Policy & Socio-Economics
World Energy Issues Monitor 2021: Humanising Energy
Mar 2021
Publication
Based on data collection carried out between October and December 2020 and the testing of emerging findings with the Council’s regional communities during a series of digital workshops held during February 2021 the report has shown
- Energy leaders’ perceptions of areas of risk opportunity and priorities for action have radically changed over the last 12 months. While economic turbulence stemming from the ongoing reverberations of COVID-19 is the biggest area of uncertainty with uncertainty around economic trends increasing by a third over the previous year there is also a growing focus on the social agenda associated with a faster paced energy transition.
- There is an increased awareness of the societal and human impact of both recovery and the wider energy transition. The issue of energy affordability has rapidly risen up the industry’s priority list with its impact and uncertainty perceived 20% larger than a year ago. Energy affordability affects society across all geographies ranging from city dwellers in developed countries to the rural poor in developing ones.
- The emergence of a new generation of digital energy services and energy entrepreneurs. Increasingly agile disruptive technologies have taken advantage of the social upheaval to gain market share at the expense of supply-centric energy solutions. There is a growing focus on customer-centric demand-driven solutions and fast changing patterns of global and local demand.
Can the Current EU Regulatory Framework Deliver Decarbonisation of Gas?
Jun 2020
Publication
This Energy Insight examines the current regulatory framework and challenges facing the natural gas industry (producers transporters suppliers and consumers) during the transition to a zero-carbon economy. The EU has declared its intention to be climate neutral by 2050 which means that the current level of natural gas usage will no longer be possible. However natural gas is a crucial component of energy supply representing 24 per cent of primary energy supply for the EU27+UK and 36 per cent of residential energy consumption. In some countries the use of natural gas is much higher – around 40 per cent of primary energy supply in Netherlands UK and Italy. The current framework impacting gas addresses two different market failures – natural monopolies for gas transportation and the externalities of Greenhouse Gas Emissions. The framework will not deliver decarbonisation of gas as it does not stimulate either supply or demand for alternatives such as hydrogen nor create the conditions to enable gas networks to transition to a decarbonised future. Policy makers need to prioritise their objectives to take account of the trade-offs involved in designing a new framework. Exclusion of certain low carbon technologies risks driving away investors and reduces the chances of targets being met whilst “picking winners” involves risks because of the many uncertainties involved such as future costs and time required to build new value chains.
Link to Document on Oxford Institute for Energy Studies website
Link to Document on Oxford Institute for Energy Studies website
EU Hydrogen Vision: Regulatory Opportunities and Challenges
Sep 2020
Publication
This Insight provides an overview of the recent EU Commission Hydrogen Strategy Energy System Integration Strategy and Industrial Strategy focusing on regulatory issues impacting hydrogen. It looks at the proposed classification and preferences for different sources of hydrogen financial and regulatory support for development of hydrogen supply demand and infrastructure as well as potential regulation of hydrogen markets. Whilst the Hydrogen Strategy underlines the need for hydrogen to decarbonise the economy the Insight concludes that the EU has shown a clear preference for hydrogen based on renewable electricity at the expense of low carbon hydrogen from natural gas even though it recognises the need for low carbon hydrogen. In addition further detail is required on the support mechanisms and regulatory framework if development of new hydrogen value chain is to succeed. Lastly there is little sign that the Commission recognises the change in regulatory approach from the current natural gas framework which will be needed because of the different challenges facing the development of a hydrogen market.
Paper can be downloaded on their website
Paper can be downloaded on their website
The Future of Gas Networks – Key Issues for Debate
Sep 2019
Publication
The Oxford Institute for Energy Studies held a Workshop on “The Future of Gas Networks” to examine decarbonisation plans and the impact of the potential growth in the use of renewable and decarbonised gases in Europe. Participants included representatives from nine European gas network companies (both transmission and distribution) technical experts in decarbonisation regulators government officials and academics. This document summarises the seven key issues for debate arising from the Workshop discussions:
- The major gas networks recognise the need to prepare for and facilitate decarbonisation.
- The route to decarbonisation can take many forms though hydrogen is likely to feature in most networks. In larger countries solutions are likely to be regional rather than national.
- There are a number of pilot projects and targets/aspirations for 2050 – there is less clarity on how the targets will be achieved or on who will lead.
- Regulation is a key issue. In most countries existing regulatory objectives may need changing in order to align with government decarbonisation aspirations and the achievement of targets.
- There is a lack of consensus on whether and how market models might need to adapt.
- Detailed stakeholder analysis – and in particular customer attitudes – will be required.
- There are a range of important technical issues including standardisation data quality and transparency verification and certification to be considered.
Energy Transition Outlook 2021: Technology Progress Report
Jun 2021
Publication
This report is part of DNV’s suite of Energy Transition Outlook publications for 2021. It focuses on how key energy transition technologies will develop compete and interact in the coming five years.
Debate and uncertainty about the energy transition tend to focus on what technology can and can’t do. All too often such discussions involve wishful thinking advocacy of a favoured technology or reference to outdated information. Through this report we bring insights derived from our daily work with the world’s leading energy players including producers transporters and end users. Each of the ten chapters that follow are written by our experts in the field – or in the case of maritime technologies on the ocean.
Because the pace of the transition is intensifying describing any given technology is like painting a fast-moving train. We have attempted to strike a balance between technical details and issues of safety efficiency cost and competitiveness. Transition technologies are deeply interlinked and in some cases interdependent; any discussion on green hydrogen for example must account for developments in renewable electricity hydrogen storage and transport systems and end-use technologies such as fuels cells.
Our selection of ten technologies is not exhaustive but each of these technologies is of particular interest for the pace and direction of the energy transition. They range from relatively mature technologies like solar PV to technologies like nuclear fusion which are some distance from commercialization but which have current R&D and prototyping worth watching. Together they cover most but not all key sectors. We describe expected developments for the coming five years which to a large extent will determine how the energy transition unfolds through to mid-century. As such this Technology Progress report is an essential supplement to our main Energy Transition Outlook forecast.
Our aim is to make an objective and realistic assessment of the status of these technologies and evaluate how they contribute to the energy transition ahead. Attention to progress in these technologies will be critical for anyone concerned with energy.
Debate and uncertainty about the energy transition tend to focus on what technology can and can’t do. All too often such discussions involve wishful thinking advocacy of a favoured technology or reference to outdated information. Through this report we bring insights derived from our daily work with the world’s leading energy players including producers transporters and end users. Each of the ten chapters that follow are written by our experts in the field – or in the case of maritime technologies on the ocean.
Because the pace of the transition is intensifying describing any given technology is like painting a fast-moving train. We have attempted to strike a balance between technical details and issues of safety efficiency cost and competitiveness. Transition technologies are deeply interlinked and in some cases interdependent; any discussion on green hydrogen for example must account for developments in renewable electricity hydrogen storage and transport systems and end-use technologies such as fuels cells.
Our selection of ten technologies is not exhaustive but each of these technologies is of particular interest for the pace and direction of the energy transition. They range from relatively mature technologies like solar PV to technologies like nuclear fusion which are some distance from commercialization but which have current R&D and prototyping worth watching. Together they cover most but not all key sectors. We describe expected developments for the coming five years which to a large extent will determine how the energy transition unfolds through to mid-century. As such this Technology Progress report is an essential supplement to our main Energy Transition Outlook forecast.
Our aim is to make an objective and realistic assessment of the status of these technologies and evaluate how they contribute to the energy transition ahead. Attention to progress in these technologies will be critical for anyone concerned with energy.
Reaching Zero with Renewables
Sep 2020
Publication
Patrick Akerman,
Pierpaolo Cazzola,
Emma Skov Christiansen,
Renée Van Heusden,
Joanna Kolomanska-van Iperen,
Johannah Christensen,
Kilian Crone,
Keith Dawe,
Guillaume De Smedt,
Alex Keynes,
Anaïs Laporte,
Florie Gonsolin,
Marko Mensink,
Charlotte Hebebrand,
Volker Hoenig,
Chris Malins,
Thomas Neuenhahn,
Ireneusz Pyc,
Andrew Purvis,
Deger Saygin,
Carol Xiao and
Yufeng Yang
Eliminating CO2 emissions from industry and transport in line with the 1.5⁰C climate goal
To avoid catastrophic climate change the world needs to reach zero carbon dioxide (CO2) emissions in all all sectors of the economy by the 2050s. Effective energy decarbonisation presents a major challenge especially in key industry and transport sectors.
The International Renewable Energy Agency (IRENA) has produced a comprehensive study of deep decarbonisation options focused on reaching zero into time to fulfil the Paris Agreement and hold the line on rising global temperatures.
Several sectors stand out as especially hard to decarbonise. Four of the most energy-intensive industries (iron and steel chemicals and petrochemicals cement and lime and aluminium) and three key transport sectors (road freight aviation and shipping) could together account for 38% of energy and process emissions and 43% of final energy use by 2050 without major policy changes now the report finds.
Reaching zero with renewables considers how these sectors could achieve zero emissions by 2060 and assesses the use of renewables and related technologies to achieve this. Decarbonisation options for each sector span efficiency improvements electrification direct heat and fuel production using renewables along with CO2 removal measures.
Without such measures energy and process emissions could amount to 11.4 gigatonnes from industry and 8.6 gigatonnes from transport at mid-century the report indicates. Along with sector-specific actions cross-cutting actions are needed at higher levels.
The report offers ten broad recommendations for industries and governments:
1. Pursue a renewables-based strategy for end-use sectors with an end goal of zero emissions.
2. Develop a shared vision and strategy and co-develop practical roadmaps involving all major players.
3. Build confidence and knowledge among decision makers.
4. Plan and deploy enabling infrastructure early on.
5. Foster early demand for green products and services.
6. Develop tailored approaches to ensure access to finance.
7. Collaborate across borders.
8. Think globally while utilising national strengths.
9. Establish clear pathways for the evolution of regulations and international standards.
10. Support research development and systemic innovation.
With the right plans and sufficient support the goal of reaching zero is achievable the report shows.
To avoid catastrophic climate change the world needs to reach zero carbon dioxide (CO2) emissions in all all sectors of the economy by the 2050s. Effective energy decarbonisation presents a major challenge especially in key industry and transport sectors.
The International Renewable Energy Agency (IRENA) has produced a comprehensive study of deep decarbonisation options focused on reaching zero into time to fulfil the Paris Agreement and hold the line on rising global temperatures.
Several sectors stand out as especially hard to decarbonise. Four of the most energy-intensive industries (iron and steel chemicals and petrochemicals cement and lime and aluminium) and three key transport sectors (road freight aviation and shipping) could together account for 38% of energy and process emissions and 43% of final energy use by 2050 without major policy changes now the report finds.
Reaching zero with renewables considers how these sectors could achieve zero emissions by 2060 and assesses the use of renewables and related technologies to achieve this. Decarbonisation options for each sector span efficiency improvements electrification direct heat and fuel production using renewables along with CO2 removal measures.
Without such measures energy and process emissions could amount to 11.4 gigatonnes from industry and 8.6 gigatonnes from transport at mid-century the report indicates. Along with sector-specific actions cross-cutting actions are needed at higher levels.
The report offers ten broad recommendations for industries and governments:
1. Pursue a renewables-based strategy for end-use sectors with an end goal of zero emissions.
2. Develop a shared vision and strategy and co-develop practical roadmaps involving all major players.
3. Build confidence and knowledge among decision makers.
4. Plan and deploy enabling infrastructure early on.
5. Foster early demand for green products and services.
6. Develop tailored approaches to ensure access to finance.
7. Collaborate across borders.
8. Think globally while utilising national strengths.
9. Establish clear pathways for the evolution of regulations and international standards.
10. Support research development and systemic innovation.
With the right plans and sufficient support the goal of reaching zero is achievable the report shows.
Energy Transition in France
May 2022
Publication
To address the climate emergency France is committed to achieving carbon neutrality by 2050. It plans to significantly increase the contribution of renewable energy in its energy mix. The share of renewable energy in its electricity production which amounts to 25.5% in 2020 should reach at least 40% in 2030. This growth poses several new challenges that require policy makers and regulators to act on the technological changes and expanding need for flexibility in power systems. This document presents the main strategies and projects developed in France as well as various recommendations to accompany and support its energy transition policy.
World Energy Issues Monitor 2020: Decoding New Signals of Change
Oct 2020
Publication
ISSUES MONITOR 2020: DECODING NEW SIGNALS OF CHANGE
The annual World Energy Issues Monitor provides unique insight into what energy policymakers CEOs and leading experts identify as Critical Uncertainties and Action Priorities. New this year the Issues Monitor also provides readers with the views of the individual customer detailing their perceptions of their role in the overall energy system. The Issues Monitor report includes a global issues map 58 country maps and six regional maps as well as perspectives from Future Energy Leaders (FEL) and energy innovators.
GLOBAL PERSPECTIVES
The 2020 global map incorporates all survey responses representing the views of over 3000 energy leaders from 104 countries. In this era of transition defined by decentralisation digitalisation and decarbonisation energy leaders must pay attention to many different signals of change and distinguish key issues from the noise. The Issues Monitor identifies shifting patterns of connected issues shaping energy transitions.
A NEW PULSE
The focus for the 2010s was about trying to automate and upgrade the energy system and set targets to move the energy transition forward. Digitalisation accelerated the transition of all sectors towards a more customer-centric environment. New policies and regulations were introduced to facilitate this transition and empower consumers. As a result the 2020s may very well be about realising those targets through a transition from activism to action.
TREND TRACKING: CCS
In comparing response from the Oil & Gas sector in 2015 with 2019 we found that almost half of respondents identified Carbon Capture & Storage (CCS) as a high impact issue in 2019 up from about a third in 2015. CCS is increasingly being viewed as an essential option for continued hydrocarbon use although governmental support is needed to enable scalability and cost effectiveness.
A DIFFERENCE IN OPINION: NUCLEAR
Opinions remain polarised but in many European countries nuclear power is increasingly recognised as a carbon-free energy source and potentially an integral part of the future energy mix. In December 2019 the European Commission set a target of net-zero carbon emissions by 2050. There is qualified support among energy leaders to include nuclear energy to help create a carbon neutral continent and enable a just energy transition.
The annual World Energy Issues Monitor provides unique insight into what energy policymakers CEOs and leading experts identify as Critical Uncertainties and Action Priorities. New this year the Issues Monitor also provides readers with the views of the individual customer detailing their perceptions of their role in the overall energy system. The Issues Monitor report includes a global issues map 58 country maps and six regional maps as well as perspectives from Future Energy Leaders (FEL) and energy innovators.
GLOBAL PERSPECTIVES
The 2020 global map incorporates all survey responses representing the views of over 3000 energy leaders from 104 countries. In this era of transition defined by decentralisation digitalisation and decarbonisation energy leaders must pay attention to many different signals of change and distinguish key issues from the noise. The Issues Monitor identifies shifting patterns of connected issues shaping energy transitions.
A NEW PULSE
The focus for the 2010s was about trying to automate and upgrade the energy system and set targets to move the energy transition forward. Digitalisation accelerated the transition of all sectors towards a more customer-centric environment. New policies and regulations were introduced to facilitate this transition and empower consumers. As a result the 2020s may very well be about realising those targets through a transition from activism to action.
TREND TRACKING: CCS
In comparing response from the Oil & Gas sector in 2015 with 2019 we found that almost half of respondents identified Carbon Capture & Storage (CCS) as a high impact issue in 2019 up from about a third in 2015. CCS is increasingly being viewed as an essential option for continued hydrocarbon use although governmental support is needed to enable scalability and cost effectiveness.
A DIFFERENCE IN OPINION: NUCLEAR
Opinions remain polarised but in many European countries nuclear power is increasingly recognised as a carbon-free energy source and potentially an integral part of the future energy mix. In December 2019 the European Commission set a target of net-zero carbon emissions by 2050. There is qualified support among energy leaders to include nuclear energy to help create a carbon neutral continent and enable a just energy transition.
Evaluation of Zero-Energy Building and Use of Renewable Energy in Renovated Buildings: A Case Study in Japan
Apr 2022
Publication
Following the Paris Agreement in 2015 the worldwide focus on global warming countermeasures has intensified. The Japanese government has declared its aim at achieving carbon neutrality by 2050. The concept of zero-energy buildings (ZEBs) is based on measures to reduce energy consumption in buildings the prospects of which are gradually increasing. This study investigated the annual primary energy consumption; as well as evaluated renewed and renovated buildings that had a solar power generation system and utilized solar and geothermal heat. It further examines the prospects of hydrogen production from on-site surplus electricity and the use of hydrogen fuel cells. A considerable difference was observed between the actual energy consumption (213 MJ/m2 ) and the energy consumption estimated using an energy simulation program (386 MJ/m2 ). Considerable savings of energy were achieved when evaluated based on the actual annual primary energy consumption of a building. The building attained a near net zero-energy consumption considering the power generated from the photovoltaic system. The study showed potential energy savings in the building by producing hydrogen using surplus electricity from on-site power generation and introducing hydrogen fuel cells. It is projected that a building’s energy consumption will be lowered by employing the electricity generated by the hydrogen fuel cell for standby power water heating and regenerating heat from the desiccant system.
Analysing Future Demand, Supply, and Transport of Hydrogen
Jun 2021
Publication
Hydrogen is crucial to Europe’s transformation into a climate-neutral continent by mid-century. This study concludes that the European Union (EU) and UK could see a hydrogen demand of 2300 TWh (2150-2750 TWh) by 2050. This corresponds to 20-25% of EU and UK final energy consumption by 2050. Achieving this future role of hydrogen depends on many factors including market frameworks legislation technology readiness and consumer choice.
The document can be download on their website
The document can be download on their website
Hydrogen Economy Outlook
Mar 2020
Publication
The falling cost of making hydrogen from wind and solar power offers a promising route to cutting emissions in some of the most fossil fuel dependent sectors of the economy such as steel heavy-duty vehicles shipping and cement.
Hydrogen Economy Outlook a new and independent global study from research firm BloombergNEF (BNEF) finds that clean hydrogen could be deployed in the decades to come to cut up to 34% of global greenhouse gas emissions from fossil fuels and industry – at a manageable cost. However this will only be possible if policies are put in place to help scale up technology and drive down costs.
The report’s findings suggest that renewable hydrogen could be produced for $0.8 to $1.6/kg in most parts of the world before 2050. This is equivalent to gas priced at $6-12/MMBtu making it competitive with current natural gas prices in Brazil China India Germany and Scandinavia on an energy-equivalent basis. When including the cost of storage and pipeline infrastructure the delivered cost of renewable hydrogen in China India and Western Europe could fall to around $2/kg ($15/MMBtu) in 2030 and $1/kg ($7.4/MMBtu) in 2050.
Kobad Bhavnagri head of industrial decarbonization for BNEF and lead author of the report said: “Hydrogen has potential to become the fuel that powers a clean economy. In the years ahead it will be possible to produce it at low cost using wind and solar power to store it underground for months and then to pipe it on-demand to power everything from ships to steel mills.”
Hydrogen is a clean-burning molecule that can be used as a substitute for coal oil and gas in a large variety of applications. But for its use to have net environmental benefits it must be produced from clean sources rather than from unabated fossil fuel processes – the usual method at present.
Renewable hydrogen can be made by splitting water into hydrogen and oxygen using electricity generated by cheap wind or solar power. The cost of the electrolyzer technology to do this has fallen by 40% in the last five years and can continue to slide if deployment increases. Clean hydrogen can also be made using fossil fuels if the carbon is captured and stored but this is likely to be more expensive the report finds.
Read the full report on the BloombergNEF website here
Hydrogen Economy Outlook a new and independent global study from research firm BloombergNEF (BNEF) finds that clean hydrogen could be deployed in the decades to come to cut up to 34% of global greenhouse gas emissions from fossil fuels and industry – at a manageable cost. However this will only be possible if policies are put in place to help scale up technology and drive down costs.
The report’s findings suggest that renewable hydrogen could be produced for $0.8 to $1.6/kg in most parts of the world before 2050. This is equivalent to gas priced at $6-12/MMBtu making it competitive with current natural gas prices in Brazil China India Germany and Scandinavia on an energy-equivalent basis. When including the cost of storage and pipeline infrastructure the delivered cost of renewable hydrogen in China India and Western Europe could fall to around $2/kg ($15/MMBtu) in 2030 and $1/kg ($7.4/MMBtu) in 2050.
Kobad Bhavnagri head of industrial decarbonization for BNEF and lead author of the report said: “Hydrogen has potential to become the fuel that powers a clean economy. In the years ahead it will be possible to produce it at low cost using wind and solar power to store it underground for months and then to pipe it on-demand to power everything from ships to steel mills.”
Hydrogen is a clean-burning molecule that can be used as a substitute for coal oil and gas in a large variety of applications. But for its use to have net environmental benefits it must be produced from clean sources rather than from unabated fossil fuel processes – the usual method at present.
Renewable hydrogen can be made by splitting water into hydrogen and oxygen using electricity generated by cheap wind or solar power. The cost of the electrolyzer technology to do this has fallen by 40% in the last five years and can continue to slide if deployment increases. Clean hydrogen can also be made using fossil fuels if the carbon is captured and stored but this is likely to be more expensive the report finds.
Read the full report on the BloombergNEF website here
Scotland’s Energy Strategy Position Statement
Mar 2021
Publication
This policy statement provides:
An overview of our key priorities for the short to medium-term and then moves on to look at how we have continued to abide by the three key principles set out in Scotland's Energy Strategy published in 2017 in our policy design and delivery. Those principles are:
Separate sections have been included on Maximising Scotland's International Potential in the lead up to the UN Framework Convention on Climate Change Conference of the Parties (COP26) and on Consumers to reflect the challenging economic climate we currently face and to highlight the action being taken by the Scottish Government to ensure the cost of our energy transition does not fall unequally.
This statement provides an overview of our approach to supporting the energy sector in the lead up to COP26 and as we embark on a green economic recovery from the COVID-19 pandemic. It summarises how our recent policy publications such as our Hydrogen Policy Statement Local Energy Policy Statement and Offshore Wind Policy Statement collectively support the delivery of the Climate Change Plan update along with the future findings from our currently live consultations including our draft Heat in Buildings Strategy our Call for Evidence on the future development of the Low Carbon Infrastructure Transition Programme (LCITP) and our consultation on Scottish skills requirements for energy efficiency.
While this statement sets out our comprehensive programme of work across the energy sector the current Energy Strategy (2017) remains in place until any further Energy Strategy refresh is adopted by Ministers. It is at the stage of refreshing Scotland's Energy Strategy where we will embark on a series of stakeholder engagements and carry out the relevant impact assessments to inform our thinking on future policy development.
An overview of our key priorities for the short to medium-term and then moves on to look at how we have continued to abide by the three key principles set out in Scotland's Energy Strategy published in 2017 in our policy design and delivery. Those principles are:
- a whole-system view;
- an inclusive energy transition; and
- a smarter local energy model.
- Skills and Jobs;
- Supporting Local Communities:
- Investment; and
- Innovation
Separate sections have been included on Maximising Scotland's International Potential in the lead up to the UN Framework Convention on Climate Change Conference of the Parties (COP26) and on Consumers to reflect the challenging economic climate we currently face and to highlight the action being taken by the Scottish Government to ensure the cost of our energy transition does not fall unequally.
This statement provides an overview of our approach to supporting the energy sector in the lead up to COP26 and as we embark on a green economic recovery from the COVID-19 pandemic. It summarises how our recent policy publications such as our Hydrogen Policy Statement Local Energy Policy Statement and Offshore Wind Policy Statement collectively support the delivery of the Climate Change Plan update along with the future findings from our currently live consultations including our draft Heat in Buildings Strategy our Call for Evidence on the future development of the Low Carbon Infrastructure Transition Programme (LCITP) and our consultation on Scottish skills requirements for energy efficiency.
While this statement sets out our comprehensive programme of work across the energy sector the current Energy Strategy (2017) remains in place until any further Energy Strategy refresh is adopted by Ministers. It is at the stage of refreshing Scotland's Energy Strategy where we will embark on a series of stakeholder engagements and carry out the relevant impact assessments to inform our thinking on future policy development.
World Energy Issues Monitor 2018: Perspectives on the Grand Energy Transition
May 2018
Publication
The World Energy Issues Monitor provides the views of energy leaders from across the globe to highlight the key issues of uncertainty importance and developing signals for the future.
The World Energy Issues Monitor Tool presents in one place dynamic map views of the nine years of Issues Monitor data that has been collated by the World Energy Council. The maps convey a narrative of the key energy issues regional and local variances and how these have changed over time. The tool allows the preparation of different maps for comparison and allows the manipulation of data by geography over time or by highlighting of specific energy issues.
The World Energy Issues Monitor Tool presents in one place dynamic map views of the nine years of Issues Monitor data that has been collated by the World Energy Council. The maps convey a narrative of the key energy issues regional and local variances and how these have changed over time. The tool allows the preparation of different maps for comparison and allows the manipulation of data by geography over time or by highlighting of specific energy issues.
- The geographical views can now be broken out into a country level.
- The time view allows you to see how specific issues have developed whether globally at a regional or country level
- Issues can also be viewed according to certain categories such as OECD non-OECD G20 countries innovators
Narratives for Natural Gas in a Decarbonising European Energy Market
Feb 2019
Publication
The advocacy narrative of the European Union gas community which focused on coal to gas switching and backing up renewables has failed to convince governments NGOs and media commentators that it can achieve post-2030 decarbonisation targets. The gas community therefore needs to develop decarbonisation narratives showing how it will develop commercial scale projects for biogas biomethane and hydrogen from power to gas (electrolysis) and reformed methane. COP21 carbon targets require an accelerating decline in EU methane demand starting around 2030. In 2050 the maximum projected availability of renewable gas is equivalent to 25 per cent of current EU gas demand. Maintaining current demand levels will therefore require very substantial volumes of hydrogen from reformed methane with carbon capture and storage (CCS). Pipeline gas and LNG suppliers will need to progressively decarbonise their product if it is to remain saleable in Europe. However networks face an existential threat unless they can maintain existing throughput while simultaneously adapting to a decarbonised product. Significant threats and challenges to these narratives include: short term geopolitical concerns stemming from dependence on Russian gas ‘hydrocarbon rejectionism’ and an inability of companies to invest for a post-2030 decarbonised future. Governments will need to shift current policy and regulatory frameworks from competition to decarbonisation which will require a ‘regulatory revolution’. In addition to government funding and regulatory support there will need to be very substantial corporate investment in projects for which there is currently no business case. Failure of the gas community to create and deliver credible decarbonisation narratives is likely to result in the adoption of electrification rather than gas decarbonisation options.
Heat Pump Manufacturing Supply Chain Research Project Report
Dec 2020
Publication
The Department for Business Energy and Industrial Strategy (BEIS) commissioned a study to research the capacity of the manufacturing supply chain to meet expected future demand for heat pumps. This report contains analysis of the existing supply chain including component parts and also assesses the risks to and opportunities for growth in domestic heat pump manufacture and export.<br/><br/>Alongside a literature review the findings in this report were supported by interviews with organisations involved in the manufacture of heat pumps and an online workshop held with a range of businesses throughout the supply chain.
Options for Multilateral Initiatives to Close the Global 2030 Climate Ambition and Action Gap - Policy Field Synthetic E-fuels
Jan 2021
Publication
Achieving the goals of the Paris Agreement requires increased global climate action especially towards the production and use of synthetic e-fuels. This paper focuses on aviation and maritime transport and the role of green hydrogen for indirect electrification of industry sectors. Based on a sound analysis of existing multilateral cooperation the paper proposes four potential initiatives to increase climate ambition of the G20 countries in the respective policy field: a Sustainable e-Kerosene Alliance a Sustainable e-fuel Alliance for Maritime Shipping a Hard-to-Abate Sector Partnership and a Global Supply-demand-partnership.
The full report can be found here on the Umweltbundesamt website
The full report can be found here on the Umweltbundesamt website
Study of the Microstructural and First Hydrogenation Properties of TiFe Alloy with Zr, Mn and V as Additives
Jul 2021
Publication
In this paper we report the effect of adding Zr + V or Zr + V + Mn to TiFe alloy on microstructure and hydrogen storage properties. The addition of only V was not enough to produce a minimum amount of secondary phase and therefore the first hydrogenation at room temperature under a hydrogen pressure of 20 bars was impossible. When 2 wt.% Zr + 2 wt.% V or 2 wt.% Zr + 2 wt.% V + 2 wt.% Mn is added to TiFe the alloy shows a finely distributed Ti2Fe-like secondary phase. These alloys presented a fast first hydrogenation and a high capacity. The rate-limiting step was found to be 3D growth diffusion controlled with decreasing interface velocity. This is consistent with the hypothesis that the fast reaction is likely to be the presence of Ti2Fe-like secondary phases that act as a gateway for hydrogen.
The Role of Hydrogen in Powering Industry: APPG on Hydrogen report
Jul 2021
Publication
The APPG on Hydrogen has published its report urging the Government to deliver beyond its existing net zero commitments and set ambitious hydrogen targets in forthcoming strategies to reach net zero by 2050.
The All-Party Parliamentary Group (APPG) on Hydrogen’s report on the role of ‘Hydrogen in powering industry’ sets out 10 recommendations to support and accelerate the growth of the UK’s hydrogen sector and enable a sustainable energy transition.
The All-Party Parliamentary Group (APPG) on Hydrogen’s report on the role of ‘Hydrogen in powering industry’ sets out 10 recommendations to support and accelerate the growth of the UK’s hydrogen sector and enable a sustainable energy transition.
- The Government must continue to expand beyond its existing commitments of 5GW production in the forthcoming Hydrogen Strategy.
- Any forthcoming Government and devolved policies must be complementary of the wider UK low-carbon commitments.
- Industrial clusters should be prioritised for hydrogen use and will be the key catalyst for driving forward the UK’s decarbonisation of industry.
- The Government must commit to incentivising hydrogen production within the UK as opposed to importing this.
- The Government must align hydrogen production pathways with nuclear technology to enhance hydrogen production.
- The Government must develop a UK wide hydrogen network to support the transport sector including a larger-scale implementation of hydrogen refuelling stations.
- Regulators must act quickly to update energy regulations and guidance to support hydrogen’s role in powering industry.
- For hydrogen to expand in the UK a technology neutral approach is required for all types of energy systems.
- Significant and long-term financial support is required for the development deployment and operation of hydrogen technologies.
- Ofgem must ensure the hydrogen market is subject to effective competition to drive down prices for consumers.
Economic Analysis of Hydrogen Household Energy Systems Including Incentives on Energy Communities and Externalities: A Case Study in Italy
Sep 2021
Publication
The building sector is one of the key energy consumers worldwide. Fuel cell micro-Cogeneration Heat and Power systems for residential and small commercial applications are proposed as one of the most promising innovations contributing to the transition towards a sustainable energy infrastructure. For the application and the diffusion of these systems in addition to their environmental performance it is necessary however to evaluate their economic feasibility. In this paper a life cycle assessment of a fuel cell/photovoltaic hybrid micro-cogeneration heat and power system for a residential building is integrated with a detailed economic analysis. Financial indicators (net present cost and payback time are used for studying two different investments: reversible-Solid Oxide Fuel Cell and natural gas SOFC in comparison to a base scenario using a homeowner perspective approach. Moreover two alternative incentives scenarios are analysed and applied: net metering and self-consumers’ groups (or energy communities). Results show that both systems obtain annual savings but their high capital costs still would make the investments not profitable. However the natural gas Solide Oxide Fuel Cell with the net metering incentive is the best scenario among all. On the contrary the reversible-Solid Oxide Fuel Cell maximizes its economic performance only when the self-consumers’ groups incentive is applied. For a complete life cycle cost analysis environmental impacts are monetized using three different monetization methods with the aim to internalize (considering them into direct cost) the externalities (environmental costs). If externalities are considered as an effective cost the natural gas Solide Oxide Fuel Cell system increases its saving because its environmental impact is lower than in the base case one while the reversible-Solid Oxide Fuel Cell system reduces it.
Development of Renewable Energy Multi-energy Complementary Hydrogen Energy System (A Case Study in China): A Review
Aug 2020
Publication
The hydrogen energy system based on the multi-energy complementary of renewable energy can improve the consumption of renewable energy reduce the adverse impact on the power grid system and has the characteristics of green low carbon sustainable etc. which is currently a global research hotspot. Based on the basic principles of hydrogen production technology this paper introduces the current hydrogen energy system topology and summarizes the technical advantages of renewable energy complementary hydrogen production and the complementary system energy coordination forms. The problems that have been solved or reached consensus are summarized and the current status of hydrogen energy system research at home and abroad is introduced in detail. On this basis the key technologies of multi-energy complementation of hydrogen energy system are elaborated especially in-depth research and discussion on coordinated control strategies energy storage and capacity allocation energy management and electrolysis water hydrogen production technology. The development trend of the multi-energy complementary system and the hydrogen energy industry chain is also presented which provides a reference for the development of hydrogen production technology and hydrogen energy utilization of the renewable energy complementary system.
No more items...