Policy & Socio-Economics
The Effects of Perceived Barriers on Innovation Resistance of Hydrogen-Electric Motorcycles
Jun 2018
Publication
As environmental awareness among the public gradually improves it is predicted that the trend of green consumption will make green products enter the mainstream market. Hydrogen-electric motorcycles with eco-friendly and energy-efficient characteristics have great advantages for development. However as a type of innovative product hydrogen-electric motorcycles require further examination with regard to consumer acceptance and external variables of the products. In this study consumer behavioral intention (BI) for the use of hydrogen-electric motorcycles and its influencing factors are discussed using innovation resistance as the basis and environmental concern as the adjusting variable. Consumers’ willingness-to-pay (WTP) for hydrogen-electric motorcycles is estimated using the contingent valuation method (CVM). The results found that (1) perception barriers viz. usage barrier value barrier risk barrier tradition barrier and price barrier are statistically significant whereas image barrier is not; (2) a high degree of environmental concern will reduce the consumers’ innovation resistance to the hydrogen-electric motorcycles; (3) up to 94.79% of the respondents of the designed questionnaire suggested that the promotion of hydrogen-electric motorcycles requires a subsidy of 21.9% of the total price from the government. The mean WTP of consumers for the purchase of hydrogen-electric motorcycles is 10–15% higher than that of traditional motorcycles.
Strategic Policy Targets and the Contribution of Hydrogen in a 100% Renewable European Power System
Jul 2021
Publication
The goal of the European energy policy is to achieve climate neutrality. The long-term energy strategies of various European countries include additional targets such as the diversification of energy sources maintenance of security of supply and reduction of import dependency. When optimizing energy systems these strategic policy targets are often only considered in a rudimentary manner and thus the understanding of the corresponding interdependencies is lacking. Moreover hydrogen is considered as a key component of a fully decarbonized energy system but its role in the power sector remains unclear due to the low round-trip efficiencies. This study reveals how fully decarbonized European power systems can benefit from hydrogen in terms of overall system costs and the achievement of strategic policy targets. We analyzed a broad spectrum of scenarios using an energy system optimization model and varied model constraints that reflect strategic policy targets. Our results are threefold. First compared to power systems without hydrogen systems using hydrogen realize savings of 14–16% in terms of the total system costs. Second the implementation of a hydrogen infrastructure reduces the number of infeasible scenarios when structural policy targets are considered within the power system. Third the role of hydrogen is highly diverse at a national level. Particularly in countries with low renewable energy potential hydrogen plays a crucial role. Here high levels of self-sufficiency and security of supply are achieved by deploying hydrogen-based power generation of up to 46% of their annual electricity demand realized via imports of green hydrogen.
Techno-Economic Feasibility of a Solar-Wind-Fuel Cell Energy System in Duqm, Oman
Jul 2022
Publication
Duqm is located in the Al Wasta Governorate in Oman and is currently fed by 10 diesel generators with a total capacity of around 76 MW and other rental power sources with a size of 18 MW. To make the electric power supply come completely from renewables one novel solution is to replace the diesel with hydrogen. The extra energy coming from the PV-wind system can be utilized to produce green hydrogen that will be utilized by the fuel cell. Measured data of solar insolation hourly wind speeds and hourly load consumption are used in the proposed system. Finding an ideal configuration that can match the load demand and be suitable from an economic and environmental point of view was the main objective of this research. The Hybrid Optimization Model for Multiple Energy Resources (HOMER Pro) microgrid software was used to evaluate the technical and financial performance. The findings demonstrated that the suggested hybrid system (PV-wind-fuel cell) will remove CO2 emissions at a cost of energy (COE) of USD 0.436/kWh and will reduce noise. With a total CO2 emission of 205676830 kg/year the levelized cost of energy for the current system is USD 0.196/kWh. The levelized cost for the diesel system will rise to USD 0.243/kWh when taking 100 US dollars per ton of CO2 into account. Due to system advantages the results showed that using solar wind and fuel cells is the most practical and cost-effective technique. The results of this research illustrated the feasibility and effectiveness of utilizing wind and solar resources for both hydrogen and energy production and also suggested that hydrogen is a more cost-effective long-term energy storage option than batteries.
Renewable Hydrogen Supply Chains: A Planning Matrix and an Agenda for Future Research
Oct 2022
Publication
Worldwide energy systems are experiencing a transition to more sustainable systems. According to the Hydrogen Roadmap Europe (FCH EU 2019) hydrogen will play an important role in future energy systems due to its ability to support sustainability goals and will account for approximately 13% of the total energy mix in the coming future. Correct hydrogen supply chain (HSC) planning is therefore vital to enable a sustainable transition. However due to the operational characteristics of the HSC its planning is complicated. Renewable hydrogen supply can be diverse: Hydrogen can be produced de-centrally with renewables such as wind and solar energy or centrally by using electricity generated from a hydro power plant with a large volume. Similarly demand for hydrogen can also be diverse with many new applications such as fuels for fuel cell electrical vehicles and electricity generation feedstocks in industrial processes and heating for buildings. The HSC consists of various stages (production storage distribution and applications) in different forms with strong interdependencies which further increase HSC complexity. Finally planning of an HSC depends on the status of hydrogen adoption and market development and on how mature technologies are and both factors are characterised by high uncertainties. Directly adapting the traditional approaches of supply chain planning for HSCs is insufficient. Therefore in this study we develop a planning matrix with related planning tasks leveraging a systematic literature review to cope with the characteristics of HSCs. We focus only on renewable hydrogen due to its relevance to the future low-carbon economy. Furthermore we outline an agenda for future research from the supply chain management perspective in order to support HSC development considering the different phases of HSCs adoption and market development.
Challenges Toward Achieving a Successful Hydrogen Economy in the US: Potential End-use and Infrastructure Analysis to the Year 2100
Jul 2022
Publication
Fossil fuels continue to exacerbate climate change due to large carbon emissions resulting from their use across a number of sectors. An energy transition away from fossil fuels seems inevitable and energy sources such as renewables and hydrogen may provide a low carbon alternative for the future energy system particularly in large emitting nations such as the United States. This research quantifies and maps potential hydrogen fuel distribution pathways for the continental US reflecting technological changes barriers to deployment and end-use-cases from 2020 to 2100 clarifying the potential role of hydrogen in the US energy transition. The methodology consists of two parts a linear optimization of the global energy system constrained by carbon reduction targets and system cost followed by a projection of hydrogen infrastructure development. Key findings include the emergence of trade pattern diversification with a greater variety of end-uses associated with imported fuels and greater annual hydrogen consumption over time. Further sensitivity analysis identified the influence of complementary technologies including nuclear power and carbon capture and storage technologies. We conclude that hydrogen penetration into the US energy system is economically viable and can contribute toward achieving Paris Agreement and more aggressive carbon reduction targets in the future.
Chile and its Potential Role Among the Most Affordable Green Hydrogen Producers in the World
Jul 2022
Publication
As result of the adverse effects caused by climate change the nations have decided to accelerate the transition of the energy matrix through the use of non-conventional sources free of polluting emissions. One of these alternatives is green hydrogen. In this context Chile stands out for the exceptional climate that makes it a country with a lot of renewable resources. Such availability of resources gives the nation clear advantages for hydrogen production strong gusts of wind throughout the country the most increased solar radiation in the world lower cost of production of electrical supplies among others. Due to this the nation would be between the lowest estimated cost for hydrogen production i.e. 1.5 USD/kg H2 approximately scenario that would place it as one of the cheapest green hydrogen producer in the world.
An Eco-technoeconomic Analysis of Hydrogen Production using Solid Oxide Electrolysis Cells that Accounts for Long-term Degradation
Sep 2022
Publication
This paper presents an eco-technoeconomic analysis (eTEA) of hydrogen production via solid oxide electrolysis cells (SOECs) aimed at identifying the economically optimal size and operating trajectories for these cells. Notably degradation effects were accounted by employing a data-driven degradationbased model previously developed by our group for the analysis of SOECs. This model enabled the identification of the optimal trajectories under which SOECs can be economically operated over extended periods of time with reduced degradation rate. The findings indicated that the levelized cost of hydrogen (LCOH) produced by SOECs (ranging from 2.78 to 11.67 $/kg H2) is higher compared to gray hydrogen generated via steam methane reforming (SMR) (varying from 1.03 to 2.16 $ per kg H2) which is currently the dominant commercial process for large-scale hydrogen production. Additionally SOECs generally had lower life cycle CO2 emissions per kilogram of produced hydrogen (from 1.62 to 3.6 kg CO2 per kg H2) compared to SMR (10.72–15.86 kg CO2 per kg H2). However SOEC life cycle CO2 emissions are highly dependent on the CO2 emissions produced by its power source as SOECs powered by high-CO2-emission sources can produce as much as 32.22 kg CO2 per kg H2. Finally the findings of a sensitivity analysis indicated that the price of electricity has a greater influence on the LCOH than the capital cost.
Future Pathways for Energy Networks: A Review of International Experiences in High Income Countries
Oct 2022
Publication
Energy networks are the systems of pipes and wires by which different energy vectors are transported from where they are produced to where they are needed. As such these networks are central to facilitating countries’ moves away from a reliance on fossil fuels to a system based around the efficient use of renewable and other low carbon forms of energy. In this review we highlight the challenges facing energy networks from this transition in a sample of key high income countries. We identify the technical and other innovations being implemented to meet these challenges and describe some of the new policy and regulatory developments that are incentivising the required changes. We then review evidence from the literature about the benefits of moving to a more integrated approach based on the concept of a Multi-Vector Energy Network (MVEN). Under this approach the different networks are planned and operated together to achieve greater functionality and performance than simply the sum of the individual networks. We find that most studies identify a range of benefits from an MVEN approach but that these findings are based on model simulations. Further work is therefore needed to verify whether the benefits can be realised in practice and to identify how any risks can be mitigated.
Determining the Production and Transport Cost for H2 on a Global Scale
May 2022
Publication
Hydrogen (H2) produced using renewable energy could be used to reduce greenhouse gas (GHG) emissions in industrial sectors such as steel chemicals transportation and energy storage. Knowing the delivered cost of renewable H2 is essential to decisionmakers looking to utilize it. The cheapest location to source it from as well as the transport method and medium are also crucial information. This study presents a Monte Carlo simulation to determine the delivered cost for renewable H2 for any usage location globally as well as the most cost-effective production location and transport route from nearly 6000 global locations. Several industrially dense locations are selected for case studies the primary two being Cologne Germany and Houston United States. The minimum delivered H2 cost to Cologne is 9.4 €/kg for small scale (no pipelines considered) shipped from northern Egypt as a liquid organic hydrogen carrier (LOHC) and 7.6 €/kg piped directly as H2 gas from southern France for large scale (pipelines considered). For smallscale H2 in Houston the minimum delivered cost is 8.6 €/kg trucked as H2 gas from the western Gulf of Mexico and 7.6 €/kg for large-scale demand piped as H2 gas from southern California. The south-west United States and Mexico northern Chile the Middle East and north Africa south-west Africa and north-west Australia are identified as the regions with the lowest renewable H2 cost potential with production costs ranging from 6.7—7.8 €/kg in these regions. Each is able to supply differing industrially dominant areas. Furthermore the effect of parameters such as year of construction electrolyser and H2 demand is analysed. For the case studies in Houston and Cologne the delivered H2 cost is expected to reduce to about 7.8 €/kg by 2050 in Cologne (no pipelines considered PEM electrolyser) and 6.8 €/kg in Houston.
A Hybrid Perspective on Energy Transition Pathways: Is Hydrogen the Key for Norway?
Jun 2021
Publication
Hydrogen may play a significant part in sustainable energy transition. This paper discusses the sociotechnical interactions that are driving and hindering development of hydrogen value chains in Norway. The study is based on a combination of qualitative and quantitative methods. A multi-level perspective (MLP) is deployed to discuss how exogenous trends and uncertainties interact with processes and strategies in the national energy system and how this influences the transition potential associated with Norwegian hydrogen production. We explore different transition pathways towards a low-emission society in 2050 and find that Norwegian hydrogen production and its deployment for decarbonization of maritime and heavy-duty transport decarbonisation of industry and flexibility services may play a crucial role. Currently the development is at a branching point where national coordination is crucial to unlock the potential. The hybrid approach provides new knowledge on underlying system dynamics and contributes to the discourse on pathways in transition studies.
Risk of the Hydrogen Economy for Atmospheric Methane
Dec 2022
Publication
Hydrogen (H2) is expected to play a crucial role in reducing greenhouse gas emissions. However hydrogen losses to the atmosphere impact atmospheric chemistry including positive feedback on methane (CH4) the second most important greenhouse gas. Here we investigate through a minimalist model the response of atmospheric methane to fossil fuel displacement by hydrogen. We find that CH4 concentration may increase or decrease depending on the amount of hydrogen lost to the atmosphere and the methane emissions associated with hydrogen production. Green H2 can mitigate atmospheric methane if hydrogen losses throughout the value chain are below 9 ± 3%. Blue H2 can reduce methane emissions only if methane losses are below 1%. We address and discuss the main uncertainties in our results and the implications for the decarbonization of the energy sector.
Industrial Status, Technological Progress, Challenges, and Prospects of Hydrogen Energy
Apr 2022
Publication
Under the requirements of China's strategic goal of "carbon peaking and carbon neutrality" as a renewable clean and efficient secondary energy source hydrogen benefits from abundant resources a wide variety of sources a high combustion calorific value clean and non-polluting various forms of utilization energy storage mediums and good security etc. It will become a realistic way to help energy transportation petrochemical and other fields to achieve deep decarbonization and will turn into an important replacement energy source for China to build a modern clean energy system. It is clear that accelerating the development of hydrogen energy has become a global consensus. In order to provide a theoretical support for the accelerated transformation of hydrogen-related industries and energy companies and provide a basis and reference for the construction of "Hydrogen Energy China" this paper describes main key technological progresses in the hydrogen industry chain such as hydrogen production storage transportation and application. The status and development trends of hydrogen industrialization are analyzed and then the challenges faced by the development of the hydrogen industry are discussed. At last the development and future of the hydrogen industry are prospected. The following conclusions are achieved. (1) Hydrogen technologies of our country will become mature and enter the road of industrialization. The whole industry chain system of the hydrogen industry is gradually being formed and will realize the leap-forward development from gray hydrogen blue hydrogen to green hydrogen. (2) The overall development of the entire hydrogen industry chain such as hydrogen production storage and transportation fuel cells hydrogen refueling stations and other scenarios should be accelerated. Besides in-depth integration and coordination with the oil and gas industry needs more attention which will rapidly promote the high-quality development of the hydrogen industry system. (3) The promotion and implementation of major projects such as "north-east hydrogen transmission" "west-east hydrogen transmission" "sea hydrogen landing" and utilization of infrastructures such as gas filling stations can give full play to the innate advantages of oil and gas companies in industrial chain nodes such as hydrogen production and refueling etc. which can help to achieve the application of "oil gas hydrogen and electricity" four-station joint construction form a nationwide hydrogen resource guarantee system and accelerate the planning and promotion of the "Hydrogen Energy China" strategy.
Greenhouse Gas Emission Dynamics of Saudi Arabia: Potential of Hydrogen Fuel for Emission Footprint Reduction
Mar 2023
Publication
The growth of population gross domestic product (GDP) and urbanization have led to an increase in greenhouse gas (GHG) emissions in the Kingdom of Saudi Arabia (KSA). The leading GHG-emitting sectors are electricity generation road transportation cement chemicals refinery iron and steel. However the KSA is working to lead the global energy sustainability campaign to reach net zero GHG emissions by 2060. In addition the country is working to establish a framework for the circular carbon economy (CCE) in which hydrogen acts as a transversal facilitator. To cut down on greenhouse gas emissions the Kingdom is also building several facilities such as the NEOM green hydrogen project. The main objective of the article is to critically review the current GHG emission dynamics of the KSA including major GHG emission driving forces and prominent emission sectors. Then the role of hydrogen in GHG emission reduction will be explored. Finally the researchers and decision makers will find the helpful discussions and recommendations in deciding on appropriate mitigation measures and technologies.
Multi-model Assessment of Heat Decarbonisation Options in the UK Using Electricity and Hydrogen
May 2022
Publication
Delivering low-carbon heat will require the substitution of natural gas with low-carbon alternatives such as electricity and hydrogen. The objective of this paper is to develop a method to soft-link two advanced investment-optimising energy system models RTN (Resource-Technology Network) and WeSIM (Whole-electricity System Investment Model) in order to assess cost-efficient heat decarbonisation pathways for the UK while utilising the respective strengths of the two models. The linking procedure included passing on hourly electricity prices from WeSIM as input to RTN and returning capacities and locations of hydrogen generation and shares of electricity and hydrogen in heat supply from RTN to WeSIM. The outputs demonstrate that soft-linking can improve the quality of the solution while providing useful insights into the cost-efficient pathways for zero-carbon heating. Quantitative results point to the cost-effectiveness of using a mix of electricity and hydrogen technologies for delivering zero-carbon heat also demonstrating a high level of interaction between electricity and hydrogen infrastructure in a zero-carbon system. Hydrogen from gas reforming with carbon capture and storage can play a significant role in the medium term while remaining a cost-efficient option for supplying peak heat demand in the longer term with the bulk of heat demand being supplied by electric heat pumps.
Methanol as a Renewable Energy Carrier: An Assessment of Production and Transportation Costs for Selected Global Locations
Jun 2021
Publication
The importing of renewable energy will be one part of the process of defossilizing the energy systems of countries and regions which are currently heavily dependent on the import of fossil-based energy carriers. This study investigates the possibility of importing renewable methanol comprised of hydrogen and carbon dioxide. Based on a methanol synthesis simulation model the net production costs of methanol are derived as a function of hydrogen and carbon dioxide expenses. These findings enable a comparison of the import costs of methanol and hydrogen. For this the hydrogen production and distribution costs for 2030 as reported in a recent study for four different origin/destination country combinations are considered. With the predicted hydrogen production costs of 1.35–2 €/kg and additional shipping costs methanol can be imported for 370–600 €/t if renewable or process-related carbon dioxide is available at costs of 100 €/t or below in the hydrogen-producing country. Compared to the current fossil market price of approximately 400 €/t renewable methanol could therefore become cost-competitive. Within the range of carbon dioxide prices of 30–100 €/t both hydrogen and methanol exhibit comparable energy-specific import costs of 18–30 €/GJ. Hence the additional costs for upgrading hydrogen to methanol are balanced out by the lower shipping costs of methanol compared to hydrogen. Lastly a comparison for producing methanol in the hydrogen’s origin or destination country indicates that carbon dioxide in the destination country must be 181–228 €/t less expensive than that in the origin country to balance out the more expensive shipping costs for hydrogen.
A Simulated Roadmap of Hydrogen Technology Contribution to Climate Change Mitigation Based on Representative Concentration Pathways Considerations
Apr 2018
Publication
Hydrogen as fuel has been a promising technology toward climate change mitigation efforts. To this end in this paper we analyze the contribution of hydrogen technology to our future environmental goals. It is assumed that hydrogen is being produced in higher efficiency across time and this is simulated on Global Change Assessment Model (GCAM). The environmental restrictions applied are the expected emissions representative concentration pathways (RCP) 2.6 4.5 and 6.0. Our results have shown increasing hydrogen production as the environmental constraints become stricter and hydrogen more efficient in being produced. This increase has been quantified and provided on open access as Supporting Information to this manuscript.
The Viability of Implementing Hydrogen in the Commonwealth of Massachusetts
Sep 2022
Publication
In recent years there has been an increased interest in hydrogen energy due to a desire to reduce greenhouse gas emissions by utilizing hydrogen for numerous applications. Some countries (e.g. Japan Iceland and parts of Europe) have made great strides in the advancement of hydrogen generation and utilization. However in the United States there remains significant reservation and public uncertainty on the use and integration of hydrogen into the energy ecosystem. Massachusetts similar to many other states and small countries faces technical infrastructure policy safety and acceptance challenges with regards to hydrogen production and utilization. A hydrogen economy has the potential to provide economic benefits a reduction in greenhouse gas emissions and sector coupling to provide a resilient energy grid. In this paper the issues associated with integrating hydrogen into Massachusetts and other similar states or regions are studied to determine which hydrogen applications have the most potential understand the technical and integration challenges and identify how a hydrogen energy economy may be beneficial. Additionally hydrogen’s safety concerns and possible contribution to greenhouse gas emissions are also reviewed. Ultimately a set of eight recommendations is made to guide the Commonwealth’s consideration of hydrogen as a key component of its policies on carbon emissions and energy.
Risk Perception of an Emergent Technology: The Case of Hydrogen Energy
Jan 2006
Publication
Although hydrogen has been used in industry for many years as a chemical commodity its use as a fuel or energy carrier is relatively new and expert knowledge about its associated risks is neither complete nor consensual. Public awareness of hydrogen energy and attitudes towards a future hydrogen economy are yet to be systematically investigated. This paper opens by discussing alternative conceptualisations of risk then focuses on issues surrounding the use of emerging technologies based on hydrogen energy. It summarises expert assessments of risks associated with hydrogen. It goes on to review debates about public perceptions of risk and in doing so makes comparisons with public perceptions of other emergent technologies—Carbon Capture and Storage (CCS) Genetically Modified Organisms and Food (GM) and Nanotechnology (NT)—for which there is considerable scientific uncertainty and relatively little public awareness. The paper finally examines arguments about public engagement and "upstream" consultation in the development of new technologies. It is argued that scientific and technological uncertainties are perceived in varying ways and different stakeholders and different publics focus on different aspects or types of risk. Attempting to move public consultation further "upstream" may not avoid this because the framing of risks and benefits is necessarily embedded in a cultural and ideological context and is subject to change as experience of the emergent technology unfolds.
Economically Viable Large-scale Hydrogen Liquefaction
Mar 2016
Publication
The liquid hydrogen demand particularly driven by clean energy applications will rise in the near future. As industrial large scale liquefiers will play a major role within the hydrogen supply chain production capacity will have to increase by a multiple of today’s typical sizes. The main goal is to reduce the total cost of ownership for these plants by increasing energy efficiency with innovative and simple process designs optimized in capital expenditure. New concepts must ensure a manageable plant complexity and flexible operability. In the phase of process development and selection a dimensioning of key equipment for large scale liquefiers such as turbines and compressors as well as heat exchangers must be performed iteratively to ensure technological feasibility and maturity. Further critical aspects related to hydrogen liquefaction e.g. fluid properties ortho-para hydrogen conversion and coldbox configuration must be analysed in detail. This paper provides an overview on the approach challenges and preliminary results in the development of efficient as well as economically viable concepts for large-scale hydrogen liquefaction.
Opportunities and Limitations of Hydrogen Energy in Poland against the Background of the European Union Energy Policy
Jul 2022
Publication
One of the strategic goals of developed countries is to significantly increase the share of renewable energy sources in electricity generation. However the process may be hindered by e.g. the storage and transport of energy from renewable sources. The European Union countries see the development of the hydrogen economy as an opportunity to overcome this barrier. Therefore since 2020 the European Union has been implementing a hydrogen strategy that will increase the share of hydrogen in the European energy mix from the current 2 percent to up to 13–14 percent by 2050. In 2021 following the example of other European countries the Polish government adopted the Polish Hydrogen Strategy until 2030 with an outlook until 2040 (PHS). However the implementation of the strategy requires significant capital expenditure and infrastructure modernisation which gives rise to question as to whether Poland is likely to achieve the goals set out in the Polish Hydrogen Strategy and European Green Deal. The subject of the research is an analysis of the sources of financing for the PHS against the background of solutions implemented by the EU countries and a SWOT/TOWS analysis on the hydrogen economy in Poland. The overall result of the SWOT/TOWS analysis shows the advantage of strengths and related opportunities. This allows for a positive assessment of the prospects for the hydrogen economy in Poland. Poland should continue its efforts to take advantage of the external factors (O/S) such as EU support an increased price competitiveness of hydrogen and the emergence of a competitive cross-border hydrogen market in Europe. At the same time the Polish authorities should not forget about the weaknesses and threats that may inhibit the development of the domestic hydrogen market. It is necessary to modernise the infrastructure; increase the share of renewable energy sources in hydrogen production; increase R&D expenditure and in particular to complete the negotiations related to the adoption of the Fit for 55 package.
No more items...