Applications & Pathways
Market Segmentation of Domestic and Commercial Natural Gas Appliances
Jan 2021
Publication
The main goal of the project is to enable the wide adoption of H2NG (hydrogen in natural gas) blends by closing knowledge gaps regarding technical impacts on residential and commercial gas appliances. The project consortium will identify and recommend appropriate codes and standards that should be adapted to answer the needs and develop a strategy for addressing the challenges for new and existing appliances.<br/>This deliverable on market segmentation is part of work package 2 and provides a quantitative segmentation of the gas appliance market in terms of appliance population numbers. It therefore prepares the project partners to perform the subsequent selection of the most representative product types to be tested in the laboratories of the THyGA partners.<br/>The classification is developed to categorise appliances installed in the field based on available statistics calculation methods and estimations. As a result appliance populations are provided for each technology segment that draw a representative picture of the installed end-use appliances within the European Union in 2020.
Application of Liquid Hydrogen Carriers in Hydrogen Steelmaking
Mar 2021
Publication
Steelmaking is responsible for approximately one third of total industrial carbon dioxide (CO2) emissions. Hydrogen (H2) direct reduction (H-DR) may be a feasible route towards the decarbonization of primary steelmaking if H2 is produced via electrolysis using fossil-free electricity. However electrolysis is an electricity-intensive process. Therefore it is preferable that H2 is predominantly produced during times of low electricity prices which is enabled by the storage of H2. This work compares the integration of H2 storage in four liquid carriers methanol (MeOH) formic acid (FA) ammonia (NH3) and perhydro-dibenzyltoluene (H18-DBT) in H-DR processes. In contrast to conventional H2 storage methods these carriers allow for H2 storage in liquid form at moderate overpressures reducing the storage capacity cost. The main downside to liquid H2 carriers is that thermochemical processes are necessary for both the storage and release processes often with significant investment and operational costs. The carriers are compared using thermodynamic and economic data to estimate operational and capital costs in the H-DR context considering process integration options. It is concluded that the use of MeOH is promising compared to the other considered carriers. For large storage volumes MeOH-based H2 storage may also be an attractive option to the underground storage of compressed H2. The other considered liquid H2 carriers suffer from large thermodynamic barriers for hydrogenation (FA) or dehydrogenation (NH3 H18-DBT) and higher investment costs. However for the use of MeOH in an H-DR process to be practically feasible questions regarding process flexibility and the optimal sourcing of CO2 and heat must be answered
Opportunities and Barriers of Hydrogen–Electric Hybrid Powertrain Vans: A Systematic Literature Review
Oct 2020
Publication
The environmental impact of the road transport sector together with urban freight transport growth has a notable repercussions in global warming health and economy. The need to reduce emissions caused by fossil fuel dependence and to foster the use of renewable energy sources has driven the development of zero-emissions powertrains. These clean transportation technologies are not only necessary to move people but to transport the increasing demand for goods and services that is currently taking place in the larger cities. Full electric battery-powered vans seem to be the best-placed solution to the problem. However despite the progress in driving range and recharge options those and other market barriers remain unsolved and the current market share of battery electric vehicles (BEVs) is not significant. Based on the development of hydrogen fuel cell stacks this work explains an emerging powertrain architecture concept for N1 class type vans that combines a battery-electric configuration with a fuel cell stack powered by hydrogen that works as a range extender (FC-EREV). A literature review is conducted with the aim to shed light on the possibilities of this hybrid light-duty commercial van for metropolitan delivery tasks providing insights into the key factors and issues for sizing the powertrain components and fuel management strategies to meet metropolitan freight fleet needs.
Hydrogen Station Technology Development Review Through Patent Analysis
May 2018
Publication
This study is a review of hydrogen station patents using the Derwent Innovation system and also a secondary screening. This was undertaken by the researchers to better understand and identify hydrogen station trends. The review focuses on analyzing the developing trends of patent technologies associated with a hydrogen station. The results of the review indicated that the countries with the major distribution of patents were Japan China the USA and Europe. Japan is leading the developmental trajectory of hydrogen stations. The results of the analysis found the leading developers of these patented technologies are Kobe Steel Nippon Oil Toyota and Honda. Other active patent developers analyzed include Linde Hyundai and Texaco. The review concludes with a suggestion that using a patent analysis methodology is a good starting point to identify evaluate and measure the trend in hydrogen station commercial development.
Assessment of Full Life-cycle Air Emissions of Alternative Shipping Fuels
Oct 2017
Publication
There is a need for alternative fuels in the shipping sector for two main motivations: to deliver a reduction in local pollutants and comply with existing regulation; and to mitigate climate change and cut greenhouse gas emissions. However any alternative fuel must meet a range of criteria to become a viable option. Key among them is the requirement that it can deliver emissions reductions over its full life-cycle. For a set of fuels comprising both conventional and alternative fuels together with associated production pathways this paper presents a life-cycle assessment with respect to six emissions species: local pollutants sulphur oxides nitrogen oxides and particulate matter; and greenhouse gases carbon dioxide methane and nitrous oxide. While the analysis demonstrates that no widely available fuel exists currently to deliver on both motivations some alternative fuel options have the potential if key barriers can be overcome. Hydrogen or other synthetic fuels rely on decarbonisation of both energy input to production and other feedstock materials to deliver reductions in greenhouse gas emissions. Similarly bio-derived fuels can be an abatement option but only if it can be ensured that land-use change whilst growing biomass does not impact wider potential savings and the sector is able to compete sufficiently for their use. These examples show that crucial barriers are located upstream in the respective fuel life-cycle and that the way to overcome them may reside beyond the scope of the shipping sector alone.
Fuel Cell and Hydrogen Technology- Europe's Journey to a Greener World
Nov 2017
Publication
On the occasion of its 10th Stakeholder forum the FCH JU published a unique and exclusive book. This book sets out the story behind both the FCH JU and fuel cell and hydrogen technology in Europe. It reviews the events leading to its creation and examines the achievements that have allowed Europe to take a leading role in fuel cell and hydrogen excellence. It also looks at what this investment in fuel cell technology will mean for the EU in the coming years
Fuel Cells and Hydrogen Technologies in Europe: Financial and Technology Outlook on the European Sector Ambition 2014-2020
Nov 2011
Publication
Sustainable secure and competitive energy supply and transport services are at the heart of the EU2020 strategy towards a low carbon and inclusive economy geared towards a reduction of 80% of CO2 emissions by 2050. This objective has been endorsed by the European Institutions and Member States. It is widely recognised that a technological shift and the deployment of new clean technologies are critical for a successful transition to such a new sustainable economy. Furthermore in addition to bringing a healthier environment and securing energy supply innovation will provide huge opportunities for the European economy. However this paradigm shift will not be purely driven by the market. A strong and determined commitment of public institutions and the private sector together are necessary to support the European political ambition. The period 2014-2020 will be critical to ensure that the necessary investments are realized to support the EU2020 vision. In terms of hydrogen and fuel cell technologies significant investments are required for (a) transportation for scaling up the car fleet and building up of refuelling infrastructure needs (b) hydrogen production technologies to integrate renewable intermittent power sources to the electrical grid (wind and solar) (c) stationary fuel cell applications with large demonstration projects in several European cities and (d) identified early markets (material handling vehicles back-up power systems) to allow for volume developments and decrease of system-costs.<br/>This Report summarizes the sector’s financial ambition to reach Europe’s objectives in 2020.
Strategies for Joint Procurement of Fuel Cell Buses
Jun 2018
Publication
The Fuel Cells and Hydrogen Joint Undertaking (FCH JU) has supported a range of initiatives in recent years designed to develop hydrogen fuel cell buses to a point where they can fulfil their promise as a mainstream zero emission vehicle for public transport.<br/>Within this study 90 different European cities and regions have been supported in understanding the business case of fuel cell bus deployment and across these locations. The study analyses the funding and financing for fuel cell bus deployment to make them become a mainstream zero emission choice for public transport providers in cities and regions across Europe. It also outlines possible solutions for further deployment of FC buses beyond the subsidised phase.<br/>In the light of the experience of the joint tender process in the UK and in Germany the study highlights best practices for ordering fuel cell buses. Other innovative instruments explored in other countries for the orders of large quantities of fuel cells buses are presented: Special Purpose Vehicles and centralised purchase office. Finally the study deeply analyses the funding and financing for fuel cell bus deployment to make them become a mainstream zero emission choice for public transport providers in cities and regions across Europe.
CFD Simulations of Filling and Emptying of Hydrogen Tanks
Jun 2016
Publication
During the filling of hydrogen tanks high temperatures can be generated inside the vessel because of the gas compression while during the emptying low temperatures can be reached because of the gas expansion. The design temperature range goes from −40 °C to 85 °C. Temperatures outside that range could affect the mechanical properties of the tank materials. CFD analyses of the filling and emptying processes have been performed in the HyTransfer project. To assess the accuracy of the CFD model the simulation results have been compared with new experimental data for different filling and emptying strategies. The comparison between experiments and simulations is shown for the temperatures of the gas inside the tank for the temperatures at the interface between the liner and the composite material and for the temperatures on the external surface of the vessel.
Influence of the Gas Injector Configuration on the Temperature Evolution During Refueling of On-board Hydrogen Tanks
Jul 2016
Publication
In this article we show a refuelling strategy analysis using different injector configurations to refuel a 70 MPa composite reinforced type 4 tank. The gas has been injected through single openings of different diameters (3 mm 6 mm and 10 mm) and alternatively through multiple small holes (4 × 3 mm). For each injector configuration slow (12 min) and faster (3 min) fillings have been performed. The gas temperature has been measured at different positions inside the tank as well as the temperatures of the wall materials at various locations: on the external surface and at the interface between the liner and the fiber reinforced composite. In general the larger the injector diameter and the slower the filling the higher the chance that the gas develops vertical temperature gradients (a so-called gas temperature stratification) resulting in higher than average temperatures near the top of the tank and lower than average at its bottom. While the single 3 mm opening injector causes homogeneous gas temperatures for both filling speeds both the 6 mm and 10 mm opening injectors induce gas temperature stratification during the 12 min fillings. The injector with multiple holes has an area comparable to the 6 mm single opening injector: in general this more complex geometry tends to limit the inhomogeneity of gas temperatures during slow fillings. When gas temperature stratification develops the wall materials temperature is also locally affected. This results in a higher than average temperature at the top of the tank and higher the slower the filling.
FCH JU – Key to Sustainable Energy and Transport
Jan 2019
Publication
This brochure offers an overview of the main applications of fuel cell and hydrogen technologies and how they work and provides insights into our programme and our accomplishments.
Advancing Europe's Energy Systems- Stationary Fuel Cells in Distributed Generation
Mar 2015
Publication
Stationary fuel cells can play a beneficial role in Europe's changing energy landscape. The energy systems across Europe face significant challenges as they evolve against the backdrop of an ambitious climate agenda. As energy systems integrate more and more generation capacity from intermittent renewables numerous challenges arise. Amongst others Europe's energy systems of the future require new concepts for complementary supply such as efficient distributed power generation from natural gas. At the same time significant investments to modernise the electricity grid infrastructure are needed. Long-term storage solutions become a growing priority to ensure permanent power supply e.g. power-to-gas. Moreover Europe puts greater emphasis on energy efficiency in order to save primary energy reduce fuel imports and increase energy security.
Against this background distributed generation from stationary fuel cells promises significant benefits. This study outlines a pathway for commercialising stationary fuel cells in Europe The present study outlines a pathway for commercialising stationary fuel cells in Europe. It produces a comprehensive account of the current and future market potential for fuel cell distributed energy generation in Europe benchmarks stationary fuel cell technologies against competing conventional technologies in a variety of use cases and assesses potential business models for commercialisation. Considering the results of the technological and commercial analysis the study pinpoints focus areas for further R&D to sustain innovation and provides recommendations for supportive policy frameworks.
The study has been sponsored by the Fuel Cells and Hydrogen Joint Undertaking. Compiled by Roland Berger Strategy Consultants it builds on an interactive approach involving a coalition of more than 30 companies public institutions and associations from the stakeholder community of the European stationary fuel cell industry.
Against this background distributed generation from stationary fuel cells promises significant benefits. This study outlines a pathway for commercialising stationary fuel cells in Europe The present study outlines a pathway for commercialising stationary fuel cells in Europe. It produces a comprehensive account of the current and future market potential for fuel cell distributed energy generation in Europe benchmarks stationary fuel cell technologies against competing conventional technologies in a variety of use cases and assesses potential business models for commercialisation. Considering the results of the technological and commercial analysis the study pinpoints focus areas for further R&D to sustain innovation and provides recommendations for supportive policy frameworks.
The study has been sponsored by the Fuel Cells and Hydrogen Joint Undertaking. Compiled by Roland Berger Strategy Consultants it builds on an interactive approach involving a coalition of more than 30 companies public institutions and associations from the stakeholder community of the European stationary fuel cell industry.
Design of Clean Steel Production with Hydrogen: Impact of Electricity System Composition
Dec 2021
Publication
In Europe electrification is considered a key option to obtain a cleaner production of steel at the same time as the electricity system production portfolio is expected to consist of an increasing share of varying renewable electricity (VRE) generation mainly in the form of solar PV and wind power. We investigate cost-efficient designs of hydrogen-based steelmaking in electricity systems dominated by VRE. We develop and apply a linear cost-minimization model with an hourly time resolution which determines cost-optimal operation and sizing of the units in hydrogen-based steelmaking including an electrolyser direct reduction shaft electric arc furnace as well as storage for hydrogen and hot-briquetted iron pellets. We show that the electricity price following steelmaking leads to savings in running costs but to increased capital cost due to investments in the overcapacity of steel production units and storage units for hydrogen and hot-briquetted iron pellets. For two VRE-dominated regions we show that the electricity price following steel production reduces the total steel production cost by 23% and 17% respectively as compared to continuous steel production at a constant level. We also show that the cost-optimal design of the steelmaking process is dependent upon the electricity system mix.
Roadmap to Hydrogen in the NTS - National Grid Gas Transmission
Jan 2020
Publication
DNV GL believes that the National Transmission System (NTS) will be central to the future of decarbonised energy in the UK. The future NTS could transmit natural gas hydrogen blends of the two and carbon dioxide. New pipelines will be built however a large cost-saving is available if the existing NTS assets can also be re-purposed. To move towards this future National Grid Gas Transmission wants to develop a project to trial injection hydrogen into the NTS. This is an opportunity to show that National Grid is part of the solution to achieving Net Zero. The trial will demonstrate to the Government and public that re-purposing the NTS is cost-effective safe and involves minimal disruption.
This report sets out a roadmap of projects to provide the knowledge needed for the trial. The roadmap was developed by assessing the knowledge required and how much of it already existed. The knowledge already available is summarised in this report with references to where further details can be found. Gaps in the knowledge are then described. The roadmap consists of projects to conduct work to close the knowledge gaps. The results are summarised in the figures below and in the box to the right.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
This report sets out a roadmap of projects to provide the knowledge needed for the trial. The roadmap was developed by assessing the knowledge required and how much of it already existed. The knowledge already available is summarised in this report with references to where further details can be found. Gaps in the knowledge are then described. The roadmap consists of projects to conduct work to close the knowledge gaps. The results are summarised in the figures below and in the box to the right.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Hydrogen Impact on Gas Engine CHP - Cadent Ltd
Feb 2019
Publication
The key project objectives include:
The output from this project will also inform the HyDeploy NIC project in relation to potential hydrogen content limits. The project will be presented at the IGEM Gas Quality Working Group (IGEM GQWG).
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
- Understand the range size type mode of operation and control system of installed gas engines in the UK. This will include equipment for CHP and for stand-by power operation.
- Produce data sets on the impact of hydrogen on gas engine operational performance.
- Develop knowledge on the impact of hydrogen content on the operation of the gas engine including overall efficiency changes to emissions profiles overall system operability.
- Providing outline guidance on a potential hydrogen limit that should be considered regarding use of natural gas/hydrogen mixed fuels in gas engines.
- Outlining a high-level view on the reliability and impact on maintenance and replacement regimes if gas engines operate on natural gas/hydrogen mixed fuels for extended time periods.
- Highlight any existing barriers to use of natural gas and hydrogen blends in gas engine and through contact with OEMs develop an understanding of future technology developments that may be needed to enable the use of “high” hydrogen blends.
The output from this project will also inform the HyDeploy NIC project in relation to potential hydrogen content limits. The project will be presented at the IGEM Gas Quality Working Group (IGEM GQWG).
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Developing a Hydrogen Fuel Cell Vehicle (HFCV) Energy Consumption Model for Transportation Applications
Jan 2022
Publication
This paper presents a simple hydrogen fuel cell vehicle (HFCV) energy consumption model. Simple fuel/energy consumption models have been developed and employed to estimate the energy and environmental impacts of various transportation projects for internal combustion engine vehicles (ICEVs) battery electric vehicles (BEVs) and hybrid electric vehicles (HEVs). However there are few published results on HFCV energy models that can be simply implemented in transportation applications. The proposed HFCV energy model computes instantaneous energy consumption utilizing instantaneous vehicle speed acceleration and roadway grade as input variables. The mode accurately estimates energy consumption generating errors of 0.86% and 2.17% relative to laboratory data for the fuel cell estimation and the total energy estimation respectively. Furthermore this work validated the proposed model against independent data and found that the new model accurately estimated the energy consumption producing an error of 1.9% and 1.0% relative to empirical data for the fuel cell and the total energy estimation respectively. The results demonstrate that transportation engineers policy makers automakers and environmental engineers can use the proposed model to evaluate the energy consumption effects of transportation projects and connected and automated vehicle (CAV) transportation applications within microscopic traffic simulation models.
Conceptual Propulsion System Design for a Hydrogen-powered Regional Train
Apr 2015
Publication
Many railway vehicles use diesel as their energy source but exhaust emissions and concerns about economical fuel supply demand alternatives. Railway electrification is not cost effective for some routes particularly low-traffic density regional lines. The journey of a regional diesel–electric train is simulated over the British route Birmingham Moor Street to Stratford-upon-Avon and return to establish a benchmark for the conceptual design of a hydrogen-powered and hydrogen-hybrid vehicle. A fuel cell power plant compressed hydrogen at 350 and 700 bar and metal-hydride storage are evaluated. All equipment required for the propulsion can be accommodated within the space of the original diesel– electric train while not compromising passenger-carrying capacity if 700 bar hydrogen tanks are employed. The hydrogen trains are designed to meet the benchmark journey time of 94 min and the operating range of a day without refuelling. An energy consumption reduction of 34% with the hydrogen-powered vehicle and a decrease of 55% with the hydrogen-hybrid train are achieved compared with the original diesel–electric. The well-to-wheel carbon dioxide emissions are lower for the conceptual trains: 55% decrease for the hydrogen-powered and 72% reduction for the hydrogen-hybrid assuming that the hydrogen is produced from natural gas.
Assessment of the Impact of Material Selection on Aviation Sustainability, from a Circular Economy Perspective
Jan 2022
Publication
Climate change and global warming pose great sustainability challenges to the aviation industry. Alternatives to petroleum-based fuels (hydrogen natural gas etc.) have emerged as promising aviation fuels for future aircraft. The present study aimed to contribute to the understanding of the impact of material selection on aviation sustainability accounting for the type of fuel implemented and circular economy aspects. In this context a decision support tool was introduced to aid decisionmakers and relevant stakeholders to identify and select the best-performing materials that meet their defined needs and preferences expressed through a finite set of conflicting criteria associated with ecological economic and circularity aspects. The proposed tool integrates life-cycle-based metrics extending to both ecological and economical dimensions and a proposed circular economy indicator (CEI) focused on the material/component level and linked to its quality characteristics which also accounts for the quality degradation of materials which have undergone one or more recycling loops. The tool is coupled with a multi-criteria decision analysis (MCDA) methodology in order to reduce subjectivity when determining the importance of each of the considered criteria.
The Role of Lock-in Mechanisms in Transition Processes: The Case of Energy for Road Transport
Jul 2015
Publication
This paper revisits the theoretical concepts of lock-in mechanisms to analyse transition processes in energy production and road transportation in the Nordic countries focussing on three technology platforms: advanced biofuels e-mobility and hydrogen and fuel cell electrical vehicles. The paper is based on a comparative analysis of case studies.<br/>The main lock-in mechanisms analysed are learning effects economies of scale economies of scope network externalities informational increasing returns technological interrelatedness collective action institutional learning effects and the differentiation of power.<br/>We show that very different path dependencies have been reinforced by the lock-in mechanisms. Hence the characteristics of existing regimes set the preconditions for the development of new transition pathways. The incumbent socio-technical regime is not just fossil-based but may also include mature niches specialised in the exploitation of renewable sources. This implies a need to distinguish between lock-in mechanisms favouring the old fossil-based regime well-established (mature) renewable energy niches or new pathways.
Fuel Cell Electric Vehicles and Hydrogen Balancing 100 Percent Renewable and Integrated National Transportation and Energy Systems
Feb 2021
Publication
Future national electricity heating cooling and transport systems need to reach zero emissions. Significant numbers of back-up power plants as well as large-scale energy storage capacity are required to guarantee the reliability of energy supply in 100 percent renewable energy systems. Electricity can be partially converted into hydrogen which can be transported via pipelines stored in large quantities in underground salt caverns to overcome seasonal effects and used as electricity storage or as a clean fuel for transport. The question addressed in this paper is how parked and grid-connected hydrogen-fuelled Fuel Cell Electric Vehicles might balance 100 per cent renewable electricity heating cooling and transport systems at the national level in Denmark Germany Great Britain France and Spain? Five national electricity heating cooling and transport systems are modeled for the year 2050 for the five countries assuming only 50 percent of the passenger cars to be grid-connected Fuel Cell Electric Vehicles the remaining Battery Electric Vehicles. The grid-connected Fuel Cell Electric Vehicle fleet can always balance the energy systems and their usage is low having load factors of 2.1–5.5 percent corresponding to an average use of 190–480 h per car per year. At peak times occurring only a few hours per year 26 to 43 percent of the grid-connected Fuel Cell Electric Vehicle are required and in particular for energy systems with high shares of solar energy such as Spain balancing by grid-connected Fuel Cell Electric Vehicles is mainly required during the night which matches favorably with driving usage.
No more items...