Policy & Socio-Economics
Policy Toolbox for Low Carbon and Renewable Hydrogen
Nov 2021
Publication
The report “Policy Toolbox for Low Carbon and Renewable Hydrogen” is based on an assessment of the performance of hydrogen policies in different stages of market maturity and segments of the value chain. 48 policies were shortlisted based on their economic efficiency and effectiveness and mapped to barriers across the value chain and over time. These policies were subsequently clustered into policy packages for three country archetypes: a self-sufficient hydrogen producer an importer and an exporter of hydrogen.
The paper can be found on their website.
The paper can be found on their website.
EU Carbon Diplomacy: Assessing Hydrogen Security and Policy Impact in Australia and Germany
Dec 2021
Publication
Hydrogen is fast becoming a new international “super fuel” to accelerate global climate change ambitions. This paper has two inter-weaving themes. Contextually it focuses on the potential impact of the EU’s new Carbon Border Adjustment Mechanism (CBAM) on fossil fuel-generated as opposed to green hydrogen imports. The CBAM as a transnational carbon adjustment mechanism has the potential to impact international trade in energy. It seeks both a level playing field between imports and EU internal markets (subject to ambitious EU climate change policies) and to encourage emissions reduction laggards through its “carbon diplomacy”. Countries without a price on carbon will be charged for embodied carbon in their supply chains when they export to the EU. Empirically we focus on two hydrogen export/import case studies: Australia as a non-EU state with ambitions to export hydrogen and Germany as an EU Member State reliant on energy imports. Energy security is central to energy trade debates but needs to be conceptualized beyond supply and demand economics to include geopolitics just transitions and the impacts of border carbon taxes and EU carbon diplomacy. Accordingly we apply and further develop a seven-dimension energy security-justice framework to the examples of brown blue and green hydrogen export/import hydrogen operations with varying carbon-intensity supply chains in Australia and Germany. Applying the framework we identify potential impact—risks and opportunities—associated with identified brown blue and green hydrogen export/import projects in the two countries. This research contributes to the emerging fields of international hydrogen trade supply chains and international carbon diplomacy and develops a potentially useful seven-dimension energy security-justice framework for energy researchers and policy analysts.
Prospects and Obstacles for Green Hydrogen Production in Russia
Jan 2021
Publication
Renewable energy is considered the one of the most promising solutions to meet sustainable development goals in terms of climate change mitigation. Today we face the problem of further scaling up renewable energy infrastructure which requires the creation of reliable energy storages environmentally friendly carriers like hydrogen and competitive international markets. These issues provoke the involvement of resource-based countries in the energy transition which is questionable in terms of economic efficiency compared to conventional hydrocarbon resources. To shed a light on the possible efficiency of green hydrogen production in such countries this study is aimed at: (1) comparing key Russian trends of green hydrogen development with global trends (2) presenting strategic scenarios for the Russian energy sector development (3) presenting a case study of Russian hydrogen energy project «Dyakov Ust-Srednekanskaya HPP» in Magadan region. We argue that without significant changes in strategic planning and without focus on sustainable solutions support the further development of Russian power industry will be halted in a conservative scenario with the limited presence of innovative solutions in renewable energy industries. Our case study showed that despite the closeness to Japan hydrogen market economic efficiency is on the edge of zero with payback period around 17 years. The decrease in project capacity below 543.6 MW will immediately lead to a negative NPV. The key reason for that is the low average market price of hydrogen ($14/kg) which is only a bit higher than its production cost ($12.5/kg) while transportation requires about $0.96/kg more. Despite the discouraging results it should be taken into account that such strategic projects are at the edge of energy development. We see them as an opportunity to lead transnational energy trade of green hydrogen which could be competitive in the medium term especially with state support.
Green Hydrogen Production and Use in Low- and Middle-income Countries: A Least-cost Geospatial Modelling Approach Applied to Kenya
May 2023
Publication
With the rising threat of climate change green hydrogen is increasingly seen as the high-capacity energy storage and transport medium of the future. This creates an opportunity for low- and middle-income countries to leverage their high renewable energy potential to produce use and export low-cost green hydrogen creating environmental and economic development benefits. While identifying ideal locations for green hydrogen production is critical for countries when defining their green hydrogen strategies there has been a paucity of adequate geospatial planning approaches suitable to low- and middle-income countries. It is essential for these countries to identify green hydrogen production sites which match demand to expected use cases such that their strategies are economically sustainable. This paper therefore develops a novel geospatial cost modelling method to optimize the location of green hydrogen production across different use cases with a focus on suitability to low- and middle-income countries. This method is applied in Kenya to investigate the potential hydrogen supply chain for three use cases: ammonia-based fertilizer freight transport and export. We find hydrogen production costs of e3.7–9.9/kgH2 are currently achievable across Kenya depending on the production location chosen. The cheapest production locations are identified to the south and south-east of Lake Turkana. We show that ammonia produced in Kenya can be cost-competitive given the current energy crisis and that Kenya could export hydrogen to Rotterdam with costs of e7/kgH2 undercutting current market prices regardless of the carrier medium. With expected techno-economic improvements hydrogen production costs across Kenya could drop to e1.8–3.0/kgH2 by 2030.
Renewable Energy, Carbon Capture & Sequestration and Hydrogen Solutions as Enabling Technologies for Reduced CO2 Energy Transition at a National Level: An Application to the 2030 Italian National Energy Scenarios
Dec 2022
Publication
Globally climate change fossil fuel depletion and greenhouse emissions are fundamental problems requiring massive effort from the international scientific community to be addressed and solved. Following the Clean Energy for all Europeans Package (CEP) guidelines the Italian Government has established challenging and tight objectives both on energy and climate matter to be targeted by 2030. Accordingly research activities on different topics are carried out in Italy looking at the installation of intermittent renewable energy systems (IRES) implementation of carbon capture and sequestration (CCS) on existing power plants and hydrogen technology and infrastructure penetration for accomplishing the end-users demands. The optimal integration of the above-mentioned technologies is one of the most effective weapons to address these objectives. The paper investigates different energy scenarios for meeting the Italian National Energy and Climate Plan (NECP) 2030 targets showing how the combined implementation of around +12 GW of IRES and +6 GW of electrolyzers compared to the national estimates simultaneously with the CCS of around 10 Mt of CO2 per year can reduce the CO2 emissions up to about 247 Mt/year. Thanks to the adoption of the well-established software platform EnergyPlan the integration of IRES plants CCS and hydrogen-based technologies have been explored and the most successful results for concurrently reducing the impact of industrial transport residential and energy sectors and mitigating the greenhouse emissions substantially relies on the diversifications. Results show both the technical and economic convenience of a 2030 energy scenario which implements properly hydrogen IRES and CCS penetration in the energy system meeting the NECP 2030 targets and maintaining both the over-generation of the power plants below 5 TWh and the initial capital expenditure to be sustained for this scenario to occur below +80% compared to the 2019 energy scenario.
Scenario Modeling of Sustainable Development of Energy Supply in the Arctic
Dec 2021
Publication
The 21st century is characterized not only by large-scale transformations but also by the speed with which they occur. Transformations—political economic social technological environmental and legal-in synergy have always been a catalyst for reactions in society. The field of energy supply like many others is extremely susceptible to the external influence of such factors. To a large extent this applies to remote (especially from the position of energy supply) regions. The authors outline an approach to justifying the development of the Arctic energy infrastructure through an analysis of the demand for the amount of energy consumed and energy sources taking into account global trends. The methodology is based on scenario modeling of technological demand. It is based on a study of the specific needs of consumers available technologies and identified risks. The paper proposes development scenarios and presents a model that takes them into account. Modeling results show that in all scenarios up to 50% of the energy balance in 2035 will take gas but the role of carbon-free energy sources will increase. The mathematical model allowed forecasting the demand for energy types by certain types of consumers which makes it possible to determine the vector of development and stimulation of certain types of resources for energy production in the Arctic. The model enables considering not only the growth but also the decline in demand for certain types of consumers under different scenarios. In addition authors’ forecasts through further modernization of the energy sector in the Arctic region can contribute to the creation of prerequisites that will be stimulating and profitable for the growth of investment in sustainable energy sources to supply consumers. The scientific significance of the work lies in the application of a consistent hybrid modeling approach to forecasting demand for energy resources in the Arctic region. The results of the study are useful in drafting a scenario of regional development taking into account the Sustainable Development Goals as well as identifying areas of technology and energy infrastructure stimulation.
Political Economy of Green Hydrogen Rollout: A Global Perspective
Dec 2021
Publication
The present paper dwells on the role of green hydrogen in the transition towards climateneutral economies and reviews the central challenges for its emancipation as an economically viable source of energy. The study shows that countries with a substantial share of renewables in the energy mix advanced natural gas pipeline infrastructure and an advanced level of technological and economic development have a comparative advantage for the wider utilization of hydrogen in their national energy systems. The central conclusion this review paper is that a green hydrogen rollout in the developed and oil-exporting developing and emerging countries is not a risk for the rest of the world in terms of the increasing technological disparities and conservation of underdevelopment and concomitant socio-economic problems of the Global South. The targets anchored in Paris Agreement but even more in the EU Green Deal and the European Hydrogen Strategy will necessitate a substantial rollout of RESs in developing countries and especially in the countries of the African Union because of the prioritization of the African continent within the energy cooperation frameworks of the EU Green Deal and the EU Hydrogen Strategy. Hence the green hydrogen rollout will bridge the energy transition between Europe and Africa on the one hand and climate and development targets on the other.
Future Energy Scenarios 2021
Jul 2022
Publication
Our Future Energy Scenarios (FES) draw on hundreds of experts’ views to model four credible energy pathways for Britain over coming decades. Matthew Wright our head of strategy and regulation outlines what the 2021 outlook means for consumers society and the energy system itself.<br/>This year’s Future Energy Scenarios insight reveals a glimpse of a Britain that is powered with net zero carbon emissions.<br/>Our analysis shows that our country can achieve its legally-binding carbon reduction targets: in three out of four scenarios in the analysis the country reaches net zero carbon emissions by 2050 with Leading the Way – our most ambitious scenario – achieving it in 2047 and becoming net negative by 2050.
Investment Estimation in the Energy and Power Sector towards Carbon Neutrality Target: A Case Study of China
Mar 2023
Publication
The transition towards low-carbon energy and power has been extensively studied by research institutions and scholars. However the investment demand during the transition process has received insufficient attention. To address this gap an energy investment estimation method is proposed in this paper which takes the unit construction costs and potential development of major technology in the energy and power sector as input. The proposed estimation method can comprehensively assess the investment demand for various energy sources in different years including coal oil natural gas biomass power and hydrogen energy. Specifically we applied this method to estimate the investment demand of China’s energy and power sector from 2020 to 2060 at five year intervals. The results indicate that China’s cumulative energy investment demand over this period is approximately 127 trillion CNY with the power sector accounting for the largest proportion at 92.35% or approximately 117 trillion CNY. The calculated cumulative investment demand is consistent with the findings of several influential research institutions providing validation for the proposed method.
Analysis of the Levelized Cost of Renewable Hydrogen in Austria
Mar 2023
Publication
Austria is committed to the net-zero climate goal along with the European Union. This requires all sectors to be decarbonized. Hereby hydrogen plays a vital role as stated in the national hydrogen strategy. A report commissioned by the Austrian government predicts a minimum hydrogen demand of 16 TWh per year in Austria in 2040. Besides hydrogen imports domestic production can ensure supply. Hence this study analyses the levelized cost of hydrogen for an off-grid production plant including a proton exchange membrane electrolyzer wind power and solar photovoltaics in Austria. In the first step the capacity factors of the renewable electricity sources are determined by conducting a geographic information system analysis. Secondly the levelized cost of electricity for wind power and solarphotovoltaics plants in Austria is calculated. Thirdly the most cost-efficient portfolio of wind power and solar photovoltaics plants is determined using electricity generation profiles with a 10-min granularity. The modelled system variants differ among location capacity factors of the renewable electricity sources and the full load hours of the electrolyzer. Finally selected variables are tested for their sensitivities. With the applied model the hydrogen production cost for decentralized production plants can be calculated for any specific location. The levelized cost of hydrogen estimates range from 3.08 EUR/kg to 13.12 EUR/kg of hydrogen whereas it was found that the costs are most sensitive to the capacity factors of the renewable electricity sources and the full load hours of the electrolyzer. The novelty of the paper stems from the model applied that calculates the levelized cost of renewable hydrogen in an off-grid hydrogen production system. The model finds a cost-efficient portfolio of directly coupled wind power and solar photovoltaics systems for 80 different variants in an Austria-specific context.
Technical, Economic, Carbon Footprint Assessment, and Prioritizing Stations for Hydrogen Production Using Wind Energy: A Case Study
Jul 2021
Publication
While Afghanistan’s power sector is almost completely dependent on fossil fuels it still cannot meet the rising power demand of this country. Deploying a combination of renewable energy systems with hydrogen production as the excess energy storage mechanism could be a sustainable long-term approach for addressing some of the energy problems of Afghanistan. Since Badakhshan is known to have a higher average wind speed than any other Afghan province in this study a technical economic and carbon footprint assessment was performed to investigate the potential for wind power and hydrogen production in this province. Wind data of four stations in Badakhshan were used for technical assessment for three heights of 10 30 and 40 m using the Weibull probability distribution function. This technical assessment was expanded by estimating the energy pattern factor probability of wind speeds greater than 5 m/s wind power density annual power output and annual hydrogen output. This was followed by an economic assessment which involved computing the Leveled Cost Of Energy (LCOE) the Leveled Cost Of Hydrogen (LCOH) and the payback period and finally an carbon footprint assessment which involved estimating the consequent CO2 reduction in two scenarios. The assessments were performed for 22 turbines manufactured by reputable companies with capacities ranging from 600 kW to 2.3 MW. The results showed that the entire Badakhshan province and especially Qal’eh-ye Panjeh and Fayazabad have excellent potentials in terms of wind energy that can be harvested for wind power and hydrogen production. Also wind power generation in this province will be highly cost-effective as the produced electricity will cost about one-third of the price of electricity supplied by the government. For better evaluation the GIS maps of wind power and hydrogen outputs were prepared using the IDW method. These maps showed that the eastern and northeastern parts of Badakhshan province have higher wind power-hydrogen production potentials. The results of ranking the stations with SWARA-EDAS hybrid MCDM methods showed that Qal’eh-ye Panjeh station was the best location to produce hydrogen from wind energy.
Accelerating the Green Hydrogen Revolution: A Comprehensive Analysis of Technological Advancements and Policy Interventions
Apr 2024
Publication
Promoting green hydrogen has emerged as a pivotal discourse in the contemporary energy landscape driven by pressing environmental concerns and the quest for sustainable energy solutions. This paper delves into the multifaceted domain of C-Suite issues about green hydrogen encompassing both technological advancements and policy considerations. The question of whether green hydrogen is poised to become the focal point of the upcoming energy race is explored through an extensive analysis of its potential as a clean and versatile energy carrier. The transition from conventional fossil fuels to green hydrogen is considered a fundamental shift in energy paradigms with far-reaching implications for global energy markets. The paper provides a comprehensive overview of state-of-the-art green hydrogen technologies including fuel cells photocatalysts photo electrocatalysts and hydrogen panels. In tandem with technological advancements the role of policy and strategy in fostering the development of green hydrogen energy assumes paramount significance. The paper elucidates the critical interplay between government policies market dynamics and corporate strategies in shaping the green hydrogen landscape. It delves into policy mechanisms such as subsidies carbon pricing and renewable energy mandates shedding light on their potential to incentivize the production and adoption of green hydrogen. This paper offers a nuanced exploration of C-Suite issues surrounding green hydrogen painting a comprehensive picture of the technological and policy considerations that underpin its emergence as a transformative energy source. As the global community grapples with the imperatives of climate change mitigation and the pursuit of sustainable energy solutions understanding these issues becomes imperative for executives policymakers and stakeholders alike.
Fuelling the Transition Podcast: Using Hydrogen to Achieve Net-zero
Jan 2021
Publication
In order to achieve the EU’s target of 55% carbon reduction by 2030 hydrogen will have to make a key contribution to the energy mix. With many applications in industrial heat mobility power and chemical refineries hydrogen can be used to decarbonise where electrification is not possible. Equinor is a broad energy company with 21000 employees developing oil gas wind and solar energy in more than 30 countries worldwide. Equinor have been at the forefront of promoting hydrogen projects in Europe and developing low-carbon hydrogen solutions. In this episode Johan Leuraers Chief Consultant - Policy and Regulatory Affairs at Equinor and John Williams Head of Hydrogen Expertise Cluster at AFRY Management Consulting join us to discuss the main barriers to the uptake of hydrogen and the next steps to kick-start the hydrogen economy.
The podcast can be found on their website.
The podcast can be found on their website.
Global Hydrogen and Synfuel Exchanges in an Emission-Free Energy System
Apr 2023
Publication
This study investigates the global allocation of hydrogen and synfuels in order to achieve the well below 2 ◦C preferably 1.5 ◦C target set in the Paris Agreement. For this purpose TIMES Integrated Assessment Model (TIAM) a global energy system model is used. In order to investigate global hydrogen and synfuel flows cost potential curves are aggregated and implemented into TIAM as well as demand technologies for the end use sectors. Furthermore hydrogen and synfuel trades are established using liquid hydrogen transport (LH2 ) and both new and existing technologies for synfuels are implemented. To represent a wide range of possible future events four different scenarios are considered with different characteristics of climate and security of supply policies. The results show that in the case of climate policy the renewable energies need tremendous expansion. The final energy consumption is shifting towards the direct use of electricity while certain demand technologies (e.g. aviation and international shipping) require hydrogen and synfuels for full decarbonization. Due to different security of supply policies the global allocation of hydrogen and synfuel production and exports is shifting while the 1.5 ◦C target remains feasible in the different climate policy scenarios. Considering climate policy Middle East Asia is the preferred region for hydrogen export. For synfuel production several regions are competitive including Middle East Asia Mexico Africa South America and Australia. In the case of security of supply policies Middle East Asia is sharing the export volume with Africa while only minor changes can be seen in the synfuel supply.
Distributional Trends in the Generation and End-Use Sector of Low-Carbon Hydrogen Plants
Mar 2023
Publication
This paper uses established and recently introduced methods from the applied mathematics and statistics literature to study trends in the end-use sector and the capacity of low-carbon hydrogen projects in recent and upcoming decades. First we examine distributions in plants over time for various end-use sectors and classify them according to metric discrepancy observing clear similarity across all industry sectors. Next we compare the distribution of usage sectors between different continents and examine the changes in sector distribution over time. Finally we judiciously apply several regression models to analyse the association between various predictors and the capacity of global hydrogen projects. Across our experiments we see a welcome exponential growth in the capacity of zero-carbon hydrogen plants and significant growth of new and planned hydrogen plants in the 2020’s across every sector.
Navigating the Implementation of Tax Credits for Natural-Gas-Based Low-Carbon-Intensity Hydrogen Projects
Mar 2024
Publication
This paper delves into the critical role of tax credits specifically Sections 45Q and 45V in the financing and economic feasibility of low-carbon-intensity hydrogen projects with a focus on natural-gas-based hydrogen production plants integrated with carbon capture and storage (CCS). This study covers the current clean energy landscape underscoring the importance of low-carbon hydrogen as a key component in the transition to a sustainable energy future and then explicates the mechanics of the 45Q and 45V tax credits illustrating their direct impact on enhancing the economic attractiveness of such projects through a detailed net present value (NPV) model analysis. Our analysis reveals that the application of 45Q and 45V tax credits significantly reduces the levelized cost of hydrogen production with scenarios indicating a reduction in cost ranging from USD 0.41/kg to USD 0.81/kg of hydrogen. Specifically the 45Q tax credit demonstrates a slightly more advantageous impact on reducing costs compared to the 45V tax credit underpinning the critical role of these fiscal measures in enhancing project returns and feasibility. Furthermore this paper addresses the inherent limitations of utilizing tax credits primarily the challenge posed by the mismatch between the scale of tax credits and the tax liability of the project developers. The concept and role of tax equity investments are discussed in response to this challenge. These findings contribute to the broader dialogue on the financing of sustainable energy projects providing valuable insights for policymakers investors and developers in the hydrogen energy sector. By quantifying the economic benefits of tax credits and elucidating the role of tax equity investments our research supports informed decision-making and strategic planning in the pursuit of a sustainable energy future.
China's Hydrogen Development Strategy in the Context of Double Carbon Targets
Dec 2022
Publication
As a clean low-carbon efficient and renewable energy source hydrogen has gradually become an important energy carrier to combat climate change and achieve sustainable development in the world. China is now facing the stress of realizing the carbon peak and carbon neutrality goals where hydrogen will play a significant role. Against this backdrop to develop China's hydrogen strategy under the carbon peak and carbon neutrality goals this paper explores the hydrogen resource endowment in China presents the concepts such as Hydrogen Ethics and the Hu's Hydrogen Line and discusses the status quo and existing advantages in hydrogen production storage transport and utilization in China. Six major obstacles and challenges that China's hydrogen energy industry is facing are pointed out i.e. cost problem inadequate hydrogen infrastructures low energy efficiency mismatching the development progress of renewable energy insufficient market demand shortcomings in technology and imperfect policy system. Finally five policy suggestions for the future development of China's hydrogen energy industry are proposed as follows: (1) make an action plan as a response to the national hydrogen development plan; (2) build an international and domestic double-cycle hydrogen economic system; (3) incorporate hydrogen into the establishment of a clean low-carbon safe and efficient energy system; (4) accelerate the technological innovation to form advanced hydrogen technologies; and (5) construct hydrogen-oriented industrial clusters/parks to expand the hydrogen utilization market. It is concluded that for meeting the carbon peak and carbon neutrality goals China should leverage the dual advantages of hydrogen as an energy carrier and an industrial raw material allowing the hydrogen industry to play a synergistic role in ensuring the country's energy security promoting the socio-economic transformation and upgrading and protecting the ecological environment thereby providing a technical option and support for China to achieve the ultimate goal of carbon neutrality.
Green Hydrogen in Developing Countries
Aug 2020
Publication
In the future green hydrogen—hydrogen produced with renewable energy resources—could provide developing countries with a zero-carbon energy carrier to support national sustainable energy objectives and it needs further consideration by policy makers and investors. Developing countries with good renewable energy resources could produce green hydrogen locally generating economic opportunities and increasing energy security by reducing exposure to oil price volatility and supply disruptions. Support from development finance institutions and concessional funds could play an important role in deploying first-of-a-kind green hydrogen projects accelerating the uptake of green hydrogen in developing countries and increasing capacity and creating the necessary policy and regulatory enabling environment.
Techno-Economic Analysis of Solar Thermal Hydrogen Production in the United Arab Emirates
Oct 2022
Publication
Solar thermal technology can provide the United Arab Emirates and the Middle East region with abundant clean electricity to mitigate the rising levels of carbon dioxide and satisfy future demand. Hydrogen can play a key role in the large-scale application of solar thermal technologies such as concentrated solar plants in the region by storing the surplus electricity and exporting it to needed countries for profit placing the Middle East and the United Arab Emirates as major future green hydrogen suppliers. However a hydrogen supply chain comparison between hydrogen from CSP and other renewable under the UAE’s technical and economic conditions for hydrogen export is yet to be fully considered. Therefore in this study we provide a techno-economic analysis for well-to-ship solar hydrogen supply chain that compares CSP and PV technologies with a solid oxide water electrolyzer for hydrogen production assuming four different hydrogen delivery pathways based on the location of electrolyzer and source of electricity assuming the SOEC can be coupled to the CSP plant when placed at the same site or provided with electric heaters when placed at PV plant site or port sites. The results show that the PV plant achieves a lower levelized cost of electricity than that of the CSP plant with 5.08 ¢/kWh and 8.6 ¢/kWh respectively. Hydrogen production results show that the scenario where SOEC is coupled to the CSP plant is the most competitive scenario as it achieves the payback period in the shortest period compared to the other scenarios and also provides higher revenues and a cheaper LCOH of 7.85 $/kgH2.
Sufficiency, Sustainability, and Circularity of Critical Materials for Clean Hydrogen
Jan 2022
Publication
Effective global decarbonization will require an array of solutions across a portfolio of low-carbon resources. One such solution is developing clean hydrogen. This unique fuel has the potential to minimize climate change impacts helping decarbonize hard-to-abate sectors such as heavy industry and global transport while also promoting energy security sustainable growth and job creation. The authors estimate suggest that hydrogen needs to grow seven-fold to support the global energy transition eventually accounting for ten percent of total energy consumption by 2050. A scaleup of this magnitude will increase demand for materials such as aluminum copper iridium nickel platinum vanadium and zinc to support hydrogen technologies - renewable electricity technologies and the electrolyzers for renewable hydrogen carbon storage for low-carbon hydrogen or fuel cells using hydrogen to power transport. This report a joint product of the World Bank and the Hydrogen Council examines these three critical areas. Using new data on the material intensities of key technologies the report estimates the amount of critical minerals needed to scale clean hydrogen. In addition it shows how incorporating sustainable practices and policies for mining and processing materials can help minimize environmental impacts. Key among these approaches is the use of recycled materials innovations in design in order to reduce material intensities and adoption of policies from the Climate Smart Mining (CSM) Framework to reduce impacts to greenhouse gas emissions and water footprint.
No more items...