Policy & Socio-Economics
The Future of Hydrogen
Jun 2019
Publication
At the request of the government of Japan under its G20 presidency the International Energy Agency produced this landmark report to analyse the current state of play for hydrogen and to offer guidance on its future development.
The report finds that clean hydrogen is currently enjoying unprecedented political and business momentum with the number of policies and projects around the world expanding rapidly. It concludes that now is the time to scale up technologies and bring down costs to allow hydrogen to become widely used. The pragmatic and actionable recommendations to governments and industry that are provided will make it possible to take full advantage of this increasing momentum.
Hydrogen and energy have a long shared history – powering the first internal combustion engines over 200 years ago to becoming an integral part of the modern refining industry. It is light storable energy-dense and produces no direct emissions of pollutants or greenhouse gases. But for hydrogen to make a significant contribution to clean energy transitions it needs to be adopted in sectors where it is almost completely absent such as transport buildings and power generation.
The Future of Hydrogen provides an extensive and independent survey of hydrogen that lays out where things stand now; the ways in which hydrogen can help to achieve a clean secure and affordable energy future; and how we can go about realising its potential.
Link to Document on IEA Website
The report finds that clean hydrogen is currently enjoying unprecedented political and business momentum with the number of policies and projects around the world expanding rapidly. It concludes that now is the time to scale up technologies and bring down costs to allow hydrogen to become widely used. The pragmatic and actionable recommendations to governments and industry that are provided will make it possible to take full advantage of this increasing momentum.
Hydrogen and energy have a long shared history – powering the first internal combustion engines over 200 years ago to becoming an integral part of the modern refining industry. It is light storable energy-dense and produces no direct emissions of pollutants or greenhouse gases. But for hydrogen to make a significant contribution to clean energy transitions it needs to be adopted in sectors where it is almost completely absent such as transport buildings and power generation.
The Future of Hydrogen provides an extensive and independent survey of hydrogen that lays out where things stand now; the ways in which hydrogen can help to achieve a clean secure and affordable energy future; and how we can go about realising its potential.
Link to Document on IEA Website
UK Business Opportunities of Moving to a Low-carbon Economy
Mar 2017
Publication
The following report accompanies the Committee on Climate Change’s 2017 report on energy prices and bills. It was written by Ricardo Energy and Environment.
The report provides an analysis of the opportunities to UK businesses to supply global markets with low carbon materials and goods and services. The report considers: the position of the current UK low carbon economy the size of the market opportunity for UK businesses in 2030 and 2050 the barriers to UK business capturing a larger share of the global market the opportunity to increase the UK’s share of future global markets
Link to Document
The report provides an analysis of the opportunities to UK businesses to supply global markets with low carbon materials and goods and services. The report considers: the position of the current UK low carbon economy the size of the market opportunity for UK businesses in 2030 and 2050 the barriers to UK business capturing a larger share of the global market the opportunity to increase the UK’s share of future global markets
Link to Document
Sectoral Scenarios for the Fifth Carbon Budget
Nov 2015
Publication
This report forms part of the Committee’s advice on the level of the fifth carbon budget.<br/>The report describes the scenarios used by the Committee to inform its judgements over the cost-effective path to meeting the UK’s greenhouse reduction targets in the period 2028-2032.
Scenarios for Deployment of Hydrogen in Meeting Carbon Budgets (E4tech)
Nov 2015
Publication
This research considers the potential role of hydrogen in meeting the UK’s carbon budgets. It was written by consultancy E4tech.<br/>The CCC develops scenarios for the UK’s future energy system to assess routes to decarbonisation and to advise UK Government on policy options. Uncertainty to 2050 is considerable and so different scenarios are needed to assess different trajectories targets and technology combinations. Some of these scenarios assess specific technologies or fuels which have the potential to make a significant contribution to future decarbonisation.<br/>Hydrogen is one such fuel. It has been included in limited quantities in some CCC scenarios but not extensively examined in part due to perceived or anticipated higher costs than some other options. But as hydrogen technology is developed and deployed the cost projections and other performance indicators have become more favourable.
Getting Net Zero Done- The Crucial Role of Decarbonised Gas and How to Support It
May 2020
Publication
The term ‘decarbonised gas’ refers to biogases hydrogen and carbon capture utilisation and storage (CCUS). This strategy paper sets out how decarbonised gas can help to get net zero done by tackling the hard-to-decarbonise sectors – industry heavy transport and domestic heating – which together account for around 40% of UK greenhouse gas emissions. It also illustrates the crucial importance of supportive public opinion and sets out in detail how decarbonised gas can help to ensure that net zero is achieved with public support. The report is based on extensive quantitative and qualitative opinion research on climate change in general net zero emissions in the UK and the specific decarbonised gas solutions in homes transport and industry. The full quantitative data is contained in the Supplements tab.<br/><a href="https://www.dgalliance.org/wp-content/uploads/2020/05/DGA-Getting-Net-Zero-Done-final-May-2020.pdf"/><a href="https://www.dgalliance.org/wp-content/uploads/2020/05/DGA-Getting-Net-Zero-Done-final-May-2020.pdf"/>
Gas Future Scenarios Project- Final Report: A Report on a Study for the Energy Networks Association Gas Futures Group
Nov 2010
Publication
When looking out to 2050 there is huge uncertainty surrounding how gas will be consumed transported and sourced in Great Britain (GB). The extent of the climate change challenge is now widely accepted and the UK Government has introduced a legislative requirement for aggressive reductions in carbon dioxide (CO2) emissions out to 2050. In addition at European Union (EU) level a package of measures has been implemented to reduce greenhouse gas emissions improve energy efficiency and significantly increase the share of energy produced from renewable sources by 2020. These policy developments naturally raise the question of what role gas has to play in the future energy mix.
To help inform this debate the Energy Networks Association Gas Futures Group (ENA GFG) commissioned Redpoint and Trilemma to undertake a long-range scenario-based modelling study of the future utilisation of gas out to 2050 and the consequential impacts of this for gas networks. Our modelling assumptions draw heavily on the Department of Energy and Climate Change (DECC) 2050 Pathways analysis and we consider that our conclusions are fully compatible with both DECC‟s work and current EU policy objectives.
Link to document
To help inform this debate the Energy Networks Association Gas Futures Group (ENA GFG) commissioned Redpoint and Trilemma to undertake a long-range scenario-based modelling study of the future utilisation of gas out to 2050 and the consequential impacts of this for gas networks. Our modelling assumptions draw heavily on the Department of Energy and Climate Change (DECC) 2050 Pathways analysis and we consider that our conclusions are fully compatible with both DECC‟s work and current EU policy objectives.
Link to document
Gas Goes Green: Delivering the Pathway to Net Zero
May 2020
Publication
Gas Goes Green brings together the engineering expertise from the UK’s five gas network operators building on the foundations of our existing grid infrastructure innovation projects and the wider scientific community. This is a blueprint to meet the challenges and opportunities of climate change delivering net zero in the most cost effective and least disruptive way possible.<br/>Delivering our vision is not just an engineering challenge but will involve active participation from policy makers regulators the energy industry and consumers. Gas Goes Green will undertake extensive engagement to deliver our programme and collaborate with existing projects already being delivered across the country.<br/>Britain’s extensive gas network infrastructure provides businesses and the public with the energy they need at the times when they need it the most. The gas we deliver plays a critical role in our everyday lives generating electricity fuelling vehicles heating our homes and providing the significant amounts of energy UK heavy industry needs. The Gas Goes Green programme aims to ensure that consumers continue to realise these benefits by transitioning our infrastructure into a net zero energy system.
Pathways to Net-Zero: Decarbonising the Gas Networks in Great Britain
Oct 2019
Publication
Natural gas plays a central role in the UK energy system today but it is also a significant source of greenhouse gas (GHG) emissions. The UK committed in 2008 to reduce GHG emissions by at least 80% compared to 1990 levels by 2050. In June 2019 a more ambitious target was adopted into law and the UK became the first major economy to commit to “net-zero” emissions by 2050. In this context the Energy Networks Association (ENA) commissioned Navigant to explore the role that the gas sector can play in the decarbonisation of the Great Britain (GB) energy system. In this report we demonstrate that low carbon and renewable gases can make a fundamental contribution to the decarbonisation pathway between now and 2050.
2050 Energy Scenarios: The UK Gas Networks Role in a 2050 Whole Energy System
Jul 2016
Publication
Energy used for heat accounts (in terms of final consumption) for approximately 45% of our total energy needs and is critical for families to heat their homes on winter days. Decarbonising heat while still meeting peak winter heating demands is recognised as a big perhaps the biggest challenge for the industry. The way heat has been delivered in the UK has not fundamentally changed for decades and huge investments have been made in gas infrastructure assets ranging from import terminals to networks through to the appliances in our homes. Changing how heat is delivered whichever way is chosen will be a major economic and practical challenge affecting families and businesses everywhere. Any plan to decarbonise will need to address power and transport alongside heat. Our report has also looked at potential decarbonisation of power and transport as part of a whole energy system approach.
In this report we explore ways that the heat sector can be decarbonised by looking at four possible future scenarios set in 2050. These stylised scenarios present illustrative snapshots of alternative energy solutions. The scenarios do not present a detailed roadmap – indeed the future may include some elements from each. We have analysed the advantages disadvantages and costs of each scenario. All our scenarios meet the 2050 Carbon emissions targets. In this report we have concentrated on reductions to CO2 emissions and we have not considered other greenhouse gases.
In this report we explore ways that the heat sector can be decarbonised by looking at four possible future scenarios set in 2050. These stylised scenarios present illustrative snapshots of alternative energy solutions. The scenarios do not present a detailed roadmap – indeed the future may include some elements from each. We have analysed the advantages disadvantages and costs of each scenario. All our scenarios meet the 2050 Carbon emissions targets. In this report we have concentrated on reductions to CO2 emissions and we have not considered other greenhouse gases.
How Hydrogen Empowers the Energy Transition
Jan 2017
Publication
This report commissioned by the Hydrogen Council and announced in conjunction with the launch of the initiative at the World Economic Forum in January 2017 details the future potential that hydrogen is ready to provide and sets out the vision of the Council and the key actions it considers fundamental for policy makers to implement to fully unlock and empower the contribution of hydrogen to the energy transition.
In this paper we explore the role of hydrogen in the energy transition including its potential recent achievements and challenges to its deployment. We also offer recommendations to ensure that the proper conditions are developed to accelerate the deployment of hydrogen technologies with the support of policymakers the private sector and society.
You can download the full report from the Hydrogen Council website here
In this paper we explore the role of hydrogen in the energy transition including its potential recent achievements and challenges to its deployment. We also offer recommendations to ensure that the proper conditions are developed to accelerate the deployment of hydrogen technologies with the support of policymakers the private sector and society.
You can download the full report from the Hydrogen Council website here
Opportunity and Cost of Green Hydrogen in Kuwait: A Preliminary Assessment
Apr 2021
Publication
On April 7 2021 OIES with and the Kuwait Foundation for the Advancement of Sciences (KFAS) held the annual OIES-KFAS Workshop on Energy Transition Post-Pandemic in the Gulf. During the hydrogen session a paper titled “Opportunity and Cost of Green Hydrogen in Kuwait: A Preliminary Assessment” co-authored by Dr. Manal Shehabi was presented.
Like others states in the GCC Kuwait is seeking to explore hydrogen as part of its energy transition projects. The presentation highlights key technological opportunities for green hydrogen in Kuwait followed by a techno-economic assessments of producing it. Results of utilized hydrogen production model show that for production in 2032 average levelized cost of hydrogen (LCOH) is $3.23/kg using PEM technology & $4.41/kg using SOEC technology. Results indicate that green hydrogen in Kuwait is more competitive than in other regions but currently not competitive (>$1.5/kg) with oil coal and gas in absence of carbon taxes.
The research paper can be found on their website
Like others states in the GCC Kuwait is seeking to explore hydrogen as part of its energy transition projects. The presentation highlights key technological opportunities for green hydrogen in Kuwait followed by a techno-economic assessments of producing it. Results of utilized hydrogen production model show that for production in 2032 average levelized cost of hydrogen (LCOH) is $3.23/kg using PEM technology & $4.41/kg using SOEC technology. Results indicate that green hydrogen in Kuwait is more competitive than in other regions but currently not competitive (>$1.5/kg) with oil coal and gas in absence of carbon taxes.
The research paper can be found on their website
Economic Impact Assessment: Hydrogen is Ready to Power the UK’s Green Recovery
Aug 2020
Publication
Hydrogen solutions have a critical role to play in the UK not only in helping the nation meet its net-zero target but in creating the economic growth and jobs that will kickstart the green recovery.
The Government must act now to ensure that the UK capitalises on the opportunity presented by hydrogen and builds a world-leading industry.
COVID-19 has caused significant economic upheaval across the country with unemployment expected to reach up to 14.8 per cent by the end of 20201. The UK must identify those areas of the economy which have significant economic growth potential and can deliver long-term and sustainable increases in GVA and jobs. It will be important to consider regional factors and ensure that investment is targeted in those areas that have been hardest hit by the crisis.
Many major economies have identified hydrogen as a key part of both decarbonisation and economic recovery. As part of its stimulus package Germany announced a €9billion investment in green hydrogen solutions aiming to deploy 5GW by 2030. The Hydrogen Council estimates a future hydrogen and equipment market worth $2.5 trillion globally by 2050 supporting 30 million new jobs.
Hydrogen offers the UK a pathway to deep cost-effective decarbonisation while delivering economic growth and job creation. It should therefore be at the heart of the Government’s green recovery programme ensuring that the UK builds back better and greener.
The Government must act now to ensure that the UK capitalises on the opportunity presented by hydrogen and builds a world-leading industry.
COVID-19 has caused significant economic upheaval across the country with unemployment expected to reach up to 14.8 per cent by the end of 20201. The UK must identify those areas of the economy which have significant economic growth potential and can deliver long-term and sustainable increases in GVA and jobs. It will be important to consider regional factors and ensure that investment is targeted in those areas that have been hardest hit by the crisis.
Many major economies have identified hydrogen as a key part of both decarbonisation and economic recovery. As part of its stimulus package Germany announced a €9billion investment in green hydrogen solutions aiming to deploy 5GW by 2030. The Hydrogen Council estimates a future hydrogen and equipment market worth $2.5 trillion globally by 2050 supporting 30 million new jobs.
Hydrogen offers the UK a pathway to deep cost-effective decarbonisation while delivering economic growth and job creation. It should therefore be at the heart of the Government’s green recovery programme ensuring that the UK builds back better and greener.
You can download the whole document from the Hydrogen Taskforce website at the following links
- Economic Impact Assessment Summary
- Economic impact Assessment Methodology
- Economic impact Assessment of the Hydrogen Value Chain of the UK infographic
- Imperial College Consultants Review of the EIA.
Exploring Future Promising Technologies in Hydrogen Fuel Cell Transportation
Jan 2022
Publication
The purpose of this research was to derive promising technologies for the transport of hydrogen fuel cells thereby supporting the development of research and development policy and presenting directions for investment. We also provide researchers with information about technology that will lead the technology field in the future. Hydrogen energy as the core of carbon neutral and green energy is a major issue in changing the future industrial structure and national competitive advantage. In this study we derived promising technology at the core of future hydrogen fuel cell transportation using the published US patent and paper databases (DB). We first performed text mining and data preprocessing and then discovered promising technologies through generative topographic mapping analysis. We analyzed both the patent DB and treatise DB in parallel and compared the results. As a result two promising technologies were derived from the patent DB analysis and five were derived from the paper DB analysis.
Energy Innovation Needs Assessment: Hydrogen & Fuel Cells
Nov 2019
Publication
The Energy Innovation Needs Assessment (EINA) aims to identify the key innovation needs across the UK’s energy system to inform the prioritisation of public sector investment in low-carbon innovation. Using an analytical methodology developed by the Department for Business Energy & Industrial Strategy (BEIS) the EINA takes a system level approach and values innovations in a technology in terms of the system-level benefits a technology innovation provides. This whole system modelling in line with BEIS’s EINA methodology was delivered by the Energy Systems Catapult (ESC) using the Energy System Modelling Environment (ESMETM) as the primary modelling tool.
To support the overall prioritisation of innovation activity the EINA process analyses key technologies in more detail. These technologies are grouped together into sub-themes according to the primary role they fulfil in the energy system. For key technologies within a sub-theme innovations and business opportunities are identified. The main findings at the technology level are summarised in sub-theme reports. An overview report will combine the findings from each sub-theme to provide a broad system-level perspective and prioritisation.
This EINA analysis is based on a combination of desk research by a consortium of economic and engineering consultants and stakeholder engagement. The prioritisation of innovation and business opportunities presented is informed by a workshop organised for each sub-theme assembling key stakeholders from the academic community industry and government.
This report was commissioned prior to advice being received from the CCC on meeting a net zero target and reflects priorities to meet the previous 80% target in 2050. The newly legislated net zero target is not expected to change the set of innovation priorities rather it will make them all more valuable overall. Further work is required to assess detailed implications.
To support the overall prioritisation of innovation activity the EINA process analyses key technologies in more detail. These technologies are grouped together into sub-themes according to the primary role they fulfil in the energy system. For key technologies within a sub-theme innovations and business opportunities are identified. The main findings at the technology level are summarised in sub-theme reports. An overview report will combine the findings from each sub-theme to provide a broad system-level perspective and prioritisation.
This EINA analysis is based on a combination of desk research by a consortium of economic and engineering consultants and stakeholder engagement. The prioritisation of innovation and business opportunities presented is informed by a workshop organised for each sub-theme assembling key stakeholders from the academic community industry and government.
This report was commissioned prior to advice being received from the CCC on meeting a net zero target and reflects priorities to meet the previous 80% target in 2050. The newly legislated net zero target is not expected to change the set of innovation priorities rather it will make them all more valuable overall. Further work is required to assess detailed implications.
What Role for Hydrogen in Turkey’s Energy Future?
Nov 2021
Publication
Since early 2020 Turkey has been considering the role of hydrogen in its energy future with a view to producing a hydrogen strategy in the next few months. Unlike many other countries considering the role of hydrogen Turkey has only recently (October 2021) ratified the Paris Agreement addressing climate change and its interest is driven more by geopolitical strategic and energy security concerns. Specifically with concerns about the high share of imported energy particularly gas from Russia it sees hydrogen as part of a policy to increase indigenous energy production. Turkey already has a relatively high share of renewable power generation particularly hydro and recent solar auctions have resulted in low prices leading to a focus on potential green hydrogen production. However it still generates over half of its electricity from fossil fuel including over 25% from coal and lignite. Against that background it provides an interesting case study on some of the key aspects that a country needs to consider when looking to incorporate low-carbon hydrogen into the development of their energy economy.
The research paper can be found on their website
The research paper can be found on their website
Where Does Hydrogen Fit in a Sustainable Energy Economy?
Jul 2012
Publication
Where does hydrogen fit into a global sustainable energy strategy for the 21st century as we face the enormous challenges of irreversible climate change and uncertain oil supply? This fundamental question is addressed by sketching a sustainable energy strategy that is based predominantly on renewable energy inputs and energy efficiency with hydrogen playing a crucial and substantial role. But this role is not an ex -distributed hydrogen production storage and distribution centres relying on local renewable energy sources and feedstocks would be created to avoid the need for an expensive long-distance hydrogen pipeline system. There would thus be complementary use of electricity and hydrogen as energy vectors. Importantly bulk hydrogen storage would provide the strategic energy reserve to guarantee national and global energy security in a world relying increasingly on renewable energy; and longer-term seasonal storage on electricity grids relying mainly on renewables. In the transport sector a 'horses for courses' approach is proposed in which hydrogen fuel cell vehicles would be used in road and rail vehicles requiring a range comparable to today's petrol and diesel vehicles and in coastal and international shipping while liquid hydrogen would probably have to be used in air transport. Plug-in battery electric vehicles would be reserved for shorter-trips. Energy-economic-environmental modelling is recommended as the next step to quantify the net benefits of the overall strategy outlined.
Evaluation of Heat Decarbonization Strategies and Their Impact on the Irish Gas Network
Dec 2021
Publication
Decarbonization of the heating sector is essential to meet the ambitious goals of the Paris Climate Agreement for 2050. However poorly insulated buildings and industrial processes with high and intermittent heating demand will still require traditional boilers that burn fuel to avoid excessive burden on electrical networks. Therefore it is important to assess the impact of residential commercial and industrial heat decarbonization strategies on the distribution and transmission gas networks. Using building energy models in EnergyPlus the progressive decarbonization of gas-fueled heating was investigated by increasing insulation in buildings and increasing the efficiency of gas boilers. Industrial heat decarbonization was evaluated through a progressive move to lowercarbon fuel sources using MATLAB. The results indicated a maximum decrease of 19.9% in natural gas utilization due to the buildings’ thermal retrofits. This coupled with a move toward the electrification of heat will reduce volumes of gas being transported through the distribution gas network. However the decarbonization of the industrial heat demand with hydrogen could result in up to a 380% increase in volumetric flow rate through the transmission network. A comparison between the decarbonization of domestic heating through gas and electrical heating is also carried out. The results indicated that gas networks can continue to play an essential role in the decarbonized energy systems of the future.
2x40GW Green Hydrogen Initiative
Mar 2020
Publication
Hydrogen will play a pivotal role in achieving an affordable clean and prosperous economy. Hydrogen allows for cost-efficient bulk transport and storage of renewable energy and can decarbonise energy use in all sectors.
The European Union together with North Africa Ukraine and other neighbouring countries have a unique opportunity to realise a green hydrogen system. Europe including Ukraine has good renewable energy resources while North Africa has outstanding and abundant resources. Europe can re-use its gas infrastructure with interconnections to North-Africa and other countries to transport and store hydrogen. And Europe has a globally leading industry for clean hydrogen production especially in electrolyser manufacturing.
If the European Union in close cooperation with its neighbouring countries wants to build on these unique assets and create a world leading industry for renewable hydrogen production the time to act is now. Dedicated and integrated multi GW green hydrogen production plants will thereby unlock the vast renewable energy potential.
We the European hydrogen industry are committed to maintaining a strong and world-leading electrolyser industry and market and to producing renewable hydrogen at equal and eventually lower cost than low-carbon (blue) hydrogen. A prerequisite is that a 2x40 GW electrolyser market in the European Union and its neighbouring countries (e.g. North Africa and Ukraine) will develop as soon as possible.
A roadmap for 40 GW electrolyser capacity in the EU by 2030 shows a 6 GW captive market (hydrogen production at the demand location) and 34 GW hydrogen market (hydrogen production near the resource). A roadmap for 40 GW electrolyser capacity in North Africa and Ukraine by 2030 includes 7.5 GW hydrogen production for the domestic market and a 32.5 GW hydrogen production capacity for export.
If a 2x40 GW electrolyser market in 2030 is realised alongside the required additional renewable energy capacity renewable hydrogen will become cost competitive with fossil (grey) hydrogen. GW-scale electrolysers at wind and solar hydrogen production sites will produce renewable hydrogen cost competitively with low-carbon hydrogen production (1.5-2.0 €/kg) in 2025 and with grey hydrogen (1.0-1.5 €/kg) in 2030.
By realizing 2x40 GW electrolyser capacity producing green hydrogen about 82 million ton CO2 emissions per year could be avoided in the EU. The total investments in electrolyser capacity will be 25-30 billion Euro creating 140000- 170000 jobs in manufacturing and maintenance of 2x40 GW electrolysers.
The industry needs the European Union and its member states to design create and facilitate a hydrogen market infrastructure and economy. Crucial is the design and realisation of new unique and long-lasting mutual co-operation mechanisms on political societal and economic levels between the EU and North Africa Ukraine and other neighbouring countries.
The unique opportunity for the EU and its neighbouring countries to develop a green hydrogen economy will contribute to economic growth the creation of jobs and a sustainable affordable and fair energy system. Building on this position Europe and its neighbours can become world market leaders for green hydrogen production technologies.
The European Union together with North Africa Ukraine and other neighbouring countries have a unique opportunity to realise a green hydrogen system. Europe including Ukraine has good renewable energy resources while North Africa has outstanding and abundant resources. Europe can re-use its gas infrastructure with interconnections to North-Africa and other countries to transport and store hydrogen. And Europe has a globally leading industry for clean hydrogen production especially in electrolyser manufacturing.
If the European Union in close cooperation with its neighbouring countries wants to build on these unique assets and create a world leading industry for renewable hydrogen production the time to act is now. Dedicated and integrated multi GW green hydrogen production plants will thereby unlock the vast renewable energy potential.
We the European hydrogen industry are committed to maintaining a strong and world-leading electrolyser industry and market and to producing renewable hydrogen at equal and eventually lower cost than low-carbon (blue) hydrogen. A prerequisite is that a 2x40 GW electrolyser market in the European Union and its neighbouring countries (e.g. North Africa and Ukraine) will develop as soon as possible.
A roadmap for 40 GW electrolyser capacity in the EU by 2030 shows a 6 GW captive market (hydrogen production at the demand location) and 34 GW hydrogen market (hydrogen production near the resource). A roadmap for 40 GW electrolyser capacity in North Africa and Ukraine by 2030 includes 7.5 GW hydrogen production for the domestic market and a 32.5 GW hydrogen production capacity for export.
If a 2x40 GW electrolyser market in 2030 is realised alongside the required additional renewable energy capacity renewable hydrogen will become cost competitive with fossil (grey) hydrogen. GW-scale electrolysers at wind and solar hydrogen production sites will produce renewable hydrogen cost competitively with low-carbon hydrogen production (1.5-2.0 €/kg) in 2025 and with grey hydrogen (1.0-1.5 €/kg) in 2030.
By realizing 2x40 GW electrolyser capacity producing green hydrogen about 82 million ton CO2 emissions per year could be avoided in the EU. The total investments in electrolyser capacity will be 25-30 billion Euro creating 140000- 170000 jobs in manufacturing and maintenance of 2x40 GW electrolysers.
The industry needs the European Union and its member states to design create and facilitate a hydrogen market infrastructure and economy. Crucial is the design and realisation of new unique and long-lasting mutual co-operation mechanisms on political societal and economic levels between the EU and North Africa Ukraine and other neighbouring countries.
The unique opportunity for the EU and its neighbouring countries to develop a green hydrogen economy will contribute to economic growth the creation of jobs and a sustainable affordable and fair energy system. Building on this position Europe and its neighbours can become world market leaders for green hydrogen production technologies.
Oxford Energy Podcast – Energy Transition Post-Pandemic in the Gulf: Clean Energy, Sustainability and Hydrogen
Jun 2021
Publication
The COVID-19 pandemic has exacerbated challenges faced by hydrocarbon exporters in the Gulf owing to the global push to transition to cleaner energy sources. In this podcast Manal Shehabi (OIES) discusses with David Ledesma a recent OIES-KFAS workshop held in April 2021 titled “Energy Transition Post-Pandemic in the Gulf States” held with support from the Kuwait Foundation for the Advancement of Sciences (KFAS). They discuss separate but interrelated issues on clean energy economic and climate sustainability and hydrogen. Specially they examine how the global energy transition outlook has changed post-pandemic along with its impacts on Gulf States’ economies and energy transition projects. They explain implications to Gulf states’ sustainability evaluating whether these countries are fiscally sustainable post-pandemic and their urgent need for energy and economic diversification. They focus in on the possibility of the Gulf States’ using hydrogen to diversify both in domestic and export markets evaluating opportunities and challenges for both blue and green hydrogen. A preliminary case study on the economics of hydrogen in Kuwait is highlighted as indication of whether Gulf states can produce green hydrogen competitively. They conclude with policy recommendations to increase economic sustainability and resilience post-pandemic both through the energy transition and responses to it.
The podcast can be found on their website
The podcast can be found on their website
Framing Policy on Low Emissions Vehicles in Terms of Economic Gains: Might the Most Straightforward Gain be Delivered by Supply Chain Activity to Support Refuelling?
May 2018
Publication
A core theme of the UK Government's new Industrial Strategy is exploiting opportunities for domestic supply chain development. This extends to a special ‘Automotive Sector Deal’ that focuses on the shift to low emissions vehicles (LEVs). Here attention is on electric vehicle and battery production and innovation. In this paper we argue that a more straightforward gain in terms of framing policy around potential economic benefits may be made through supply chain activity to support refuelling of battery/hydrogen vehicles. We set this in the context of LEV refuelling supply chains potentially replicating the strength of domestic upstream linkages observed in the UK electricity and/or gas industries. We use input-output multiplier analysis to deconstruct and assess the structure of these supply chains relative to that of more import-intensive petrol and diesel supply. A crucial multiplier result is that for every £1million of spending on electricity (or gas) 8 full-time equivalent jobs are supported throughout the UK. This compares to less than 3 in the case of petrol/diesel supply. Moreover the importance of service industries becomes apparent with 67% of indirect and induced supply chain employment to support electricity generation being located in services industries. The comparable figure for GDP is 42%.
No more items...