Applications & Pathways
A Study on Electrofuels in Aviation
Feb 2018
Publication
With the growth of aviation traffic and the demand for emission reduction alternative fuels like the so-called electrofuels could comprise a sustainable solution. Electrofuels are understood as those that use renewable energy for fuel synthesis and that are carbon-neutral with respect to greenhouse gas emission. In this study five potential electrofuels are discussed with respect to the potential application as aviation fuels being n-octane methanol methane hydrogen and ammonia and compared to conventional Jet A-1 fuel. Three important aspects are illuminated. Firstly the synthesis process of the electrofuel is described with its technological paths its energy efficiency and the maturity or research need of the production. Secondly the physico-chemical properties are compared with respect to specific energy energy density as well as those properties relevant to the combustion of the fuels i.e. autoignition delay time adiabatic flame temperature laminar flame speed and extinction strain rate. Results show that the physical and combustion properties significantly differ from jet fuel except for n-octane. The results describe how the different electrofuels perform with respect to important aspects such as fuel and air mass flow rates. In addition the results help determine mixture properties of the exhaust gas for each electrofuel. Thirdly a turbine configuration is investigated at a constant operating point to further analyze the drop-in potential of electrofuels in aircraft engines. It is found that electrofuels can generally substitute conventional kerosene-based fuels but have some downsides in the form of higher structural loads and potentially lower efficiencies. Finally a preliminary comparative evaluation matrix is developed. It contains specifically those fields for the different proposed electrofuels where special challenges and problematic points are seen that need more research for potential application. Synthetically-produced n-octane is seen as a potential candidate for a future electrofuel where even a drop-in capability is given. For the other fuels more issues need further research to allow the application as electrofuels in aviation. Specifically interesting could be the combination of hydrogen with ammonia in the far future; however the research is just at the beginning stage.
Effects of Quantum Confinement of Hydrogen in Nanocavities – Experimental INS Results and New Insights
Jun 2020
Publication
Current developments of non-relativistic quantum mechanics appear to predict and reveal counter-intuitive dynamical effects of hydrogen in nanostructured materials that are of considerable importance for basic research as well as for technological applications. In this review the experimental focus is on H2O and H molecules in carbon nanotubes and other nanocavities that have been experimentally investigated using the well-established technique of incoherent inelastic neutron scattering (INS). For instance the momentum and energy transfers as obtained from the commonly used standard data analysis techniques from a
(I) H2 molecule in a C-nanotube resulting in a roto-translational motion along the nanotube axis seems to (1) either violate the standard conservation laws or (2) to attribute to the H molecule undergoing translation the effective mass a.m.u. (atomic mass units) instead of the expected 2 a.m.u. A similar striking anomalous effect has been found in the neutron-H scattering from the
(II) H2O molecules in nano-channels of some solid materials in which O-H stretching vibrations along the channel axis are created.
The results of this scattering process seem to once again either violate the standard conservation laws or to attribute to the effective mass of the struck H2 molecule as a.m.u. instead of the expected value of 1 a.m.u. We show that these counterintuitive observations from the INS studies have no conventional interpretation within the standard non-relativistic scattering theory. However they can be qualitatively interpreted “from first principles” within the framework of modern theories of
(III) time-symmetric quantum dynamics as provided by the weak values (WV) and two-state- vector formalism (TSVF)
and/or
(IV) quantum correlations especially quantum discord (QD) and quantum thermodynamics (QTD).
The theoretical analysis provides an intuitive understanding of the experimental results gives strong evidence that the nano-structured cavities do represent quantum systems which participate significantly in the dynamics of the neutron-H scattering and surprisingly shows that new physical information can be derived from the experimental data. This latter point may also have far-reaching consequences for technology and material sciences (e.g. fuel cells H storage materials etc.). Moreover novel insights into the short-lived quantum dynamics and/or quantum information theory can be gained.
(I) H2 molecule in a C-nanotube resulting in a roto-translational motion along the nanotube axis seems to (1) either violate the standard conservation laws or (2) to attribute to the H molecule undergoing translation the effective mass a.m.u. (atomic mass units) instead of the expected 2 a.m.u. A similar striking anomalous effect has been found in the neutron-H scattering from the
(II) H2O molecules in nano-channels of some solid materials in which O-H stretching vibrations along the channel axis are created.
The results of this scattering process seem to once again either violate the standard conservation laws or to attribute to the effective mass of the struck H2 molecule as a.m.u. instead of the expected value of 1 a.m.u. We show that these counterintuitive observations from the INS studies have no conventional interpretation within the standard non-relativistic scattering theory. However they can be qualitatively interpreted “from first principles” within the framework of modern theories of
(III) time-symmetric quantum dynamics as provided by the weak values (WV) and two-state- vector formalism (TSVF)
and/or
(IV) quantum correlations especially quantum discord (QD) and quantum thermodynamics (QTD).
The theoretical analysis provides an intuitive understanding of the experimental results gives strong evidence that the nano-structured cavities do represent quantum systems which participate significantly in the dynamics of the neutron-H scattering and surprisingly shows that new physical information can be derived from the experimental data. This latter point may also have far-reaching consequences for technology and material sciences (e.g. fuel cells H storage materials etc.). Moreover novel insights into the short-lived quantum dynamics and/or quantum information theory can be gained.
Replacing Fossil Fuels with Bioenergy in District Heating – Comparison of Technology Options
May 2021
Publication
We combine previously separate models of Northern European power markets local district heating and cooling (DHC2) systems and biomass supply in a single modelling framework to study local and system level impacts of bioenergy technologies in phasing out fossil fuels from a DHC system of the Finnish capital. We model multiple future scenarios and assess the impacts on energy security flexibility provision economic performance and emissions. In the case of Helsinki heat only boiler is a robust solution from economic and climate perspective but reduces local electricity self-sufficiency. Combined heat and power solution is more valuable investment for the system than for the city indicating a conflict of interest and biased results in system level models. Bringing a biorefinery near the city to utilize excess heat would reduce emissions and increase investment's profitability but biomass availability might be a bigger limiting factor. Our results show that the availability of domestic biomass resources constrains bio-based technologies in Southern Finland and further highlights the importance of considering both local and system level impacts. Novel option to boost biorefinery's production with hydrogen from excess electricity is beneficial with increasing shares of wind power.
Design and Performance of a Compact Air-Breathing Jet Hybrid-Electric Engine Coupled With Solid Oxide Fuel Cells
Feb 2021
Publication
A compact air-breathing jet hybrid-electric engine coupled with solid oxide fuel cells (SOFC) is proposed to develop the propulsion system with high power-weight ratios and specific thrust. The heat exchanger for preheating air is integrated with nozzles. Therefore the exhaust in the nozzle expands during the heat exchange with compressed air. The nozzle inlet temperature is obviously improved. SOFCs can directly utilize the fuel of liquid natural gas after being heated. The performance parameters of the engine are acquired according to the built thermodynamic and mass models. The main conclusions are as follows. 1) The specific thrust of the engine is improved by 20.25% compared with that of the traditional jet engine. As pressure ratios rise the specific thrust increases up to 1.7 kN/(kg·s−1). Meanwhile the nozzle inlet temperature decreases. However the temperature increases for the traditional combustion engine. 2) The power-weight ratio of the engine is superior to that of internal combustion engines and inferior to that of turbine engines when the power density of SOFC would be assumed to be that predicted for 2030. 3) The total pressure recovery coefficients of SOFCs combustors and preheaters have an obvious influence on the specific thrust of the engine and the power-weight ratio of the engine is strongly affected by the power density of SOFCs.
South Korea’s Big Move to Hydrogen Society
Nov 2020
Publication
Extensive energy consumption has become a major concern due to increase of greenhouse gas emissions and global warming. Hence hydrogen has attracted attention as a green fuel with zero carbon emission for green transportation through production of electric vehicles with hydrogen fuel cells. South Korea has launched a hydrogen society policy with the objective of expanding production of hydrogen from renewable energy sources. The hydrogen economy will play a critical role in reducing atmospheric pollution and global arming. However new development of infrastructure for hydrogen refuelling and increasing awareness of the hydrogen economy is required together with reduced prices of hydrogen-driven vehicles that are promising options for a sustainable green hydrogen economy.
Hydrogen Implications for Gas Network Operators
Jan 2021
Publication
Europe has built up one of the best gas distribution infrastructures in the world. There’s one problem though. It distributes natural gas a fuel that we will hardly be able to use if we’re to reach our net zero targets. Can we use the infrastructure instead for clean hydrogen – either blended with natural gas as a stepping stone or with pure hydrogen in the future? In this episode we put aside discussion on the extent to which we should do this – and focus on whether or not we can do this and what’s involved in doing so.
Jon Slowe is joined by Eva Hennig Head of Department for EU Energy Policy at Thüga an alliance of German municipal energy companies (as well as chair of Eurogas’s distribution committee); Keith Owen Head of Systems Development and Energy Strategy at Northern Gas Networks in the UK; and Delta-EE expert Rob Castek.
Jon Slowe is joined by Eva Hennig Head of Department for EU Energy Policy at Thüga an alliance of German municipal energy companies (as well as chair of Eurogas’s distribution committee); Keith Owen Head of Systems Development and Energy Strategy at Northern Gas Networks in the UK; and Delta-EE expert Rob Castek.
Green Hydrogen Cost Reduction
Dec 2020
Publication
Scaling up renewables to meet the 1.5ºC climate goal
As global economies aim to become carbon neutral competitive hydrogen produced with renewables has emerged as a key component of the energy mix. Falling renewable power costs and improving electrolyser technologies could make ""green"" hydrogen cost competitive by 2030 this report finds.
Green hydrogen can help to achieve net-zero carbon dioxide (CO2) emissions in energy-intensive hard-to-decarbonise sectors like steel chemicals long-haul transport shipping and aviation. But production costs must be cut to make it economical for countries worldwide. Green hydrogen currently costs between two and three times more than ""blue"" hydrogen which is produced using fossil fuels in combination with carbon capture and storage (CCS).
This report from the International Renewable Energy Agency (IRENA) outlines strategies to reduce electrolyser costs through continuous innovation performance improvements and upscaling from megawatt (MW) to multi-gigawatt (GW) levels.
Among the findings:
As global economies aim to become carbon neutral competitive hydrogen produced with renewables has emerged as a key component of the energy mix. Falling renewable power costs and improving electrolyser technologies could make ""green"" hydrogen cost competitive by 2030 this report finds.
Green hydrogen can help to achieve net-zero carbon dioxide (CO2) emissions in energy-intensive hard-to-decarbonise sectors like steel chemicals long-haul transport shipping and aviation. But production costs must be cut to make it economical for countries worldwide. Green hydrogen currently costs between two and three times more than ""blue"" hydrogen which is produced using fossil fuels in combination with carbon capture and storage (CCS).
This report from the International Renewable Energy Agency (IRENA) outlines strategies to reduce electrolyser costs through continuous innovation performance improvements and upscaling from megawatt (MW) to multi-gigawatt (GW) levels.
Among the findings:
- Electrolyser design and construction: Increased module size and innovation with increased stack manufacturing have significant impacts on cost. Increasing plant size from 1 MW (typical in 2020) to 20 MW could reduce costs by over a third. Optimal system designs maximise efficiency and flexibility.
- Economies of scale: Increasing stack production with automated processes in gigawatt-scale manufacturing facilities can achieve a step-change cost reduction. Procurement of materials: Scarcity of materials can impede electrolyser cost reduction and scale-up.
- Efficiency and flexibility in operations: Power supply incurs large efficiency losses at low load limiting system flexibility from an economic perspective.
- Industrial applications: Design and operation of electrolysis systems can be optimised for specific applications in different industries. Learning rates: Based on historic cost declines for solar photovoltaics (PV) the learning rates for fuel cells and electrolysers – whereby costs fall as capacity expands – could reach values between 16% and 21%.
- Ambitious climate mitigation: An ambitious energy transition aligned with key international climate goals would drive rapid cost reduction for green hydrogen. The trajectory needed to limit global warming at 1.5oC could make electrolysers an estimated 40% cheaper by 2030.
Strategies for Joint Procurement of Fuel Cell Buses: A Study for the Fuel Cells and Hydrogen Joint Undertaking
Jun 2018
Publication
The Fuel Cells and Hydrogen Joint Undertaking (FCH JU) has supported a range of initiatives in recent years designed to develop hydrogen fuel cell buses to a point where they can fulfil their promise as a mainstream zero emission vehicle for public transport.<br/>Within this study 90 different European cities and regions have been supported in understanding the business case of fuel cell bus deployment and across these locations. The study analyses the funding and financing for fuel cell bus deployment to make them become a mainstream zero emission choice for public transport providers in cities and regions across Europe. It also outlines possible solutions for further deployment of FC buses beyond the subsidised phase.<br/>In the light of the experience of the joint tender process in the UK and in Germany the study highlights best practices for ordering fuel cell buses. Other innovative instruments explored in other countries for the orders of large quantities of fuel cells buses are presented: Special Purpose Vehicles and centralised purchase office. Finally the study deeply analyses the funding and financing for fuel cell bus deployment to make them become a mainstream zero emission choice for public transport providers in cities and regions across Europe.
Power-to-liquid via Synthesis of Methanol, DME or Fischer–Tropsch-fuels: A Review
Jul 2020
Publication
The conversion of H2 and CO2 to liquid fuels via Power-to-Liquid (PtL) processes is gaining attention. With their higher energy densities compared to gases the use of synthetic liquid fuels is particularly interesting in hard-to-abate sectors for which decarbonisation is difficult. However PtL poses new challenges for the synthesis: away from syngas-based continuously run large-scale plants towards more flexible small-scale concepts with direct CO2-utilisation. This review provides an overview of state of the art synthesis technologies as well as current developments and pilot plants for the most prominent PtL routes for methanol DME and Fischer–Tropsch-fuels. It should serve as a benchmark for future concepts guide researchers in their process development and allow a technological evaluation of alternative reactor designs. In the case of power-to-methanol and power-to-FT-fuels several pilot plants have been realised and the first commercial scale plants are planned or already in operation. In comparison power-to-DME is much less investigated and in an earlier stage of development. For methanol the direct CO2 hydrogenation offers advantages through less by-product formation and lower heat development. However increased water formation and lower equilibrium conversion necessitate new catalysts and reactor designs. While DME synthesis offers benefits with regards to energy efficiency operational experience from laboratory tests and pilot plants is still missing. Furthermore four major process routes for power-to-DME are possible requiring additional research to determine the optimal concept. In the case of Fischer–Tropsch synthesis catalysts for direct CO2 utilisation are still in an early stage. Consequently today’s Fischer–Tropsch-based PtL requires a shift to syngas benefiting from advances in co-electrolysis and reverse water-gas shift reactor design.
Consequence-based Safety Distances and Mitigation Measures for Gaseous Hydrogen Refueling Stations
Oct 2010
Publication
With the rapid development of hydrogen vehicle technology and large scale fuel cell vehicle (FCV) demonstration project worldwide more hydrogen refueling stations need to be built. Safety distances of hydrogen refueling stations have always been a public concern and have become a critical issue to further implementation of hydrogen station. In this paper safety distances for 35MPa and 70MPa gaseous hydrogen refueling station are evaluated on the basis of the maximum consequences likely to occur. Four typical consequences of hydrogen release are considered in modeling: physical explosion jet fire flash fire and confined vapor cloud explosion. Results show that physical explosion and the worst case of confined vapor cloud explosion produce the longest harm effect distances for instantaneous and continuous release respectively indicating that they may be considered as leading consequences for the determination of safety distances. For both 35MPa station and 70MPa station safety measures must be implemented because the calculated safety distances of most hydrogen facilities can not meet the criteria in national code if without sufficient mitigation measures. In order to reduce the safety distances to meet the national code some mitigation measures are investigated including elevation of hydrogen facilities using smaller vessel and pipe work and setting enclosure around compressors. Results show that these measures are effective to improve safety but each has different effectiveness on safety distance reduction. The combination of these safety measures may effectively eliminate the hazard of 35MPa station however may be not enough for 70MPa station. Further improvements need to be studied for compressors inside 70MPa station.
A Review on Synthesis of Methane as a Pathway for Renewable Energy Storage With a Focus on Solid Oxide Electrolytic Cell-Based Processes
Sep 2020
Publication
Environmental issues related to global warming are constantly pushing the fossil fuel-based energy sector toward an efficient and economically viable utilization of renewable energy. However challenges related to renewable energy call for alternative routes of its conversion to fuels and chemicals by an emerging Power-to-X approach. Methane is one such high-valued fuel that can be produced through renewables-powered electrolytic routes. Such routes employ alkaline electrolyzers proton exchange membrane electrolyzers and solid oxide electrolyzers commonly known as solid oxide electrolysis cells (SOECs). SOECs have the potential to utilize the waste heat generated from exothermic methanation reactions to reduce the expensive electrical energy input required for electrolysis. A further advantage of an SOEC lies in its capacity to co-electrolyze both steam and carbon dioxide as opposed to only water and this inherent capability of an SOEC can be harnessed for in situ synthesis of methane within a single reactor. However the concept of in situ methanation in SOECs is still at a nascent stage and requires significant advancements in SOEC materials particularly in developing a cathode electrocatalyst that demonstrates activity toward both steam electrolysis and methanation reactions. Equally important is the appropriate reactor design along with optimization of cell operating conditions (temperature pressure and applied potential). This review elucidates those developments along with research and development opportunities in this space. Also presented here is an efficiency comparison of different routes of synthetic methane production using SOECs in various modes that is as a source of hydrogen syngas and hydrogen/carbon dioxide mixture and for in situ methane synthesis.
Perspectives on Cathodes for Protonic Ceramic Fuel Cells
Jun 2021
Publication
Protonic ceramic fuel cells (PCFCs) are promising electrochemical devices for the efficient and clean conversion of hydrogen and low hydrocarbons into electrical energy. Their intermediate operation temperature (500–800 °C) proffers advantages in terms of greater component compatibility unnecessity of expensive noble metals for the electrocatalyst and no dilution of the fuel electrode due to water formation. Nevertheless the lower operating temperature in comparison to classic solid oxide fuel cells places significant demands on the cathode as the reaction kinetics are slower than those related to fuel oxidation in the anode or ion migration in the electrolyte. Cathode design and composition are therefore of crucial importance for the cell performance at low temperature. The different approaches that have been adopted for cathode materials research can be broadly classified into the categories of protonic–electronic conductors oxide-ionic–electronic conductors triple-conducting oxides and composite electrodes composed of oxides from two of the other categories. Here we review the relatively short history of PCFC cathode research discussing trends highlights and recent progress. Current understanding of reaction mechanisms is also discussed.
Decarbonization in Shipping Industry: A Review of Research, Technology Development, and Innovation Proposals
Apr 2021
Publication
This review paper examines the possible pathways and possible technologies available that will help the shipping sector achieve the International Maritime Organization’s (IMO) deep decarbonization targets by 2050. There has been increased interest from important stakeholders regarding deep decarbonization evidenced by market surveys conducted by Shell and Deloitte. However deep decarbonization will require financial incentives and policies at an international and regional level given the maritime sector’s ~3% contribution to green house gas (GHG) emissions. The review paper based on research articles and grey literature discusses technoeconomic problems and/or benefits for technologies that will help the shipping sector achieve the IMO’s targets. The review presents a discussion on the recent literature regarding alternative fuels (nuclear hydrogen ammonia methanol) renewable energy sources (biofuels wind solar) the maturity of technologies (fuel cells internal combustion engines) as well as technical and operational strategies to reduce fuel consumption for new and existing ships (slow steaming cleaning and coating waste heat recovery hull and propeller design). The IMO’s 2050 targets will be achieved via radical technology shift together with the aid of social pressure financial incentives regulatory and legislative reforms at the local regional and international level.
Assessing Uncertainties of Life-Cycle CO2 Emissions Using Hydrogen Energy for Power Generation
Oct 2021
Publication
Hydrogen and its energy carriers such as liquid hydrogen (LH2) methylcyclohexane (MCH) and ammonia (NH3) are essential components of low-carbon energy systems. To utilize hydrogen energy the complete environmental merits of its supply chain should be evaluated. To understand the expected environmental benefit under the uncertainty of hydrogen technology development we conducted life-cycle inventory analysis and calculated CO2 emissions and their uncertainties attributed to the entire supply chain of hydrogen and NH3 power generation (co-firing and mono-firing) in Japan. Hydrogen was assumed to be produced from overseas renewable energy sources with LH2/MCH as the carrier and NH3 from natural gas or renewable energy sources. The Japanese life-cycle inventory database was used to calculate emissions. Monte Carlo simulations were performed to evaluate emission uncertainty and mitigation factors using hydrogen energy. For LH2 CO2 emission uncertainty during hydrogen liquefaction can be reduced by using low-carbon fuel. For MCH CO2 emissions were not significantly affected by power consumption of overseas processes; however it can be reduced by implementing low-carbon fuel and waste-heat utilization during MCH dehydrogenation. Low-carbon NH3 production processes significantly affected power generation whereas carbon capture and storage during NH3 production showed the greatest reduction in CO2 emission. In conclusion reducing CO2 emissions during the production of hydrogen and NH3 is key to realize low-carbon hydrogen energy systems.
Ultrasonic-assisted Catalytic Transfer Hydrogenation for Upgrading Pyrolysis-oil
Feb 2021
Publication
Recent interest in biomass-based fuel blendstocks and chemical compounds has stimulated research efforts on conversion and upgrading pathways which are considered as critical commercialization drivers. Existing pre-/post-conversion pathways are energy intense (e.g. pyrolysis and hydrogenation) and economically unsustainable thus more efficient process solutions can result in supporting the renewable fuels and green chemicals industry. This study proposes a process including biomass conversion and bio-oil upgrading using mixed fast and slow pyrolysis conversion pathway as well as sono-catalytic transfer hydrogenation (SCTH) treatment process. The proposed SCTH treatment employs ammonium formate as a hydrogen transfer additive and palladium supported on carbon as the catalyst. Utilizing SCTH bio-oil molecular bonds were broken and restructured via the phenomena of cavitation rarefaction and hydrogenation with the resulting product composition investigated using ultimate analysis and spectroscopy. Additionally an in-line characterization approach is proposed using near-infrared spectroscopy calibrated by multivariate analysis and modelling. The results indicate the potentiality of ultrasonic cavitation catalytic transfer hydrogenation and SCTH for incorporating hydrogen into the organic phase of bio-oil. It is concluded that the integration of pyrolysis with SCTH can improve bio-oil for enabling the production of fuel blendstocks and chemical compounds from lignocellulosic biomass.
The NederDrone: A Hybrid Lift, Hybrid Energy Hydrogen UAV
Mar 2021
Publication
Many Unmanned Air Vehicle (UAV) applications require vertical take-off and landing and very long-range capabilities. Fixed-wing aircraft need long runways to land and electric energy is still a bottleneck for helicopters which are not range efficient. In this paper we introduce the NederDrone a hybrid lift hybrid energy hydrogen-powered UAV that can perform vertical take-off and landings using its 12 propellers while flying efficiently in forward flight thanks to its fixed wings. The energy is supplied from a combination of hydrogen-driven Polymer Electrolyte Membrane fuel-cells for endurance and lithium batteries for high-power situations. The hydrogen is stored in a pressurized cylinder around which the UAV is optimized. This work analyses the selection of the concept the implemented safety elements the electronics and flight control and shows flight data including a 3h38 flight at sea while starting and landing from a small moving ship.
Hydrogen Fuel Cell Vehicles; Current Status and Future Prospect
Jun 2019
Publication
The hazardous effects of pollutants from conventional fuel vehicles have caused the scientific world to move towards environmentally friendly energy sources. Though we have various renewable energy sources the perfect one to use as an energy source for vehicles is hydrogen. Like electricity hydrogen is an energy carrier that has the ability to deliver incredible amounts of energy. Onboard hydrogen storage in vehicles is an important factor that should be considered when designing fuel cell vehicles. In this study a recent development in hydrogen fuel cell engines is reviewed to scrutinize the feasibility of using hydrogen as a major fuel in transportation systems. A fuel cell is an electrochemical device that can produce electricity by allowing chemical gases and oxidants as reactants. With anodes and electrolytes the fuel cell splits the cation and the anion in the reactant to produce electricity. Fuel cells use reactants which are not harmful to the environment and produce water as a product of the chemical reaction. As hydrogen is one of the most efficient energy carriers the fuel cell can produce direct current (DC) power to run the electric car. By integrating a hydrogen fuel cell with batteries and the control system with strategies one can produce a sustainable hybrid car
Recent Advances in Carbon Dioxide Conversion: A Circular Bioeconomy Perspective
Jun 2021
Publication
Managing the concentration of atmospheric CO2 requires a multifaceted engineering strategy which remains a highly challenging task. Reducing atmospheric CO2 (CO2R) by converting it to value-added chemicals in a carbon neutral footprint manner must be the ultimate goal. The latest progress in CO2R through either abiotic (artificial catalysts) or biotic (natural enzymes) processes is reviewed herein. Abiotic CO2R can be conducted in the aqueous phase that usually leads to the formation of a mixture of CO formic acid and hydrogen. By contrast a wide spectrum of hydrocarbon species is often observed by abiotic CO2R in the gaseous phase. On the other hand biotic CO2R is often conducted in the aqueous phase and a wide spectrum of value-added chemicals are obtained. Key to the success of the abiotic process is understanding the surface chemistry of catalysts which significantly governs the reactivity and selectivity of CO2R. However in biotic CO2R operation conditions and reactor design are crucial to reaching a neutral carbon footprint. Future research needs to look toward neutral or even negative carbon footprint CO2R processes. Having a deep insight into the scientific and technological aspect of both abiotic and biotic CO2R would advance in designing efficient catalysts and microalgae farming systems. Integrating the abiotic and biotic CO2R such as microbial fuel cells further diversifies the spectrum of CO2R.
Green Hydrogen in Europe – A Regional Assessment: Substituting Existing Production with Electrolysis Powered by Renewables
Nov 2020
Publication
The increasing ambition of climate targets creates a major role for hydrogen especially in achieving carbon-neutrality in sectors presently difficult to decarbonise. This work examines to what extent the currently carbon-intensive hydrogen production in Europe could be replaced by water electrolysis using electricity from renewable energy resources (RES) such as solar photovoltaic onshore/offshore wind and hydropower (green hydrogen). The study assesses the technical potential of RES at regional and national levels considering environmental constraints land use limitations and various techno-economic parameters. It estimates localised clean hydrogen production and examines the capacity to replace carbon-intensive hydrogen hubs with ones that use RES-based water electrolysis. Findings reveal that -at national level- the available RES electricity potential exceeds the total electricity demand and the part for hydrogen production from electrolysis in all analysed countries. At regional level from the 109 regions associated with hydrogen production (EU27 and UK) 88 regions (81%) show an excess of potential RES generation after covering the annual electricity demand across all sectors and hydrogen production. Notably 84 regions have over 50% excess RES electricity potential after covering the total electricity demand and that for water electrolysis. The study provides evidence on the option to decarbonize hydrogen production at regional level. It shows that such transformation is possible and compatible with the ongoing transition towards carbon–neutral power systems in the EU. Overall this work aims to serve as a tool for designing hydrogen strategies in harmony with renewable energy policies.
Performance Analysis of Hydrogen Fuel Cell with Two-stage Turbo Compressor for Automotive Applications
May 2021
Publication
This paper discusses the numerical modeling of an automobile fuel cell system using a two-stage turbo-compressor for air supply. The numerical model incorporates essential input parameters for air and hydrogen flow. The model also performed mass and energy balances across different components such as pump fan heat-exchanger air compressor and keeps in consideration the pressure losses across flow pipes and various mechanical parts. The compressor design process initiates with numerical analysis of the preliminary design of a highly efficient two-stage turbo compressor with an expander as a single-stage compressor has several limitations in terms of efficiency and pressure ratio. The compressor’s design parameters were carefully studied and analyzed with respect to the highly efficient fuel cell stack (FCS) used in modern hydrogen vehicles. The model is solved to evaluate the overall performance of PEM FCS. The final compressor has a total pressure and temperature of 4.2 bar and 149.3°C whereas the required power is 20.08kW with 3.18kW power losses and having a combined efficiency of 70.8%. According to the FC model with and without expander the net-power outputs are 98.15kW and 88.27kW respectively and the maximum efficiencies are 65.1% and 59.1% respectively. Therefore it can be concluded that a two-stage turbo compressor with a turbo-expander can have significant effects on overall system power and efficiency. The model can be used to predict and optimize system performance for PEM FCS at different operating conditions.
No more items...