the world so this paper reflects that wider geographical coverage.
Since the term ‘hydrogen economy’ was first used in 1970 there have been a number of ‘false dawns’ with bold claims for the speed of transition to hydrogen. This Insight argues that this time for some applications at least there are grounds for optimism about a future role for decarbonised hydrogen but the lesson from history is that bold claims need to be examined carefully and treated with some caution. There are no easy or low-cost solutions to decarbonisation of the energy system and this is certainly the case for possible deployment of low-carbon hydrogen. A key challenge is to demonstrate the technical commercial economic and social acceptability of various possibilities at scale. Hydrogen will certainly play a role in decarbonisation of the energy system although the size of the role may be more limited than envisaged in some more optimistic projections.
Open document on OIES website
Previous papers have considered potential pathways for gas to decarbonise specifically considering biogas and biomethane and power-to-gas (electrolysis) . This paper goes on to consider the potential for production transport and use of hydrogen in the decarbonising energy system. Previous papers predominately focused on Europe which has been leading the way in decarbonisation. Hydrogen is now being considered more widely in various countries around the world so this paper reflects that wider geographical coverage.
Since the term ‘hydrogen economy’ was first used in 1970 there have been a number of ‘false dawns’ with bold claims for the speed of transition to hydrogen. This Insight argues that this time for some applications at least there are grounds for optimism about a future role for decarbonised hydrogen but the lesson from history is that bold claims need to be examined carefully and treated with some caution. There are no easy or low-cost solutions to decarbonisation of the energy system and this is certainly the case for possible deployment of low-carbon hydrogen. A key challenge is to demonstrate the technical commercial economic and social acceptability of various possibilities at scale. Hydrogen will certainly play a role in decarbonisation of the energy system although the size of the role may be more limited than envisaged in some more optimistic projections.
Open document on OIES website
The Future of Gas Infrastructure Remuneration in Spain
Oct 2019
Publication
The European Union (EU) has adopted ambitious decarbonization targets for 2050.
Renewable electricity and electrification are the key drivers but are not sufficient on their own to meet the targets. A number of countries expect decarbonized gas (e.g. renewable hydrogen and biomethane) to be part of a future decarbonized energy system.
Within that context this paper examines proposals recently issued by Spain’s energy regulator (CNMC) to define the methodology for remunerating gas distribution and transmission networks and LNG regasification terminals. Their proposals would reduce significantly the remuneration of these activities. Bearing in mind the objective of decarbonization this paper analyzes key features of the proposals and concludes with recommendations. We suggest:
Link to document on OIES website
Renewable electricity and electrification are the key drivers but are not sufficient on their own to meet the targets. A number of countries expect decarbonized gas (e.g. renewable hydrogen and biomethane) to be part of a future decarbonized energy system.
Within that context this paper examines proposals recently issued by Spain’s energy regulator (CNMC) to define the methodology for remunerating gas distribution and transmission networks and LNG regasification terminals. Their proposals would reduce significantly the remuneration of these activities. Bearing in mind the objective of decarbonization this paper analyzes key features of the proposals and concludes with recommendations. We suggest:
- Adoption of a common methodology for remunerating new investment in gas and electricity infrastructure assets. The Regulatory Asset Base (RAB) approach is a suitable methodology especially for high-risk investment to integrate hydrogen.
- CNMC reconsideration of its proposals for existing assets. The aim should be to ensure that even if remuneration is reduced to some extent investors will still be compensated adequately and that the companies will continue to support the investments needed to digitalize processes deliver natural gas and eventually deliver renewable gas where it is economic to do so. This is an important signal for current and future investors whose investments will be regulated by the CNMC.
- Clarification of the methodology for remunerating renewable gas facilities. If renewable gas (especially hydrogen) requires access to regulated gas networks the CNMC methodology must provide suitable incentives to invest in network expansion and upgrading as required as well as to maintain natural gas operations. Even if no decision is made in the short-term regarding hydrogen it would be prudent to leave the door open by making the regulation compatible with future decisions involving hydrogen development.
- Consideration of potentially stranded assets. The CNMC and the Government should coordinate over the remuneration of infrastructure assets when national policy decisions may lead to the stranding of these assets.
- Decarbonization of the energy system as a whole. The CNMC and the Government should consider how best to promote the decarbonization of the energy system as a whole rather than its individual parts and what role is to be played by regulated networks and by unregulated initiatives in competitive markets especially for the development of hydrogen systems.
Link to document on OIES website
Power to Gas Linking Electricity and Gas in a Decarbonising World
Oct 2018
Publication
Since the COP 21 meeting in Paris in December 2015 there has been a growing realisation that with the long-term objective that the energy system should be approaching carbon-neutrality by 2050 continuing to burn significant quantities of fossil-derived natural gas will not be sustainable. If existing natural gas infrastructure is to avoid becoming stranded assets plans to decarbonise the gas system need to be developed as a matter of urgency in the next three to five years given the typical life expectancy of such assets of 20 years or more. One of the options to decarbonise gas is “power-to-gas”: production of hydrogen or renewable methane via electrolysis using surplus renewable electricity. This Energy Insight reviews the status of power-to-gas and makes an assessment of potential future development pathways and the role which it could play in decarbonising the energy system.
Link to document on the OIES website
Link to document on the OIES website
The Heralds of Hydrogen: The Economic Sectors that are Driving the Hydrogen Economy in Europe
Jan 2021
Publication
This paper looked at 39 hydrogen associations across Europe to understand which economic sectors support the hydrogen transition in Europe and why they do so. Several broad conclusions can be drawn from this paper. It is clear that the support for hydrogen is broad and from a very wide spectrum of economic actors that have clear interests in the success of the hydrogen transition. Motivations for support differ. Sales and market growth are important for companies pursuing professional scientific and technical activities as well as manufacturers of chemicals machinery electronic or electrical equipment and fabricated metals. The increasing cost of CO2 combines with regulatory and societal pressure to decarbonize and concerns from investors about the long-term profitability of sectors with high emissions. This makes hydrogen especially interesting for companies working in the energy transport steel and chemical industries. Another motivation is the ability to keep using existing fixed assets relevant for ports oil and gas companies and natural gas companies. More sector-specific concerns are a technological belief held by some motor vehicle manufacturers in the advantages of FCVs over BEVs for private mobility which is held more widely regarding heavy road transport. Security of supply and diversifying the current business portfolio come up specifically for natural gas companies. Broader concerns about having to shift into other energy technologies as a core business are reasons for interest from the oil and gas sector and ports.
Perhaps the most important lesson is that the hydrogen transition has already begun – but it needs continued policy support and political commitment. Carbon-intensive industries such as steel and chemicals are clearly interested and willing to invest billions but need policy support to avoid carbon leakage to high-carbon competitors before they commit. The gas grid is ready and many operators and utility companies are eager but they need clearance to experiment with blending in hydrogen. Hydrogen road vehicles still face many regulatory hurdles. There are several clusters that can serve as models and nuclei for the future European hydrogen economy in different parts of Europe. However these nuclei will need more public funding and regulatory support for them to grow.
Link to document on Oxford Institute for Energy Studies website
Perhaps the most important lesson is that the hydrogen transition has already begun – but it needs continued policy support and political commitment. Carbon-intensive industries such as steel and chemicals are clearly interested and willing to invest billions but need policy support to avoid carbon leakage to high-carbon competitors before they commit. The gas grid is ready and many operators and utility companies are eager but they need clearance to experiment with blending in hydrogen. Hydrogen road vehicles still face many regulatory hurdles. There are several clusters that can serve as models and nuclei for the future European hydrogen economy in different parts of Europe. However these nuclei will need more public funding and regulatory support for them to grow.
Link to document on Oxford Institute for Energy Studies website
Analysis of the Existing Barriers for the Market Development of Power to Hydrogen (P2H) in Italy
Sep 2020
Publication
New technological solutions are required to control the impact of the increasing presence of renewable energy sources connected to the electric grid that are characterized by unpredictable production (i.e. wind and solar energy). Energy storage is becoming essential to stabilize the grid when a mismatch between production and demand occurs. Among the available solutions Power to Hydrogen (P2H) is one of the most attractive options. However despite the potential many barriers currently hinder P2H market development. The literature reports general barriers and strategies to overcome them but a specific analysis is fundamental to identifying how these barriers concretely arise in national and regional frameworks since tailored solutions are needed to foster the development of P2H local market. The paper aims to identify and to analyze the existing barriers for P2H market uptake in Italy. The paper shows how several technical regulatory and economic issues are still unsolved resulting in a source of uncertainty for P2H investment. The paper also suggests possible approaches and solutions to address the Italian barriers and to support politics and decision-makers in the definition and implementation of the national hydrogen strategy.
Energy From Waste and the Circular Economy
Jul 2020
Publication
The Energy Research Accelerator (ERA) and the Birmingham Energy Institute have launched a policy commission to examine the state of play barriers challenges and opportunities for Energy from Waste (EfW) to form part of the regional energy circular economy in the Midlands. This policy commission explores the case for regional investment whilst helping shape the regional local government and industry thinking surrounding critical issues such as fuel poverty and poor air quality.
The Challenge
Tackling climate change is one of the most pressing issues of our time. To follow the path for limiting global warming below 2ᵒC set out in the 2015 Paris agreement requires significant reduction in greenhouse gas emissions. The UK has committed to bring all greenhouse gas emissions to net zero by 2050 requiring action at a local regional and national level to transition to a zero carbon economy.
To decarbonise and decentralise the UK’s energy system we must implement technologies that provide energy supply solutions across the UK.
In the Midlands many industrial sites are unable to access supply of affordable clean and reliable energy to meet their demands.
Energy from Waste (EfW) could offer a solution to the Midlands based industrial sites. EfW sites provide affordable secure energy supply solutions that form part of a developing circular economy. EfW reduces our reliance on landfills and obtains the maximum value from our waste streams. There are a number of merging technologies that could potentially play an important role which treats waste as a resource properly integrated into an energy and transport system and fully respects the potential of linking in the circular economy.
Investment into EfW infrastructure in the region could lead to job creation and economic growth and could help provide inward investment needed to redevelop old industrial sites and retiring power stations. However for EfW to be part of a net-zero energy system (either in transition or long-term) technologies and processes are needed that reduce the current carbon emissions burden.
EfW could play a significant role in the net zero carbon transition in the Midlands supplying heat power and green fuels and solve other problems - the region has some of the highest levels of energy/fuel poverty and poor air quality in the UK. The policy commission will help shape the regional local government and industry thinking surrounding this important topic.
Report Recommendations
Recovery Resource Cluster
The EfW policy commission proposes three major areas where it believes that government investment would be highly beneficial
The National Centre for the Circular Economy would analyse material flows throughout the economy down to regional and local levels and develop deep expertise in recycling and EfW technologies. The CCE would also provide expert guidance and support for local authorities as they develop local or regional strategies and planning frameworks.
The R&D Grand Challenge aims to make big advances in small-scale carbon capture technologies in order to turn 100% of CO2 produced through the process of converting waste to energy into useful products. This is very important for areas such as the Midlands which are remoted from depleted oil and gas reservoirs.
The Challenge
Tackling climate change is one of the most pressing issues of our time. To follow the path for limiting global warming below 2ᵒC set out in the 2015 Paris agreement requires significant reduction in greenhouse gas emissions. The UK has committed to bring all greenhouse gas emissions to net zero by 2050 requiring action at a local regional and national level to transition to a zero carbon economy.
To decarbonise and decentralise the UK’s energy system we must implement technologies that provide energy supply solutions across the UK.
In the Midlands many industrial sites are unable to access supply of affordable clean and reliable energy to meet their demands.
Energy from Waste (EfW) could offer a solution to the Midlands based industrial sites. EfW sites provide affordable secure energy supply solutions that form part of a developing circular economy. EfW reduces our reliance on landfills and obtains the maximum value from our waste streams. There are a number of merging technologies that could potentially play an important role which treats waste as a resource properly integrated into an energy and transport system and fully respects the potential of linking in the circular economy.
Investment into EfW infrastructure in the region could lead to job creation and economic growth and could help provide inward investment needed to redevelop old industrial sites and retiring power stations. However for EfW to be part of a net-zero energy system (either in transition or long-term) technologies and processes are needed that reduce the current carbon emissions burden.
EfW could play a significant role in the net zero carbon transition in the Midlands supplying heat power and green fuels and solve other problems - the region has some of the highest levels of energy/fuel poverty and poor air quality in the UK. The policy commission will help shape the regional local government and industry thinking surrounding this important topic.
Report Recommendations
Recovery Resource Cluster
The EfW policy commission proposes three major areas where it believes that government investment would be highly beneficial
- Building a network of local and regional Resource Recovery Clusters
- Creating a National Centre for the Circular Economy
- Launching an R&D Grand Challenge to develop small-scale circular carbon capture technologies.
The National Centre for the Circular Economy would analyse material flows throughout the economy down to regional and local levels and develop deep expertise in recycling and EfW technologies. The CCE would also provide expert guidance and support for local authorities as they develop local or regional strategies and planning frameworks.
The R&D Grand Challenge aims to make big advances in small-scale carbon capture technologies in order to turn 100% of CO2 produced through the process of converting waste to energy into useful products. This is very important for areas such as the Midlands which are remoted from depleted oil and gas reservoirs.
Pathway to Net Zero Emissions
Oct 2021
Publication
A feasible path to limit planetary warming to 1.5°C requires certain countries and sectors to go below net zero and to do so well before the middle of the century according to new analysis from the authors of the Energy Transition Outlook. DNV’s pathway to net zero says North America and Europe must be carbon neutral by 2042 whereas Indian Subcontinent is set to be a net emitter by 2050 Net zero report says carbon capture storage and use is required as energy production will not be carbon neutral by 2050 Aim to halve emissions by 2030 is out of reach but massive early action is needed if we are to have any chance of reaching a 1.5°C future DNV’s new report “Pathway to Net Zero Emissions” describes a feasible way to limit global warming to 1.5°C Policy makers are set to meet in Glasgow for the COP 26 summit with an eye on achieving zero emissions by 2050. For this to happen North America and Europe must be carbon neutral by 2042 and then carbon negative thereafter according to DNV’s pathway to net zero. The pathway also finds that Greater China must reduce emissions by 98% from 2019 levels by 2050. There are regions that cannot realistically transition completely away from fossil fuels in the same timeframe such as the Indian Subcontinent which will reduce emissions by 64%. Pathway to Net Zero Emissions also lays out the pace at which different industry sectors need to decarbonize. The so-called hard-to-abate sectors will take longer to decarbonize and even if sectors like maritime (-90% CO2 emissions in 2050) and iron and steel production (-82%) scale up the introduction of greener technologies they will still be net emitters by 2050.
Analysis of Strategic Directions in Sustainable Hydrogen Investment Decisions
Jun 2020
Publication
This study seeks to find the appropriate strategies necessary to make sustainable and effective hydrogen energy investments. Within this scope nine different criteria are defined regarding social managerial and financial factors. A hesitant interval-valued intuitionistic fuzzy (IVIF) decision-making trial and evaluation laboratory (DEMATEL) methodology is considered to calculate the degree of importance of the criteria. Additionally impact relation maps are also generated to visualize the causality relationship between the factors. The findings indicate that the technical dimension has the greatest importance in comparison to managerial and financial factors. Furthermore it is also concluded that storage and logistics research and development and technological infrastructure are the most significant factors to be considered when defining hydrogen energy investment strategies. Hence before investing in hydrogen energy necessary actions should be taken to minimize the storage and logistic costs. Among them building the production site close to the usage area will contribute significantly to this purpose. In this way possible losses during the transportation of hydrogen can be minimized. Moreover it is essential to identify the lowest-cost hydrogen storage method by carrying out the necessary research and development activities thereby increasing the sustainability and effectiveness of hydrogen energy investment projects.
Rising To the Challenge of a Hydrogen Economy: The Outlook for Emerging Hydrogen Value Chains, From Production to Consumption
Jul 2021
Publication
For many a large-scale hydrogen economy is essential to a a clean energy future with three quarters of the more than 1100 senior energy professionals we surveyed saying Paris Agreement targets will not be possible without it.
DNV’s research Rising to the challenge of a hydrogen economy explores the outlook for emerging hydrogen value chains from production to consumption. It combines the wider view from the energy industry with commentary from business leaders and experts. Our research finds that the challenge is not in the ambition but in changing the timeline: from hydrogen on the horizon to hydrogen in our homes businesses and transport systems.
We see that the energy industry is rising to this challenge. By 2025 almost half (44%) of energy companies globally involved in hydrogen expect it to account for more than a tenth of their revenue rising to 73% of companies by 2030 – up significantly from just 8% of companies today. The research identifies infrastructure and cost as two of the biggest hurdles while the right regulations are deemed the most powerful enabler followed by carbon pricing. Proving the safety case will also be key to scaling the hydrogen economy.
Download your complimentary copy of DNV’s latest hydrogen research at their website link
DNV’s research Rising to the challenge of a hydrogen economy explores the outlook for emerging hydrogen value chains from production to consumption. It combines the wider view from the energy industry with commentary from business leaders and experts. Our research finds that the challenge is not in the ambition but in changing the timeline: from hydrogen on the horizon to hydrogen in our homes businesses and transport systems.
We see that the energy industry is rising to this challenge. By 2025 almost half (44%) of energy companies globally involved in hydrogen expect it to account for more than a tenth of their revenue rising to 73% of companies by 2030 – up significantly from just 8% of companies today. The research identifies infrastructure and cost as two of the biggest hurdles while the right regulations are deemed the most powerful enabler followed by carbon pricing. Proving the safety case will also be key to scaling the hydrogen economy.
Download your complimentary copy of DNV’s latest hydrogen research at their website link
Life Cycle Costing Analysis: Tools and Applications for Determining Hydrogen Production Cost for Fuel Cell Vehicle Technology
Jul 2021
Publication
This work investigates life cycle costing analysis as a tool to estimate the cost of hydrogen to be used as fuel for Hydrogen Fuel Cell vehicles (HFCVs). The method of life cycle costing and economic data are considered to estimate the cost of hydrogen for centralised and decentralised production processes. In the current study two major hydrogen production methods are considered methane reforming and water electrolysis. The costing frameworks are defined for hydrogen production transportation and final application. The results show that hydrogen production via centralised methane reforming is financially viable for future transport applications. The ownership cost of HFCVs shows the highest cost among other costs of life cycle analysis.
Towards a Large-Scale Hydrogen Industry for Australia
Oct 2020
Publication
As nations around the world seek to reduce carbon dioxide emissions in order to mitigate climate change risks there has been a resurgence of interest in the use of hydrogen as a zero-emissions energy carrier. Hydrogen can be produced from diverse feedstocks via a range of low-emissions pathways and has broad potential in the process of decarbonization across the energy transport and industrial sectors.<br/>With an abundance of both renewable and fossil fuel energy resources a comparatively low national energy demand and excellent existing regional resource trading links Australia is well positioned to pursue industrial-scale hydrogen production for both domestic and export purposes. In this paper we present an overview of the progress at the government industry and research levels currently undertaken to enable a large-scale hydrogen industry for Australia.
Modeling and Economic Operation of Energy Hub Considering Energy Market Price and Demand
Feb 2022
Publication
This paper discusses the economic operation strategy of the energy hub which is being established in South Korea. The energy hub has five energy conversion devices: a turbo expander generator a normal fuel cell a fuel cell with a hydrogen outlet a small-scale combined heat and power device and a photovoltaic device. We are developing the most economically beneficial operation strategy for the operators who own the hub without making any systematic improvements to the energy market. First sixteen conversion efficiency matrices can be achieved by turning each device (except the PV) on or off. Next even the same energy must be divided into different energy flows according to price. The energy flow is controlled to obtain the maximum profit considering the internal load of the energy hub and the price fluctuations of the energy market. Using our operating strategy the return on investment period is approximately 9.9 years which is three years shorter than that without the operating strategy.
Planning and Operational Aspects of Individual and Clustered Multi-Energy Microgrid Options
Feb 2022
Publication
With the restructuring of the power system household-level end users are becoming more prominent participants by integrating renewable energy sources and smart devices and becoming flexible prosumers. The use of microgrids is a way of aggregating local end users into a single entity and catering for the consumption needs of shareholders. Various microgrid architectures are the result of the local energy community following different decarbonisation strategies and are frequently not optimised in terms of size technology or other influential factors for energy systems. This paper discusses the operational and planning aspects of three different microgrid setups looking at them as individual market participants within a local electricity market. This kind of implementation enables mutual trade between microgrids without additional charges where they can provide flexibility and balance for one another. The developed models take into account multiple uncertainties arising from photovoltaic production day-ahead electricity prices and electricity load. A total number of nine case studies and sensitivity analyses are presented from daily operation to the annual planning perspective. The systematic study of different microgrid setups operational principles/goals and cooperation mechanisms provides a clear understanding of operational and planning benefits: the electrification strategy of decarbonising microgrids outperforms gas and hydrogen technologies by a significant margin. The value of coupling different types of multi-energy microgrids with the goal of joint market participation was not proven to be better on a yearly level compared to the operation of same technology-type microgrids. Additional analyses focus on introducing distribution and transmission fees to an MG cooperation model and allow us to come to the conclusion of there being a minor impact on the overall operation.
No more items...