Policy & Socio-Economics
Explaining Hydrogen Energy Technology Acceptance: A Critical Review
Jan 2022
Publication
The use of hydrogen energy and the associated technologies is expected to increase in the coming years. The success of hydrogen energy technology (HET) is however dependent on public acceptance of the technology. Developing this new industry in a socially responsible way will require an understanding of the psychology factors that may facilitate or impede its public acceptance. This paper reviews 27 quantitative studies that have explored the relationship between psychological factors and HET acceptance. The findings from the review suggest that the perceived effects of the technology (i.e. the perceived benefits costs and risks) and the associated emotions are strong drivers of HET acceptance. This paper does though highlight some limitations with past research that make it difficult to make strong conclusions about the factors that influence HET acceptance. The review also reveals that few studies have investigated acceptance of different types of HET beyond a couple of applications. The paper ends with a discussion about directions for future research and highlights some practical implications for messaging and policy.
Interlinking the Renewable Electricity and Gas Sectors: A Techno-Economic Case Study for Austria
Oct 2021
Publication
Achieving climate neutrality requires a massive transformation of current energy systems. Fossil energy sources must be replaced with renewable ones. Renewable energy sources with reasonable potential such as photovoltaics or wind power provide electricity. However since chemical energy carriers are essential for various sectors and applications the need for renewable gases comes more and more into focus. This paper determines the Austrian green hydrogen potential produced exclusively from electricity surpluses. In combination with assumed sustainable methane production the resulting renewable gas import demand is identified based on two fully decarbonised scenarios for the investigated years 2030 2040 and 2050. While in one scenario energy efficiency is maximised in the other scenario significant behavioural changes are considered to reduce the total energy consumption. A techno-economic analysis is used to identify the economically reasonable national green hydrogen potential and to calculate the averaged levelised cost of hydrogen (LCOH2) for each scenario and considered year. Furthermore roll-out curves for the necessary expansion of national electrolysis plants are presented. The results show that in 2050 about 43% of the national gas demand can be produced nationally and economically (34 TWh green hydrogen 16 TWh sustainable methane). The resulting national hydrogen production costs are comparable to the expected import costs (including transport costs). The most important actions are the quick and extensive expansion of renewables and electrolysis plants both nationally and internationally
Few-atom Cluster Model Systems for a Hydrogen Economy
Apr 2020
Publication
To increase the share of renewable zero-emission energy sources such as wind and solar power in our energy supply the problem of their intermittency needs to be addressed. One way to do so is by buffering excess renewable energy via the production of hydrogen which can be stored for later use after re-electrification. Such a clean renewable energy cycle based on hydrogen is commonly referred to as the hydrogen economy. This review deals with cluster model systems of the three main components of the hydrogen economy i.e. hydrogen generation hydrogen storage and hydrogen re-electrification and their basic physical principles. We then present examples of contemporary research on few atom clusters both in the gas phase and deposited to show that by studying these clusters as simplified models a mechanistic understanding of the underlying physical and chemical processes can be obtained. Such an understanding will inspire and enable the design of novel materials needed for advancing the hydrogen economy.
Our Green Print: Future Heat for Everyone
Jul 2021
Publication
Green Print - Future Heat for Everyone draws together technical consumer and economic considerations to create a pioneering plan to transition 22 million UK homes to low carbon heat by 2050.<br/>Our Green Print underlines the scale of the challenge ahead acknowledging that a mosaic of low carbon heating solutions will be required to meet the needs of individual communities and setting out 12 key steps that can be taken now in order to get us there<br/>The Climate Change Committee (CCC) estimates an investment spend of £250bn to upgrade insulation and heating in homes as well as provide the infrastructure to deliver the energy.<br/>This is a task of unprecedented scale the equivalent of retro-fitting 67000 homes every month from now until 2050. In this Report Cadent takes the industry lead in addressing the challenge.
Potential and Economic Analysis of Solar-to-Hydrogen Production in the Sultanate of Oman
Aug 2021
Publication
Hydrogen production using renewable power is becoming an essential pillar for future sustainable energy sector development worldwide. The Sultanate of Oman is presently integrating renewable power generations with a large share of solar photovoltaic (PV) systems. The possibility of using the solar potential of the Sultanate can increase energy security and contribute to the development of the sustainable energy sector not only for the country but also for the international community. This study presents the hydrogen production potential using solar resources available in the Sultanate. About 15 locations throughout the Sultanate are considered to assess the hydrogen production opportunity using a solar PV system. A rank of merit order of the locations for producing hydrogen is identified. It reveals that Thumrait and Marmul are the most suitable locations whereas Sur is the least qualified. This study also assesses the economic feasibility of hydrogen production which shows that the levelized cost of hydrogen (LCOH) in the most suitable site Thumrait is 6.31 USD/kg. The LCOH in the least convenient location Sur is 7.32 USD/kg. Finally a sensitivity analysis is performed to reveal the most significant influential factor affecting the future’s green hydrogen production cost. The findings indicate that green hydrogen production using solar power in the Sultanate is promising and the LCOH is consistent with other studies worldwide.
Building Efficiency- Reducing Energy Demand in the Commercial Sector
Dec 2013
Publication
The report was formally launched on 2nd December in Parliament at a panel debate chaired by Lord Whitty and Oliver Colvile and featured representatives from Government and Industry. The report outlines the case for investment by businesses in the energy efficiency of their buildings and operations and highlights how this could help neutralise the threat to profitability posed by increasing energy bills energy price volatility and an increasing reliance on electricity in the commercial sector. The report highlights that business in the UK have the opportunity to not only reduce energy bills but increase their competitiveness and improve worker productivity through better designed buildings.
Prospects of Integrated Photovoltaic‐Fuel Cell Systems in a Hydrogen Economy: A Comprehensive Review
Oct 2021
Publication
Integrated photovoltaic‐fuel cell (IPVFC) systems amongst other integrated energy generation methodologies are renewable and clean energy technologies that have received diverse re‐ search and development attentions over the last few decades due to their potential applications in a hydrogen economy. This article systematically updates the state‐of‐the‐art of IPVFC systems and provides critical insights into the research and development gaps needed to be filled/addressed to advance these systems towards full commercialization. Design methodologies renewable energy‐ based microgrid and off‐grid applications energy management strategies optimizations and the prospects as self‐sustaining power sources were covered. IPVFC systems could play an important role in the upcoming hydrogen economy since they depend on solar hydrogen which has almost zero emissions during operation. Highlighted herein are the advances as well as the technical challenges to be surmounted to realize numerous potential applications of IPVFC systems in unmanned aerial vehicles hybrid electric vehicles agricultural applications telecommunications desalination synthesis of ammonia boats buildings and distributed microgrid applications.
Study on Introduction of CO2 Free Energy to Japan with Liquid Hydrogen
Jul 2015
Publication
In Japan both CO2 (Carbon dioxide) emission reduction and energy security are the very important social issues after Fukushima Daiichi accident. On the other hand FCV (Fuel Cell Vehicle) using hydrogen will be on the market in 2015. Introducing large mass hydrogen energy is being expected as expanding hydrogen applications or solution to energy issues of Japan. And then the Japanese government announced the road map for introducing hydrogen energy supply chain in this June2014. Under these circumstances imported CO2 free hydrogen will be one of the solutions for energy security and CO2 reduction if the hydrogen price is affordable. To achieve this Kawasaki Heavy Industries Ltd. (KHI) performed a feasibility study on CO2-free hydrogen energy supply chain from Australian brown coal linked with CCS (Carbon dioxide Capture and Storage) to Japan. In the study hydrogen production systems utilizing brown coal gasification and LH2 (liquid hydrogen) systems as storing and transporting hydrogen are examined. This paper shows the possibility of realizing the CO2 free hydrogen supply chain the cost breakdown of imported hydrogen cost its cost competitiveness with conventional fossil and LH2 systems as key technologies of the hydrogen energy chain.
Interaction of Hydrogen Infrastructures with other Sector Coupling Options Towards a Zero-emission Energy System in Germany
Aug 2021
Publication
The flexible coupling of sectors in the energy system for example via battery electric vehicles electric heating or electric fuel production can contribute significantly to the integration of variable renewable electricity generation. For the implementation of the energy system transformation however there are numerous options for the design of sector coupling each of which is accompanied by different infrastructure requirements. This paper presents the extension of the REMix energy system modelling framework to include the gas sector and its application for investigating the cost-optimal design of sector coupling in Germany's energy system. Considering an integrated optimisation of all relevant technologies in their capacities and hourly use a path to a climate-neutral system in 2050 is analysed. We show that the different options for flexible sector coupling are all needed and perform different functions. Even though flexible electrolytic production of hydrogen takes on a very dominant role in 2050 it does not displace other technologies. Hydrogen also plays a central role in the seasonal balancing of generation and demand. Thus large-scale underground storage is part of the optimal system in addition to a hydrogen transport network. These results provide valuable guidance for the implementation of the energy system transformation in Germany.
Future Heat Series Part 2 - Policy for Heat
Oct 2015
Publication
Policy for Heat: Transforming the System urges Government to implement an ambitious long-term decarbonisation strategy for the heat sector before it’s too late in new inquiry report. The report builds on the work of Part 1 in the Future Heat Series which compared recent decarbonisation pathways and analyses to identify and highlight key policy mechanisms and transitions that are needed in order to decarbonise heat for buildings by 2050. Chaired by Shadow Energy Minister Jonathan Reynolds MP and Conservative MP Rebecca Pow (and also previous MP and member of the Energy and Climate Change Select Committee Dan Byles MP until he stood down at the General Election) the report is written by cross-party think tank group Carbon Connect. The report was published in Parliament at a cross-party debate on Wednesday 14th October. Sponsored by Energy & Utilities Alliance (EUA) and the Institution of Gas Engineers and Managers (IGEM) the report is the second in a cross-party and independent inquiry series.
Future Heat Series Part 1 - Pathways for Heat
Nov 2014
Publication
Together the pathways examined in the report paint a picture of the nationwide transformation getting underway in how we heat our homes and buildings. The report identifies that by 2050 gas used to heat buildings could fall by 75-95% electricity increase from a 10% share today to 30-80% and district heat increase from less than 2% to up to a 40% share. At the same time energy efficiency could help to lower bills and offset the expected growth in our heating needs from an expanding population and building stock. Across most pathways examined in the report mass deployment of low carbon heat solutions ramps up in the lead-in to 2030. Carbon Connect’s overarching recommendation is that the next decade should be spent preparing by developing a robust strategy for decarbonising heat in buildings whilst testing and scaling up delivery models. The report calls for the next Government to prioritise these preparations in the same way that preparing for power sector decarbonisation has been the overriding focus of energy policy in the past decade. The Future Heat Series brings together politicians policy and academic experts and industry leaders. Together this coalition of key figures is taking stock of evidence progressing the policy debate in an open and constructive forum and building consensus for prioritising and transforming heat. Pathways for Heat is the first part of the Future Heat Series and presents six recommendations and over twenty findings.
Prospective Techno-economic and Environmental Assessment of a National Hydrogen Production Mix for Road Transport
Nov 2019
Publication
Fuel cell electric vehicles arise as an alternative to conventional vehicles in the road transport sector. They could contribute to decarbonising the transport system because they have no direct CO2 emissions during the use phase. In fact the life-cycle environmental performance of hydrogen as a transportation fuel focuses on its production. In this sense through the case study of Spain this article prospectively assesses the techno-economic and environmental performance of a national hydrogen production mix by following a methodological framework based on energy systems modelling enriched with endogenous carbon footprint indicators. Taking into account the need for a hydrogen economy based on clean options alternative scenarios characterised by carbon footprint restrictions with respect to a fossil-based scenario dominated by steam methane reforming are evaluated. In these scenarios the steam reforming of natural gas still arises as the key hydrogen production technology in the short term whereas water electrolysis is the main technology in the medium and long term. Furthermore in scenarios with very restrictive carbon footprint limits biomass gasification also appears as a key hydrogen production technology in the long term. In the alternative scenarios assessed the functional substitution of hydrogen for conventional fossil fuels in the road transport sector could lead to high greenhouse gas emission savings ranging from 36 to 58 Mt CO2 eq in 2050. Overall these findings and the model structure and characterisation developed for the assessment of hydrogen energy scenarios are expected to be relevant not only to the specific case study of Spain but also to analysts and decision-makers in a large number of countries facing similar concerns.
Optimal Integration of Hydrogen-Based Energy Storage Systems in Photovoltaic Microgrids: A Techno-Economic Assessment
Aug 2020
Publication
The feasibility and cost-effectiveness of hydrogen-based microgrids in facilities such as public buildings and small- and medium-sized enterprises provided by photovoltaic (PV) plants and characterized by low electric demand during weekends were investigated in this paper. Starting from the experience of the microgrid being built at the Renewable Energy Facility of Sardegna Ricerche (Italy) which among various energy production and storage systems includes a hydrogen storage system a modeling of the hydrogen-based microgrid was developed. The model was used to analyze the expected performance of the microgrid considering different load profiles and equipment sizes. Finally the microgrid cost-effectiveness was evaluated using a preliminary economic analysis. The results demonstrate that an effective design can be achieved with a PV system sized for an annual energy production 20% higher than the annual energy requested by the user and a hydrogen generator size 60% of the PV nominal power size. This configuration leads to a self-sufficiency rate of about 80% and without public grants a levelized cost of energy comparable with the cost of electricity in Italy can be achieved with a reduction of at least 25–40% of the current initial costs charged for the whole plant depending on the load profile shape.
Consumer Attitudes to Fuel Cell Vehicles Post Trial in the United Kingdom
Mar 2016
Publication
Fuel cell vehicles (FCVs) have clear societal and environmental benefits and can help mitigate the issues of climate change urban air pollution and oil dependence. In order for FCVs to have the biggest impact on these issues they need to be employed in large numbers. First though they need to be adopted by consumers. Their acceptance depends on positive consumer attitudes towards the vehicles. Currently there is a limited understanding within the literature on how consumers perceive FCVs and what the likelihood of adoption by consumers would be despite significant governmental and organisational investments into the technology. Therefore this study assesses consumer attitudes towards FCVs in the United Kingdom. 81 persons drove a Hyundai FCV at the Low Carbon Vehicle Event in September 2015 of which 30 took part in this study. The results show that at present FCVs are perceived mostly as being similar to incumbent internal combustion engine vehicles. This is an admirable technical achievement however in order for consumers to adopt FCVs they will need to be perceived as having distinctive benefits. Two significant barriers to the adoption of FCVs are observed in this sample: high costs and lack of refuelling infrastructure. This paper goes on to make suggestions on how and which beneficial attributes of the vehicles can be promoted to consumers and also makes suggestions on how the barriers can be overcame so that FCVs will be adopted by consumers.
Uncomfortable Home Truths - Why Britain Urgently Needs a Low Carbon Heat Strategy Future Gas Series Part 3
Nov 2019
Publication
UK homes are primarily heated by fossil fuels and contribute 13% of UK’s carbon footprint (equivalent to all the UK’s 38.4m cars). The report says this is incompatible with UK climate legislation targeting net-zero economy by 2050. New polling finds that consumers are open to cleaner greener ways to heat their homes into the future but that they are “still in the dark about smarter greener heating solutions and lack access to independent advice to help them make better decisions for their homes pockets and the planet”.<br/><br/>The report – Uncomfortable Home Truths: why Britain urgently needs a low carbon heat strategy – says a bold new national roadmap is needed by 2020 which puts consumers and households at the heart of a revolution in green heat innovation. It recommends the creation of an Olympic-style delivery body to catalyse and coordinate regional innovation and local leadership tailored to different parts of the UK and the nation’s diverse housing stock.<br/><br/>This report is the third in the Future Gas Series which has explored the opportunities and challenges associated with using low carbon gas in the energy system and is backed by cross-party parliamentary co-Chairs
Synergies between Renewable Energy and Flexibility Investments: A Case of a Medium-Sized Industry
Nov 2021
Publication
Climate and energy policies are tools used to steer the development of a sustainable economy supplied by equally sustainable energy systems. End-users should plan their investments accounting for future policies such as incentives for system-oriented consumption emission prices and hydrogen economy to ensure long-term competitiveness. In this work the utilization of variable renewable energy and flexibility potentials in a case study of an an aggregate industry is investigated. An energy concept considering PV and battery expansion flexible production fuel cell electric trucks (FCEV) and hydrogen production is proposed and analysed under expected techno-economic conditions and policies of 2030 using an energy system optimization model. Under this concept total costs and emissions are reduced by 14% and 70% respectively compared to the business-as-usual system. The main benefit of PV investment is the lowered electricity procurement. Flexibility from schedule manufacturing and hydrogen production increases not only the self-consumption of PV generation from 51% to 80% but also the optimal PV capacity by 41%. Despite the expected cost reduction and efficiency improvement FCEV is still not competitive to diesel trucks due to higher investment and fuel prices i.e. its adoption increases the costs by 8%. However this is resolved when hydrogen can be produced from own surplus electricity generation. Our findings reveal synergistic effects between different potentials and the importance of enabling local business models e.g. regional hydrogen production and storage services. The SWOT analysis of the proposed concept shows that the pursuit of sustainability via new technologies entails new opportunities and risks. Lastly end-users and policymakers are advised to plan their investments and supports towards integration of multiple application consumption sectors and infrastructure.
Future Electricity Series Part 3 - Power from Nuclear
Mar 2014
Publication
This independent cross-party report highlights the key role that political consensus can play in helping to reduce the costs of nuclear power in the UK as well as other low carbon technologies. This political consensus has never been more important than in this ‘defining decade’ for the power sector. The report highlights that an immediate challenge facing the UK’s new build programme is agreeing with the European Commission a regime for supporting new nuclear power. Changing the proposed support package would not be an impossible task if made necessary but maintaining broad political consensus and considering the implications of delay are also important. The State Aid process is an important opportunity for scrutiny with the report demonstrating that shareholders for Hinkley Point C could see bigger returns (19-21%) than those typically expected for PFI projects (12-15%). However it is too early to conclude on the value for money of the Hinkley Point C agreement. Both the negotiation process and the resulting investment contract are important but there has been little transparency over either so far and the negotiations were not competitive. The inquiry calls for more urgency and better coordination in seizing the opportunity to reuse the UK’s plutonium stockpile.
The UK’s stockpile of separated plutonium presents opportunities to tackle a number of national strategic priorities including implementing long term solutions for nuclear waste developing new technologies that could redefine the sector laying the ground for new nuclear power and pursuing nuclear non-proliferation. Government has identified three ‘credible solutions’ for reuse and the report recommends that it now sets clearer criteria against which to assess options and identifies budgetary requirements to help expediate the process. The report also argues that Government should do more on new nuclear technologies that could redefine the sector – such as considering smaller reactors nuclear for industrial heat or hydrogen production and closed or thorium fuel cycles. The Government’s initial response to a review of nuclear R&D a year ago by the then Chief Scientific Advisor Sir John Beddington has been welcome and it needs to build on this. In particular the UK should capitalise upon its existing expertise and past experience to focus efforts where there is most strategic value. Nulcear waste. Having failed to date the Government must urgently revisit plans for finding a site to store nuclear waste underground for thousands of years. Implementing this is a crucial part of demonstrating that nuclear waste is a manageable challenge. Despite being rejected by Cumbria County Council the continuing strong support amongst communities in West Cumbria for hosting a site is a promising sign.
On affordability the report finds that it is not yet clear which electricity generation technologies will be cheapest in the 2020s and beyond. Coal and gas could get more expensive if fossil fuel and carbon prices rise whilst low carbon technologies could get cheaper as technology costs fall with more deployment. This is the main reason for adopting an ‘all of the above’ strategy including nuclear power until costs become clearer and there is broad consensus behind this general approach.
On security of supply the inquiry says that deployment of nuclear power is likely to be influenced more by the economics of system balancing rather than technical system balancing challenges which can be met with greater deployment of existing balancing tools. The cost of maintaining system security is likely to mean that the UK maintains at least some baseload capacity such as nuclear power to limit system costs.
On sustainability the report finds that the environmental impacts of nuclear power are comparable to some generation technologies and favourable to others although the long lived nature of some radioactive nuclear waste and the dual use potential of nuclear technology for civil and military applications create unique sustainability challenges which the UK is a world leader in managing.
It is the final report of the Future Electricity Series an independent and cross party inquiry into the UK power sector sponsored by the Institution of Gas Engineers and Managers
The UK’s stockpile of separated plutonium presents opportunities to tackle a number of national strategic priorities including implementing long term solutions for nuclear waste developing new technologies that could redefine the sector laying the ground for new nuclear power and pursuing nuclear non-proliferation. Government has identified three ‘credible solutions’ for reuse and the report recommends that it now sets clearer criteria against which to assess options and identifies budgetary requirements to help expediate the process. The report also argues that Government should do more on new nuclear technologies that could redefine the sector – such as considering smaller reactors nuclear for industrial heat or hydrogen production and closed or thorium fuel cycles. The Government’s initial response to a review of nuclear R&D a year ago by the then Chief Scientific Advisor Sir John Beddington has been welcome and it needs to build on this. In particular the UK should capitalise upon its existing expertise and past experience to focus efforts where there is most strategic value. Nulcear waste. Having failed to date the Government must urgently revisit plans for finding a site to store nuclear waste underground for thousands of years. Implementing this is a crucial part of demonstrating that nuclear waste is a manageable challenge. Despite being rejected by Cumbria County Council the continuing strong support amongst communities in West Cumbria for hosting a site is a promising sign.
On affordability the report finds that it is not yet clear which electricity generation technologies will be cheapest in the 2020s and beyond. Coal and gas could get more expensive if fossil fuel and carbon prices rise whilst low carbon technologies could get cheaper as technology costs fall with more deployment. This is the main reason for adopting an ‘all of the above’ strategy including nuclear power until costs become clearer and there is broad consensus behind this general approach.
On security of supply the inquiry says that deployment of nuclear power is likely to be influenced more by the economics of system balancing rather than technical system balancing challenges which can be met with greater deployment of existing balancing tools. The cost of maintaining system security is likely to mean that the UK maintains at least some baseload capacity such as nuclear power to limit system costs.
On sustainability the report finds that the environmental impacts of nuclear power are comparable to some generation technologies and favourable to others although the long lived nature of some radioactive nuclear waste and the dual use potential of nuclear technology for civil and military applications create unique sustainability challenges which the UK is a world leader in managing.
It is the final report of the Future Electricity Series an independent and cross party inquiry into the UK power sector sponsored by the Institution of Gas Engineers and Managers
The Role of Electrification and Hydrogen in Breaking the Biomass Bottleneck of the Renewable Energy System – A Study on the Danish Energy System
Jun 2020
Publication
The aim of this study is to identify the technical solution space for future fully renewable energy systems that stays within a sustainable biomass demand. In the transition towards non-fossil energy and material systems biomass is an attractive source of carbon for those demands that also in the non-fossil systems depend on high density carbon containing fuels and feedstocks. However extensive land use is already a sustainability challenge and an increase in future demands threat to exceed global sustainable biomass potentials which according to an international expert consensus is around 10 – 30 GJ/person/year in 2050. Our analytical review of 16 scenarios from 8 independent studies of fully renewable energy system designs and synthesis of 9 generic system designs reveals the significance of the role of electrification and hydrogen integration for building a fully renewable energy system which respects the global biomass limitations. The biomass demand of different fully renewable energy system designs was found to lie in the range of 0 GJ/person/year for highly integrated electrified pure electro-fuel scenarios with up to 25 GJ/person/year of hydrogen to above 200 GJ/person/year for poorly integrated full bioenergy scenarios with no electrification or hydrogen integration. It was found that a high degree of system electrification and hydrogen integration of at least 15 GJ/person/year is required to stay within sustainable biomass limits.
Regional Insights into Low-carbon Hydrogen Scale Up: World Energy Insights Working Paper
May 2022
Publication
Following the release of the “Hydrogen on the Horizon” series in July and September 2021 the World Energy Council in collaboration with EPRI and PwC led a series of regional deep dives to understand regional differences within low-carbon hydrogen development. These regional deep dives aimed to uncover regional perspectives and differing dynamics for low-carbon hydrogen uptake.<br/>Although each region presents its own distinctive challenges and opportunities the deep dives revealed that the “regional paths” provide new insights into the global scaling up of low-carbon hydrogen in the coming years. In addition each region holds its own unique potential in achieving the Sustainable Development Goals.<br/>Key Takeaways:<br/>1. Our new regional insights indicate that low-carbon hydrogen can play a significant role by 2040 across the world by supporting countries’ efforts towards achieving Paris Agreement goals whilst contributing to the diversity and security of their energy portfolios. This would require significant global trade flows of hydrogen and hydrogen-based fuels.<br/>2. The momentum for hydrogen-based fuels is continuing to grow worldwide but differences are seen between regions – based on differing market activities and opportunities.<br/>3. Today moving from “whether” to “how” to develop low-carbon hydrogen highlights significant uncertainties which need to be addressed if hydrogen is to reach its full potential.<br/>Can the challenges in various supply chain options be overcome?<br/>Can hydrogen play a role in tackling climate change in the short term?<br/>Can bankable projects emerge and the gap between engineers and financers be bridged? Can the stability of supply of the main low-carbon hydrogen production sources be guaranteed?<br/>4. Enabling low-carbon hydrogen at scale would notably require greater coordination and cooperation amongst stakeholders worldwide to better mobilise public and private finance and to shift the focus to end-users and people through the following actions:<br/>Moving from production cost to end-use price<br/>Developing Guarantees of Origin schemes with sustainability requirements<br/>Developing a global monitoring and reporting tool on low-carbon hydrogen projects<br/>Better consideration of social impacts alongside economic opportunities
Power-to-Gas Hydrogen: Techno-economic Assessment of Processes Towards a Multi-purpose Energy Carrier
Dec 2016
Publication
The present work investigates Power-to-Gas (PtG) options for variable Renewable Electricity storage into hydrogen through low temperature (alkaline and PEM) and high-temperature (SOEC) water electrolysis technologies. The study provides the assessment of the cost of the final product when hydrogen is employed for mobility (on-site refueling stations) electricity generation (by fuel cells in Power-to-Power systems) and grid injection in the natural gas network. Costs estimations are performed for 2013-2030 scenarios. A case study on the impact of variable Renewable Electricity storage by hydrogen generation on the Italian electricity and mobility sectors is presented.
No more items...