Education, Training & Lessons Learned
Towards Hydrogen Safety Education and Training
Sep 2005
Publication
The onset and further development of the hydrogen economy are known to be constrained by safety barriers as well as by the level of public acceptance of new applications. Educational and training programmes in hydrogen safety which are currently absent in Europe are considered to be a key instrument in lifting these limitations and to ensure the safe introduction of hydrogen as an energy carrier. Therefore the European Network of Excellence ‘Safety of Hydrogen as an Energy Carrier’ (NoE HySafe) embarked on the establishment of the e-Academy of Hydrogen Safety. This work is led by the University of Ulster and carried out in cooperation with international partners from five other universities (Universidad Politecnica de Madrid Spain; University of Pisa Italy; Warsaw University of Technology Poland; Instituto Superior Technico Portugal; University of Calgary Canada) two research institutions (Forschungszentrum Karlsruhe and Forschungszentrum Juelich Germany) and one enterprise (GexCon Norway). The development of an International Curriculum on Hydrogen Safety Engineering aided by world-class experts from within and outside NoE HySafe is of central importance to the establishment of the e-Academy of Hydrogen Safety. Despite its key role in identifying the knowledge framework of the subject matter and its role in aiding educators with the development of teaching programmes on hydrogen safety no such curriculum appears to have been developed previously. The current structure of the International Curriculum on Hydrogen Safety Engineering and the motivation behind it are described in this paper. Future steps in the development of a system of hydrogen safety education and training in Europe are briefly described.
Using Hydrogen Safety Best Practices and Learning From Safety Events
Sep 2009
Publication
A best practice is a technique or methodology that has reliably led to a desired result. A wealth of experience regarding the safe use and handling of hydrogen exists as a result of an extensive history in a wide variety of industrial and aerospace settings. Hydrogen Safety Best Practices (www.h2bestpractices.org) captures this vast knowledge base and makes it publicly available to those working with hydrogen and related systems including those just starting to work with hydrogen. This online manual is organized under a number of hierarchical technical content categories. References including publications and other online links that deal with the safety aspects of hydrogen are compiled for easy access. This paper discusses the development of Hydrogen Safety Best Practices as a safety knowledge tool the nature of its technical content and the steps taken to enhance its value and usefulness. Specific safety event examples are provided to illustrate the link between technical content in the online best practices manual and a companion safety knowledge tool Hydrogen Incident Reporting and Lessons Learned (www.h2incidents.org) which encourages the sharing of lessons learned and other safety event information.
Hydrogen Safety, Training and Risk Assessment System
Sep 2007
Publication
The rapid evolution of information related to hydrogen safety is multidimensional ranging from developing codes and standards to CFD simulations and experimental studies of hydrogen releases to a variety of risk assessment approaches. This information needs to be transformed into system design risk decision-making and first responder tools for use by hydrogen community stakeholders. The Canadian Transportation Fuel Cell Alliance (CTFCA) has developed HySTARtm an interactive Hydrogen Safety Training And Risk System. The HySTARtm user interacts with a Web-based 3-D graphical user interface to input hydrogen system configurations. The system includes a Codes and Standards Expert System that identifies the applicable codes and standards in a number of national jurisdictions that apply to the facility and its components. A Siting Compliance and Planning Expert System assesses compliance with clearance distance requirements in these jurisdictions. Incorporating the results of other CTFCA projects HySTARtm identifies stand-out hydrogen release scenarios and their corresponding release condition that serves as input to built-in consequence and risk assessment programs that output a variety of risk assessment metrics. The latter include on- and off-site individual risk probability of loss of life and expected number of fatalities. These results are displayed on the graphical user interface used to set up the facility. These content and graphical tools are also used to educate regulatory approval and permitting officials and build a first-responder training guide.
National Training Facility for Hydrogen Safety. Five year plan for HAMMER
Sep 2005
Publication
A suitably trained emergency response force is an essential component for safe implementation of any type of fuel infrastructure. Because of the relative newness of hydrogen as a fuel however appropriate emergency response procedures are not yet well understood by responder workforces across the United States and around the world. A significant near-term training effort is needed to ensure that the future hydrogen infrastructure can be developed and operated with acceptable incident risk. Efforts are presently underway at the HAMMER site in Washington State to develop curricula related to hydrogen properties and behavior identification of problems (e.g. incorrect equipment installation) and appropriate response and other relevant information intended for classroom instruction. In addition a number of hands-on training props are planned for realistic simulation of hydrogen incidents in order to convey proper response procedures in high-pressure cryogenic high leakage or other high-risk accident situations. Surveys of emergency responders fire marshals regulatory authorities manufacturers and others are being undertaken to ensure that the capabilities developed and offered at HAMMER will meet the acknowledged need. This paper describes the training curricula and props anticipated at HAMMER and is intended to provide useful information to others planning similar training programs.
Incident Reporting- Learning from Experience
Sep 2007
Publication
Experience makes a superior teacher. Sharing the details surrounding safety events is one of the best ways to help prevent their recurrence elsewhere. This approach requires an open non-punitive environment to achieve broad benefits. The Hydrogen Incident Reporting Tool (www.h2incidents.org) is intended to facilitate the sharing of lessons learned and other relevant information gained from actual experiences using and working with hydrogen and hydrogen systems. Its intended audience includes those involved in virtually any aspect of hydrogen technology systems and use with an emphasis towards energy and transportation applications. The database contains records of safety events both publicly available and/or voluntarily submitted. Typical records contain a general description of the occurrence contributing factors equipment involved and some detailing of consequences and changes that have been subsequently implemented to prevent recurrence of similar events in the future. The voluntary and confidential nature and other characteristics surrounding the database mean that any analysis of apparent trends in its contents cannot be considered statistically valid for a universal population. A large portion of reported incidents have occurred in a laboratory setting due to the typical background of the reporting projects for example. Yet some interesting trends are becoming apparent even at this early stage of the database’s existence and general lessons can already be taken away from these experiences. This paper discusses the database and a few trends that have already become apparent for the reported incidents. Anticipated future uses of this information are also described. This paper is intended to encourage wider participation and usage of the incidents reporting database and to promote the safety benefits offered by its contents.
The Hydrogen Executive Leadership Panel (HELP) Initiative for Emergency Responder Training
Sep 2007
Publication
In close cooperation with their Canadian counterparts United States public safety authorities are taking the first steps towards creating a proper infrastructure to ensure the safe use of the new hydrogen fuel cells now being introduced commercially. Currently public safety officials are being asked to permit hydrogen fuel cells for stationary power and as emergency power backups for the telecommunications towers that exist everywhere. Consistent application of the safety codes is difficult – in part because it is new – yet it is far more complex to train emergency responders to deal safely with the inevitable hydrogen incidents. The US and Canadian building and fire codes and standards are similar but not identical. The US and Canadian rules are unlikely to be useful to other nations without modification to suit different regulatory systems. However emergency responder safety training is potentially more universal. The risks strategies and tactics are unlikely to differ much by region. The Hydrogen Executive Leadership Panel (HELP) made emergency responder safety training its first priority because the transition to hydrogen depends on keeping incidents small and inoffensive and the public and responders safe from harm. One might think that advising 1.2 million firefighters and 800000 law enforcement officers about hydrogen risks is no more complicated than adding guidance to a website. One would be wrong. The term “training” has specific legal implications which may vary by state. For hazardous materials federal requirements apply. Insurance companies place training requirements on the policies they sell to fire departments including the thousands of small all-volunteer departments which may operate as private corporations. Union contracts may define training and promotions may be based on satisfactorily completed certain levels of training. Emergency responders could no sooner learn how to extinguish a<br/>hydrogen fire by reading a webpage than a person could learn to ride a bicycle by reading a book. Procedures must be learned by listening reading and then doing. Regular practice is necessary. As new hydrogen applications are commercialized additional responder training may be necessary. This highlights another obstacle emergency responders’ ability to travel distances and take the time to undergo training. Historically fire academies established adjunct instructor programs and satellite academies to bring the training to firefighters. The large well-equipped academies are typically used for specialized training. States rarely have enough instructors and instructors often must take the time to create a course outline research each point and produce a program that is informative useful and holds the attention of responders. The challenge of training emergency responders seems next to impossible but public safety authorities are asked to tackle the impossible every day and a model exists to move forward in the U.S. Over the past few years the National Association of State Fire Marshals and U.S. Department of Transportation enlisted the help of emergency responders and industry to create a standardized approach to train emergency responders to deal with pipeline incidents. A curriculum and training materials were created and more than 26000 sets have been distributed for free to public safety agencies nationwide. More than 8000 instructors have been trained to use these materials that are now part of the regular training in 23 states. Using this model HELP intends to ensure that all emergency responders are trained to address hydrogen risks. The model and the rigorous scenario analysis and review used to developing the operational and technical training is addressed in this paper.
Integration of Experimental Facilities: A Joint Effort for Establishing a Common Knowledge Base in Experimental Work on Hydrogen Safety
Sep 2009
Publication
With regard to the goals of the European HySafe Network research facilities are essential for the experimental investigation of relevant phenomena for testing devices and safety concepts as well as for the generation of validation data for the various numerical codes and models. The integrating activity ‘Integration of Experimental Facilities (IEF)’ has provided basic support for jointly performed experimental work within HySafe. Even beyond the funding period of the NoE HySafe in the 6th Framework Programme IEF represents a long lasting effort for reaching sustainable integration of the experimental research capacities and expertise of the partners from different research fields. In order to achieve a high standard in the quality of experimental data provided by the partners emphasis was put on the know-how transfer between the partners. The strategy for reaching the objectives consisted of two parts. On the one hand a documentation of the experimental capacities has been prepared and analysed. On the other hand a communication base has been established by means of biannual workshops on experimental issues. A total of 8 well received workshops has been organised covering topics from measurement technologies to safety issues. Based on the information presented by the partners a working document on best practice including the joint experimental knowledge of all partners with regard to experiments and instrumentation was created. Preserving the character of a working document it was implemented in the IEF wiki website which was set up in order to provide a central communication platform. The paper gives an overview of the IEF network activities over the last 5 years.
A Hydrogen-Air Explosion in a Process Plant: A Case History
Sep 2005
Publication
In the summer of 1985 a severe hydrogen-air explosion occurred in an ammonia plant in Norway. The accident resulted in two fatalities and the destruction of the building where the explosion took place. This paper presents the main findings from an investigation in 1985 and 1986 of the gas explosion and its consequences. The event started when a gasket in a water pump was blown out. The water pump was situated inside a 100 m long 10 m wide and 7 m high building. The pump was feeding water to a vessel containing hydrogen gas at pressure of 30 bars. This pressure caused a back flow of water flow through the pump and out through the failed gasket. The hydrogen reached the leakage point after about 3 minutes. The discharge of gas lasted some 20 to 30 seconds before the explosion occurred. The total mass of the hydrogen discharge was estimated at 10 to 20 kg hydrogen. The main explosion was very violent and it is likely that the gas cloud detonated. The ignition source was almost certainly a hot bearing. Several damage indicators were used to estimate the amount of hydrogen that exploded. The indicators include deflection of pipes and panels distances traveled by fragments and the distribution of glass breakage. We found that 3.5 to 7 kg of hydrogen must have been burning violently in the explosion. Window glass was broken up to 700 m from the centre of the explosion. Concrete blocks originally part of the north wall of the building and weighing 1.2 metric tons were thrown up to 16 meters. The roof of the building was lifted by an estimated 1.5 meters before resettling. The displacement of the roof caused a guillotine break of a 350 mm diameter pipe connected to the vessel that was the source of the original gas discharge. The gas composition in the vessel was 65 - 95 % hydrogen. This resulted in a large horizontal jet fire lasting about 30 seconds. Minor explosions occurred in the plant culvert system.<br/><br/>To our knowledge this gas explosion is one of the largest industrial hydrogen explosions reported. We believe this case history is a valuable reference for those who are investigating the nature of accidental<br/>hydrogen explosions.
Hydrogen Safety- From Policies to Plans to Practices
Sep 2005
Publication
Safety is an essential element for realizing the “hydrogen economy” – safe operation in all of its aspects from hydrogen production through storage distribution and use; from research development and demonstration to commercialization. As such safety is given paramount importance in all facets of the research development and demonstration of the U.S Department of Energy’s (DOE) Hydrogen Fuel Cells and Infrastructure Technologies (HFCIT) Program Office. The diversity of the DOE project portfolio is self-evident. Projects are performed by large companies small businesses DOE National Laboratories academic institutions and numerous partnerships involving the same. Projects range from research exploring advances in novel hydrogen storage materials to demonstrations of hydrogen refuelling stations and vehicles. Recognizing the nature of its program and the importance of safety planning DOE has undertaken a number of initiatives to encourage and shape safety awareness. The DOE Hydrogen Safety Review Panel was formed to bring a broad cross-section of expertise from the industrial government and academic sectors to help ensure the success of the program as a whole. The Panel provides guidance on safety-related issues and needs reviews individual DOE-supported projects and their safety plans and explores ways to bring learnings to broadly benefit the DOE program. This paper explores the approaches used for providing safety planning guidance to contractors in the context of their own (and varied) policies procedures and practices. The essential elements that should be included in safety plans are described as well as the process for reviewing project safety plans. Discussion of safety planning during the conduct of safety review site visits is also shared. Safety planning-related learnings gathered from project safety reviews and the Panel’s experience in reviewing safety plans are discussed.
Facilitating the Safest Possible Transition from Fossil to Hydrogen Fuels- Hydrogen Executive Leadership Panel
Sep 2005
Publication
In recent years federal and state safety authorities have worked to bring emergency planners and responders together with industry the scientific community and consumers to ensure high levels of safety with gas and liquid pipelines and more recently with liquefied natural gas terminals. The U.S. Department of Transportation (DOT) is the federal authority on the safe transportation of energy and the National Association of State Fire Marshals (NASFM) represents state-level safety authorities. Together they have produced firefighter safety training materials technical guidance and information for use in communities considering new energy infrastructure and conducted research to support these activities. In 2004 the DOT-NASFM partnership established the Hydrogen Executive Leadership Panel (HELP) to ensure a safe transition from fossil fuels to hydrogen fuel cells. HELP brings together senior policy-level experts from all sectors to understand and recommend mitigation strategies for the risks associated with the transportation and use of hydrogen in motor vehicles. The initial group includes experts from the United States Canada and Europe. HELP will be supported by an advisory committee of emergency planners and responders—individuals well-equipped to describe real-world scenarios of greatest concern—and by a second advisory committee of engineers and scientists who will help translate the real-world scenarios into useful technical solutions. By September 2005 HELP expects to define the initial real-world scenarios of greatest concern and bring together teams of experts to collaborate with automakers energy producers government authorities consumers and public safety officials. Much work lies ahead including creating guidance for hydrogen powered automobiles emergency response safety training establishing test methods to reflect real-world incident scenarios and modifying state and local building and fire codes. The HELP leadership will present its strategic plan and first report at the International Conference on Hydrogen Safety in September 2005.
Governing the UK’s Transition to Decarbonised Heating: Lessons from a Systematic Review of Past and Ongoing Heat Transitions
May 2020
Publication
According to the UK’s Committee on Climate Change the economically efficient achievement of Government’s legally-binding carbon-reduction target will require full decarbonisation of all heat in buildings and the decarbonisation of most industrial heat over the next 20 to 30 years (BEIS 2018). This goliath task is not unprecedented. Indeed the scale of this transition is similar to the UK’s former transition from coal to natural gas heating. Albeit the rate of transition away from natural gas will certainly need to be greater than the rate of the transition toward natural gas to achieve net zero greenhouse gas emissions by 2050.<br/><br/>At present Government’s commitment stands in sharp contrast with its inaction on heat decarbonisation to date. Under pressure to progress this agenda Government has charged the Clean Heat Directorate with the task of outlining the process for determining the UK’s long-term heat policy framework to be published in the ‘Roadmap for policy on heat decarbonisation’ in the summer of 2020 (BEIS 2017). This report resulting from one of six EPSRC-funded secondments is designed to support early thinking on the roadmap by answering the research question: How can ‘Transitions’ research informs the roadmap for governing the UK’s heating transition?<br/><br/>‘Transitions’ research is an interdisciplinary field of study within the Social Sciences and Humanities that investigates the co-evolution of social and technological systems (such as the UK heating system) and the dynamics by which fundamental change in these systems occur. To investigate what insights this area of research may hold for the governance of the UK’s heat transition a systematic literature review was conducted focusing specifically on past and ongoing heat transitions across Europe.<br/><br/>The review uncovered learnings about the role of path dependency; power and politics; complexity; cross-sector interactions; multi-level governance; and intermediaries in shaping non-linear transitions toward renewable heat. This report illustrates each learning with real-world examples from case studies undertaken by Transitions researchers and concludes with a long list of policy and process-oriented governance recommendations for the UK Government.
Hydrogen Technologies Safety Guide
Jan 2015
Publication
The purpose of this guide is to provide basic background information on hydrogen technologies. It is not intended to be a comprehensive collection of hydrogen technologies safety information. It is intended to provide project developers code officials and other interested parties the background information to be able to put hydrogen safety in context. For example code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen basic safety concerns and safety requirements.
Portable Prototype of Hydrogen Fuel Cells for Educational Training
Jan 2023
Publication
This paper presents an experimental prototype of hydrogen fuel cells suitable for training engineering students. The presented system is designed to teach students the V-I characteristics of the fuel cells and how to record the V-I characteristics curve in the case of a single or multiple fuel cells. The prototype contains a compact electrolyzer to produce hydrogen and oxygen to the fuel cell. The fuel cell generates electricity to supply power to various types of loads. The paper also illustrates how to calculate the efficiency of fuel cells in series and parallel modes of operation. In the series mode of operation it is mathematically proven that the efficiency is higher at lower currents. Still the fuel cell operating area is required where the power is the highest. According to experimental results the efficiency in the case of series connection is approximately 25% while in parallel operation mode the efficiency is about 50%. Thus a parallel connection is recommended in the high current applications because the efficiency is higher than the one resulted from series connection. As explained later in the study plan several other experiments can be performed using this educational kit.
Hydrogen, the First Element Podcast - Episode 4: Reskill to Repower - Preparing the Hydrogen Workforce
Dec 2022
Publication
During her State of the Union Address the President of the European Commission Ursula Von der Leyen defined 2023 as the "European Year of Skills" highlighting the urgency to overcome the shortage of skilled workforce in Europe a challenge that affects the hydrogen sector as well. The rapid development of the European Hydrogen Value Chain over the coming years is expected to generate approximately 1 million highly skilled jobs by 2030 and up to 5.4 million by 2050. In the fourth episode titled "Reskill to Repower: Preparing the Hydrogen workforce" our Chief Technology & Market Officer Stephen Jackson discusses with Massimo Valsania VP of Engineering at EthosEnergy and Co-chair of Hydrogen Europe Skills Working Group. Starting off with Massimo's professional background and his current role in our association the two speakers discussed the skills needed in the hydrogen economy and the policies that should be put in place to attract new generations.
EU Harmonised Terminology for Hydrogen Generated by Electrolysis
Jul 2021
Publication
The objective of this pre-normative research (PNR) document entitled EU harmonised terminology for hydrogen generated by electrolysis is to present an open and comprehensive compendium of harmonised terminology for electrolysis applications. This report is prepared under the FWC between JRC and FCH2JU as the result of a collaborative effort between European partners from industry research and development (R&D) organisations and academia participating to FCH2JU funded R&D projects6 in electrolysis applications.7 The commonly accepted definitions of terms may be used in RD&D project documents test and measurement methods test procedures and test protocols scientific publications and technical documentation. This compendium is primarily intended for use by those involved in conducting RD&D as well as in drafting and evaluating R&I programme. The terms and definitions presented cover many aspects of electrolysis including materials research modelling design & engineering analysis characterisation measurements laboratory testing prototype development field tests and demonstration as well as quality assurance (QA). Also it contains information useful for others e. g. auditors manufacturer designers system integrators testing centres service providers and educators. In future it may be expanded to account for possible power-to-hydrogen (P2H2) developments in energy storage (ES) particularly electrical energy storage (EES) hydrogen-to-power (H2P) hydrogen-to-industry (H2I) and hydrogen-to-substance (H2X) applications.
Energy and Utility Skills - Hydrogen Competency Framework Report
Jul 2021
Publication
In 2020 the Department for Business Enterprise and Industrial Strategy (BEIS) commissioned Energy & Utility Skills to develop and deliver a Hydrogen Competency Framework as part of the Hy4Heat programme. The successful completion of this work is detailed in a new report published today.
The work done by Energy & Utility Skills was underpinned by three key pillars:
Collaboration
The resulting outputs of the design development stages are:
More details about this report can be found on the Energy & Utility Skills website.
The work done by Energy & Utility Skills was underpinned by three key pillars:
Collaboration
- Driving growth in engagement levels across the industry
- Designing the framework for both initial trials and any future rollout
- The framework ensures engineers will have all the skills knowledge and understanding they need
The resulting outputs of the design development stages are:
- A Comparative Analysis of Hydrogen and existing hydrocarbon gases
- A Skills Matrix that translates the analysis into skills knowledge and understanding
- An Interim Hydrogen Technical Standard that defines acceptable parameters and requirements for hydrogen installation work
- A Hydrogen Training Specification that will enable training course consistency and facilitate industry recognition
- An independent Hydrogen Assessment Module that will facilitate the addition of a hydrogen competence category on the Gas Safe Register
More details about this report can be found on the Energy & Utility Skills website.
Skilling the Green Hydrogen Economy: A Case Study from Australia
Feb 2023
Publication
This paper explores the skills landscape of the emerging green hydrogen industry in Australia drawing on data collected from a study that gathered insights on training gaps from a range of hydrogen industry participants. A total of 41 industry participants completed a survey and 14 of those survey respondents participated in industry consultations. The findings revealed widespread perceptions of training and skilling as being very important to the industry but under-provisioned across the sector. Data were analysed to consider the problem of skilling the green hydrogen industry and the barriers and enablers as perceived by industry stakeholders. In this paper we argue that urgent cross-sector attention needs to be paid to hydrogen industry training and skill development systems in Australia if the promise of green hydrogen as a clean energy source is to be realised.
No more items...