Applications & Pathways
The Role of Charging and Refuelling Infrastructure in Supporting Zero-emission Vehicle Sales
Mar 2020
Publication
Widespread uptake of battery electric plug-in hybrid and hydrogen fuel-cell vehicles (collectively zero-emissions vehicles or ZEVs) could help many regions achieve deep greenhouse gas mitigation goals. Using the case of Canada this study investigates the extent to which increasing ZEV charging and refuelling availability may boost ZEV sales relative to other ZEV-supportive policies. We adapt a version of the Respondent-based Preferences and Constraints (REPAC) model using 2017 survey data from 1884 Canadian new vehicle-buyers to simulate the sales impacts of increasing electric vehicle charging access at home work public destinations and on highways as well as increasing hydrogen refuelling station access. REPAC is built from a stated preference choice model and represents constraints in supply and consumer awareness as well as dynamics in ZEV policy out to 2030. Results suggest that new ZEV market share from 2020 to 2030 does not substantially benefit from increased infrastructure. Even when electric charging and hydrogen refuelling access are simulated to reach “universally” available levels by 2030 ZEV sales do not rise by more than 1.5 percentage points above the baseline trajectory. On the other hand REPAC simulates ZEV market share rising as high as 30% by 2030 with strong ZEV-supportive policies even without the addition of charging or refuelling infrastructure. These findings stem from low consumer valuation of infrastructure found in the stated preference model. Results suggest that achieving ambitious ZEV sale targets requires a comprehensive suite of policies beyond a focus on charging and refuelling infrastructure.
Electric and Hydrogen Buses: Shifting from Conventionally Fuelled Cars in the UK
May 2020
Publication
For the UK to meet their national target of net zero emissions as part of the central Paris Agreement target further emphasis needs to be placed on decarbonizing public transport and moving away from personal transport (conventionally fuelled vehicles (CFVs) and electric vehicles (EVs)). Electric buses (EBs) and hydrogen buses (HBs) have the potential to fulfil requirements if powered from low carbon renewable energy sources.
A comparison of carbon dioxide (CO2) emissions produced from conventionally fuelled buses (CFB) EBs and HBs between 2017 and 2050 under four National Grid electricity scenarios was conducted. In addition emissions per person at different vehicle capacity levels (100% 75% 50% and 25%) were projected for CFBs HBs EBs and personal transport assuming a maximum of 80 passengers per bus and four per personal vehicle.
Results indicated that CFVs produced 30 g CO2km−1 per person compared to 16.3 g CO2 km−1 per person by CFBs by 2050. At 100% capacity under the two-degree scenario CFB emissions were 36 times higher than EBs 9 times higher than HBs and 12 times higher than EVs in 2050. Cumulative emissions under all electricity scenarios remained lower for EBs and HBs.
Policy makers need to focus on encouraging a modal shift from personal transport towards sustainable public transport primarily EBs as the lowest level emitting vehicle type. Simple electrification of personal vehicles will not meet the required targets. Simultaneously CFBs need to be replaced with EBs and HBs if the UK is going to meet emission targets.
A comparison of carbon dioxide (CO2) emissions produced from conventionally fuelled buses (CFB) EBs and HBs between 2017 and 2050 under four National Grid electricity scenarios was conducted. In addition emissions per person at different vehicle capacity levels (100% 75% 50% and 25%) were projected for CFBs HBs EBs and personal transport assuming a maximum of 80 passengers per bus and four per personal vehicle.
Results indicated that CFVs produced 30 g CO2km−1 per person compared to 16.3 g CO2 km−1 per person by CFBs by 2050. At 100% capacity under the two-degree scenario CFB emissions were 36 times higher than EBs 9 times higher than HBs and 12 times higher than EVs in 2050. Cumulative emissions under all electricity scenarios remained lower for EBs and HBs.
Policy makers need to focus on encouraging a modal shift from personal transport towards sustainable public transport primarily EBs as the lowest level emitting vehicle type. Simple electrification of personal vehicles will not meet the required targets. Simultaneously CFBs need to be replaced with EBs and HBs if the UK is going to meet emission targets.
Operation Analysis of Selected Domestic Appliances Supplied with Mixture of Nitrogen-Rich Natural Gas with Hydrogen
Dec 2021
Publication
This is article presents the results of the testing of the addition of a hydrogen-to-nitrogen-rich natural gas of the Lw group and its influence on the operation of selected gas-fired domestic appliances. The tests were performed on appliances used for the preparation of meals and hot water production for hygienic and heating purposes. The characteristics of the tested gas appliances are also presented. The burners and their controllers with which the tested appliances were equipped were adapted for the combustion of Lw natural gas. The tested appliances reflected the most popular designs for domestic gas appliances in their group used both in Poland and in other European countries. The tested appliances were supplied with nitrogen-rich natural gas of the Lw group and a mixture of this gas with hydrogen at 13.2% content. The article presents the approximate percentage compositions of the gases used during the tests and their energy parameters. The research was focused on checking the following operating parameters and the safety of the tested appliances: the rated heat input thermal efficiency combustion quality ignition flame stability and transfer. The article contains an analysis of the test results referring in detail to the issue of decreasing the heat input of the appliances by lowering the energy parameters of the nitrogen-rich natural gas of the Lw group mixture with a hydrogen addition and how it influenced the thermal efficiency achieved by the appliances. The conclusions contain an explanation regarding among other things how the design of an appliance influences the thermal efficiency achieved by it in relation to the heat input decrease. In the conclusions on the basis of the research results answers have been provided to the following questions: (1) Whether the hydrogen addition to the nitrogen-rich natural gas of the Lw group will influence the safe and proper operation of domestic gas appliances; (2) What hydrogen percentage can be added to the nitrogen-rich natural gas of the Lw group in order for the appliances adapted for combusting it to operate safely and effectively without the need for modifying them?
Optimized Operation Plan for Hydrogen Refueling Station with On-Site Electrolytic Production
Dec 2022
Publication
The cost reduction of hydrogen refueling stations (HRSs) is very important for the popularization of hydrogen vehicles. This paper proposes an optimized operation algorithm based on hydrogen energy demand estimation for on-site hydrogen refueling stations. Firstly the user’s hydrogen demand was estimated based on the simulation of their hydrogenation behavior. Secondly mixed integer linear programming method was used to optimize the operation of the hydrogen refueling station to minimize the unit hydrogen energy cost by using the peak–valley difference of the electricity price. We then used three typical scenario cases to evaluate the optimized operation method. The results show that the optimized operation method proposed in this paper can effectively reduce the rated configuration of electrolyzer and storage tank for HRS and can significantly reduce the unit hydrogen energy cost considering the construction cost compared with the traditional method. Therefore the optimization operation method of a local hydrogen production and hydrogen refueling station proposed in this paper can reduce the cost of a hydrogen refueling station and accelerate the popularization of hydrogen energy vehicles. Finally the scope of application of the proposed optimization method and the influence of the variation of the electricity price curve and the unit cost of the electrolyzer are discussed.
Propulsion of a Hydrogen-fuelled LH2 Tanker Ship
Mar 2022
Publication
This study aims to present a philosophical and quantitative perspective of a propulsion system for a large-scale hydrogen-fuelled liquid-hydrogen (LH2) tanker ship. Established methods are used to evaluate the design and performance of an LH2-carrier propulsion system for JAMILA a ship designed with four cylindrical LH2 tanks bearing a total capacity of ~280000 m3 along with cargo and using the boil-off as propulsion and power fuel. Additionally the ship propulsion system is evaluated based on the ship resistance requirements and a hydrogen-fuelled combined-cycle gas turbine is modelled to achieve the dual objectives of high efficiency and zero-carbon footprint. The required inputs primarily involve the off-design and degraded performance of the gas-turbine topping cycle and the proposed power plant operates with a total output power of 50 M.W. The results reveal that the output power allows ship operation at a great speed even with a degraded engine and adverse ambient conditions.
Digital Navigation of Energy–structure–function Maps for Hydrogen-bonded Porous Molecular Crystals
Feb 2021
Publication
Energy–structure–function (ESF) maps can aid the targeted discovery of porous molecular crystals by predicting the stable crystalline arrangements along with their functions of interest. Here we compute ESF maps for a series of rigid molecules that comprise either a triptycene or a spiro-biphenyl core functionalized with six different hydrogen-bonding moieties. We show that the positioning of the hydrogen-bonding sites as well as their number has a profound influence on the shape of the resulting ESF maps revealing promising structure–function spaces for future experiments. We also demonstrate a simple and general approach to representing and inspecting the high-dimensional data of an ESF map enabling an efficient navigation of the ESF data to identify ‘landmark’ structures that are energetically favourable or functionally interesting. This is a step toward the automated analysis of ESF maps an important goal for closed-loop autonomous searches for molecular crystals with useful functions.
Energy Essentials: A Guide to Hydrogen
Jan 2020
Publication
Climate change and air quality concerns have pushed clean energy up the global agenda. As we switch over to new cleaner technologies and fuels our experience of using power heat and transport are going to change transforming the way we live work and get from A to B. Explore this guide to find out what hydrogen is how it is made transported and used what the experience would be like in the home for transport and for businesses and discover what the future of hydrogen might be.
Visit the Energy Institute website for more information
Visit the Energy Institute website for more information
Effect of Hydrogen–diesel Dual-fuel Usage on Performance, Emissions and Diesel Combustion in Diesel Engines
Jul 2016
Publication
Diesel engines are inevitable parts of our daily life and will be in the future. Expensive after-treatment technologies to fulfil normative legislations about the harmful tail-pipe emissions and fuel price increase in recent years created expectations from researchers for alternative fuel applications on diesel engines. This study investigates hydrogen as additive fuel in diesel engines. Hydrogen was introduced into intake manifold using gas injectors as additive fuel in gaseous form and also diesel fuel was injected into cylinder by diesel injector and used as igniter. Energy content of introduced hydrogen was set to 0% 25% and 50% of total fuel energy where the 0% references neat diesel operation without hydrogen injection. Test conditions were set to full load at 750 900 1100 1400 1750 and finally 2100 r/min engine speed. Variation in engine performance emissions and combustion characteristics with hydrogen addition was investigated. Hydrogen introduction into the engine by 25% and 50% of total charge energy reveals significant decrease in smoke emissions while dramatic increase in nitrogen oxides. With increasing hydrogen content a slight rise is observed in total unburned hydrocarbons although CO2 and CO gaseous emissions reduced considerably. Maximum in-cylinder gas pressure and rate of heat release peak values raised with hydrogen fraction.
Path to Hydrogen Competitiveness: A Cost Perspective
Jan 2020
Publication
This latest Hydrogen Council report shows that the cost of hydrogen solutions will fall sharply within the next decade – and sooner than previously expected. As scale up of hydrogen production distribution equipment and component manufacturing continues cost is projected to decrease by up to 50% by 2030 for a wide range of applications making hydrogen competitive with other low-carbon alternatives and in some cases even conventional options.
Significant cost reductions are expected across different hydrogen applications. For more than 20 of them such as long-distance and heavy-duty transportation industrial heating and heavy industry feedstock which together comprise roughly 15% of global energy consumption the hydrogen route appears the decarbonisation option of choice – a material opportunity.
The report attributes this trajectory to scale-up that positively impacts the three main cost drivers:
To deliver on this opportunity supporting policies will be required in key geographies together with investment support of around $70 billion in the lead up to 2030 in order to scale up and achieve hydrogen competitiveness. While this figure is sizable it accounts for less than 5% of annual global spending on energy. For comparison support provided to renewables in Germany totalled roughly $30 billion in 2019.
The study is based on real industry data with 25000 data points gathered and analysed from 30 companies using a rigorous methodology. The data was collected and analytical support provided by McKinsey & Company and it represents the entire hydrogen value chain across four key geographies (US Europe Japan/Korea and China). Data was also reviewed by an independent advisory group comprised of recognised hydrogen and energy transition experts.
You can download the full report from the Hydrogen Council website here
The executive summary can be found here
Significant cost reductions are expected across different hydrogen applications. For more than 20 of them such as long-distance and heavy-duty transportation industrial heating and heavy industry feedstock which together comprise roughly 15% of global energy consumption the hydrogen route appears the decarbonisation option of choice – a material opportunity.
The report attributes this trajectory to scale-up that positively impacts the three main cost drivers:
- Strong fall in the cost of producing low carbon and renewable hydrogen;
- Lower distribution and refuelling costs thanks to higher load utilisation and scale effect on infrastructure utilisation; and
- Dramatic drop in the cost of components for end-use equipment under scaling up of manufacturing.
To deliver on this opportunity supporting policies will be required in key geographies together with investment support of around $70 billion in the lead up to 2030 in order to scale up and achieve hydrogen competitiveness. While this figure is sizable it accounts for less than 5% of annual global spending on energy. For comparison support provided to renewables in Germany totalled roughly $30 billion in 2019.
The study is based on real industry data with 25000 data points gathered and analysed from 30 companies using a rigorous methodology. The data was collected and analytical support provided by McKinsey & Company and it represents the entire hydrogen value chain across four key geographies (US Europe Japan/Korea and China). Data was also reviewed by an independent advisory group comprised of recognised hydrogen and energy transition experts.
You can download the full report from the Hydrogen Council website here
The executive summary can be found here
Hydrolysis Hydrogen Production Mechanism of Mg10Ni10Ce Alloy Surface Modified by SnO2 Nanotubes in Different Aqueous Systems
May 2020
Publication
(Mg-10wt.%Ni)-10wt.%Ce (Mg10Ni10Ce) was ball-milled with SnO2 nanotubes and Mg10Ni10Ce-xSnO2 (x=0 5 10 and 15wt.%) composites have been prepared. The phase compositions microstructures morphologies and hydrolysis H2 generation performance in different aqueous systems (distilled water tap water and simulated seawater) have been investigated and the corresponding hydrolysis mechanism of Mg10Ni10Ce and Mg10Ni10Ce-SnO2 has been proposed. Adding a small amount of SnO2 nanotubes can significantly enhance the hydrolysis reaction of Mg10Ni10Ce especially the initial hydrolysis kinetics and the final H2 generation yield. Unfortunately the Mg10Ni10Ce-xSnO2 hardly react with distilled water at room temperature. The hydrolysis reaction rate of Mg10Ni10Ce-5SnO2 composite in tap water is still very slow with only 17.3% generation yield after 1 hour at 303 K. Fortunately in simulated seawater (3.5wt.% NaCl solution) the hydrolytic H2 generation behavior of the Mg10Ni10Ce-5SnO2 composite has been greatly improved which can release as high as 468.6 mL/g H2 with about 60.9% generation yield within 30 s at 303 K. The Cl- destroys the passivation layer on Mg-Ni-Ce alloy surface and the added SnO2 nanotubes accelerate the hydrolysis reaction rate and enhance the H2 generation yield. The Mg10Ni10Ce-5SnO2 composite can rapidly generate a large amount of H2 in simulate seawater in a short time which is expected to be applied on portable H2 generators in the future.
Challenges in the Use of Hydrogen for Maritime Applications
Jan 2021
Publication
Maritime shipping is a key factor that enables the global economy however the pressure it exerts on the environment is increasing rapidly. In order to reduce the emissions of harmful greenhouse gasses the search is on for alternative fuels for the maritime shipping industry. In this work the usefulness of hydrogen and hydrogen carriers is being investigated as a fuel for sea going ships. Due to the low volumetric energy density of hydrogen under standard conditions the need for efficient storage of this fuel is high. Key processes in the use of hydrogen are discussed starting with the production of hydrogen from fossil and renewable sources. The focus of this review is different storage methods and in this work we discuss the storage of hydrogen at high pressure in liquefied form at cryogenic temperatures and bound to liquid or solid-state carriers. In this work a theoretical introduction to different hydrogen storage methods precedes an analysis of the energy-efficiency and practical storage density of the carriers. In the final section the major challenges and hurdles for the development of hydrogen storage for the maritime industry are discussed. The most likely challenges will be the development of a new bunkering infrastructure and suitable monitoring of the safety to ensure safe operation of these hydrogen carriers on board the ship.
Integrated Ni-P-S Nanosheets Array as Superior Electrocatalysts for Hydrogen Generation
Jan 2017
Publication
Searching for efficient and robust non-noble electrocatalysts for hydrogen generation is extremely desirable for future green energy systems. Here we present the synthesis of integrated Ni-P-S nanosheets array including Ni2P and NiS on nickel foam by a simple simultaneous phosphorization and sulfurization strategy. The resultant sample with optimal composition exhibits superior electrocatalytic performance for hydrogen evolution reaction (HER) in a wide pH range. In alkaline media it can generate current densities of 10 20 and 100 mA cm−2 at low overpotentials of only −101.9 −142.0 and −207.8 mV with robust durability. It still exhibits high electrocatalytic activities even in acid or neutral media. Such superior electrocatalytic performances can be mainly attributed to the synergistic enhancement of the hybrid Ni-P-S nanosheets array with integration microstructure. The kind of catalyst gives a new insight on achieving efficient and robust hydrogen generation.
The Curious Case of the Conflicting Roles of Hydrogen in Global Energy Scenarios
Oct 2019
Publication
As energy systems transition from fossil-based to low-carbon they face many challenges particularly concerning energy security and flexibility. Hydrogen may help to overcome these challenges with potential as a transport fuel for heating energy storage conversion to electricity and in industry. Despite these opportunities hydrogen has historically had a limited role in influential global energy scenarios. Whilst more recent studies are beginning to include hydrogen the role it plays in different scenarios is extremely inconsistent. In this perspective paper reasons for this inconsistency are explored considering the modelling approach behind the scenario scenario design and data assumptions. We argue that energy systems are becoming increasingly complex and it is within these complexities that new technologies such as hydrogen emerge. Developing a global energy scenario that represents these complexities is challenging and in this paper we provide recommendations to help ensure that emerging technologies such as hydrogen are appropriately represented. These recommendations include: using the right modelling tools whilst knowing the limits of the model; including the right sectors and technologies; having an appropriate level of ambition; and making realistic data assumptions. Above all transparency is essential and global scenarios must do more to make available the modelling methods and data assumptions used.
Hydrogen Scaling Up: A Sustainable Pathway for the Global Energy Transition
Nov 2017
Publication
Deployed at scale hydrogen could account for almost one-fifth of total final energy consumed by 2050. This would reduce annual CO2 emissions by roughly 6 gigatons compared to today’s levels and contribute roughly 20% of the abatement required to limit global warming to two degrees Celsius.
On the demand side the Hydrogen Council sees the potential for hydrogen to power about 10 to 15 million cars and 500000 trucks by 2030 with many uses in other sectors as well such as industry processes and feedstocks building heating and power power generation and storage. Overall the study predicts that the annual demand for hydrogen could increase tenfold by 2050 to almost 80 EJ in 2050 meeting 18% of total final energy demand in the 2050 two-degree scenario. At a time when global populations are expected to grow by two billion people by 2050 hydrogen technologies have the potential to create opportunities for sustainable economic growth.
“The world in the 21st century must transition to widespread low carbon energy use” said Takeshi Uchiyamada Chairman of Toyota Motor Corporation and co-chair of the Hydrogen Council. “Hydrogen is an indispensable resource to achieve this transition because it can be used to store and transport wind solar and other renewable electricity to power transportation and many other things. The Hydrogen Council has identified seven roles for hydrogen which is why we are encouraging governments and investors to give it a prominent role in their energy plans. The sooner we get the hydrogen economy going the better and we are all committed to making this a reality.”
Achieving such scale would require substantial investments; approximately US$20 to 25 billion annually for a total of about US$280 billion until 2030. Within the right regulatory framework – including long-term stable coordination and incentive policies – the report considers that attracting these investments to scale the technology is feasible. The world already invests more than US$1.7 trillion in energy each year including US$650 billion in oil and gas US$300 billion in renewable electricity and more than US$300 billion in the automotive industry.
“This study confirms the place of hydrogen as a central pillar in the energy transition and encourages us in our support of its large-scale deployment. Hydrogen will be an unavoidable enabler for the energy transition in certain sectors and geographies. The sooner we make this happen the sooner we will be able to enjoy the needed benefits of Hydrogen at the service of our economies and our societies” said Benoît Potier Chairman and CEO Air Liquide. “Solutions are technologically mature and industry players are committed. We need concerted stakeholder efforts to make this happen; leading this effort is the role of the Hydrogen Council.”
The launch of the new roadmap came during the Sustainability Innovation Forum in the presence of 18 senior members of the Hydrogen led by co-chairs Takeshi Uchiyamada Chairman of Toyota and Benoît Potier Chairman and CEO Air Liquide and accompanied by Prof. Aldo Belloni CEO of The Linde Group Woong-chul Yang Vice Chairman of Hyundai Motor Company and Anne Stevens Board Member of Anglo American. During the launch the Hydrogen Council called upon investors policymakers and businesses to join them in accelerating deployment of hydrogen solutions for the energy transition. It was also announced that Woong-chul Yang of Hyundai Motor Company will succeed Takeshi Uchiyamada of Toyota in the rotating role of the Council’s co-chair and preside the group together with Benoit Potier CEO Air Liquide in 2018. Mr Uchiyamada is planning to return as Co-chairman in 2020 coinciding with the Tokyo Olympic and Paalympic Games an important milestone for showcasing hydrogen society and mobility.
You can download the full report from the Hydrogen Council website here
On the demand side the Hydrogen Council sees the potential for hydrogen to power about 10 to 15 million cars and 500000 trucks by 2030 with many uses in other sectors as well such as industry processes and feedstocks building heating and power power generation and storage. Overall the study predicts that the annual demand for hydrogen could increase tenfold by 2050 to almost 80 EJ in 2050 meeting 18% of total final energy demand in the 2050 two-degree scenario. At a time when global populations are expected to grow by two billion people by 2050 hydrogen technologies have the potential to create opportunities for sustainable economic growth.
“The world in the 21st century must transition to widespread low carbon energy use” said Takeshi Uchiyamada Chairman of Toyota Motor Corporation and co-chair of the Hydrogen Council. “Hydrogen is an indispensable resource to achieve this transition because it can be used to store and transport wind solar and other renewable electricity to power transportation and many other things. The Hydrogen Council has identified seven roles for hydrogen which is why we are encouraging governments and investors to give it a prominent role in their energy plans. The sooner we get the hydrogen economy going the better and we are all committed to making this a reality.”
Achieving such scale would require substantial investments; approximately US$20 to 25 billion annually for a total of about US$280 billion until 2030. Within the right regulatory framework – including long-term stable coordination and incentive policies – the report considers that attracting these investments to scale the technology is feasible. The world already invests more than US$1.7 trillion in energy each year including US$650 billion in oil and gas US$300 billion in renewable electricity and more than US$300 billion in the automotive industry.
“This study confirms the place of hydrogen as a central pillar in the energy transition and encourages us in our support of its large-scale deployment. Hydrogen will be an unavoidable enabler for the energy transition in certain sectors and geographies. The sooner we make this happen the sooner we will be able to enjoy the needed benefits of Hydrogen at the service of our economies and our societies” said Benoît Potier Chairman and CEO Air Liquide. “Solutions are technologically mature and industry players are committed. We need concerted stakeholder efforts to make this happen; leading this effort is the role of the Hydrogen Council.”
The launch of the new roadmap came during the Sustainability Innovation Forum in the presence of 18 senior members of the Hydrogen led by co-chairs Takeshi Uchiyamada Chairman of Toyota and Benoît Potier Chairman and CEO Air Liquide and accompanied by Prof. Aldo Belloni CEO of The Linde Group Woong-chul Yang Vice Chairman of Hyundai Motor Company and Anne Stevens Board Member of Anglo American. During the launch the Hydrogen Council called upon investors policymakers and businesses to join them in accelerating deployment of hydrogen solutions for the energy transition. It was also announced that Woong-chul Yang of Hyundai Motor Company will succeed Takeshi Uchiyamada of Toyota in the rotating role of the Council’s co-chair and preside the group together with Benoit Potier CEO Air Liquide in 2018. Mr Uchiyamada is planning to return as Co-chairman in 2020 coinciding with the Tokyo Olympic and Paalympic Games an important milestone for showcasing hydrogen society and mobility.
You can download the full report from the Hydrogen Council website here
A Socio-technical Perspective on the Scope for Ports to Enable Energy Transition
Jan 2021
Publication
The paper applies the multi-level perspective (MLP) in a descriptive study of three Norwegian ports to shed new light on the sociotechnical processes that structure their efforts to develop into zero emission energy hubs. While exogenous pressures cause tensions over port governance the studied ports utilize their full spectre of functions; as landlords operators authorities and community managers to enable transition. The respective approaches vary related to their local context market situation and social networks including port's relations with their owners. Individual orientations and organizational capacity further influence their engagement with radical innovation niches (e.g. OPS hydrogen LNG). The study highlights the active role of ports in sustainability transition. It shows how the interaction between geographical factors and institutional work influences the scope for new solutions around the individual port and how this makes for different feedback loops and contributions to sustainability transition in wider transport and energy systems.
Genome-wide Transcriptome Analysis of Hydrogen Production in the Cyanobacterium Synechocystis: Towards the Identification of New Players
Dec 2012
Publication
We report the development of new tools and methods for facile integration and meaningful representation of high throughput data generated by genome-wide analyses of the model cyanobacterium Synechocystis PCC6803 for future genetic engineering aiming at increasing its level of hydrogen photoproduction. These robust tools comprise new oligonucleotide DNA microarrays to monitor the transcriptomic responses of all 3725 genes of Synechocystis and the SVGMapping method and custom-made templates to represent the metabolic reprogramming for improved hydrogen production. We show for the first time that the AbrB2 repressor of the hydrogenase-encoding operon also regulates metal transport and protection against oxidative stress as well as numerous plasmid genes which have been overlooked so far. This report will stimulate the construction and global analysis of hydrogen production mutants with the prospect of developing powerful cell factories for the sustainable production of hydrogen as well as investigations of the probable role of plasmids in this process.
Mach 4 Simulating Experiment of Pre-Cooled Turbojet Engine Using Liquid Hydrogen
Jan 2022
Publication
This study investigated a pre-cooled turbojet engine for a Mach 5 class hypersonic transport aircraft. The engine was demonstrated under takeoff and Mach 2 flight conditions and a Mach 5 propulsion wind tunnel test is planned. The engine is composed of a pre-cooler a core engine and an afterburner. The engine was tested under simulated Mach 4 conditions using an air supply facility. High-temperature air under high pressure was supplied to the engine components through an airflow control valve and an orifice flow meter and liquid hydrogen was supplied to the pre-cooler and the core engine. The results confirmed that the starting sequence of the engine components was effective under simulated Mach 4 conditions using liquid hydrogen fuel. The pre-cooling effect caused no damage to the rotating parts of the core engine in the experiment.
A Comparison of Alternative Fuels for Shipping in Terms of Lifecycle Energy and Cost
Dec 2021
Publication
Decarbonization of the shipping sector is inevitable and can be made by transitioning into low‐ or zero‐carbon marine fuels. This paper reviews 22 potential pathways including conventional Heavy Fuel Oil (HFO) marine fuel as a reference case “blue” alternative fuel produced from natural gas and “green” fuels produced from biomass and solar energy. Carbon capture technology (CCS) is installed for fossil fuels (HFO and liquefied natural gas (LNG)). The pathways are compared in terms of quantifiable parameters including (i) fuel mass (ii) fuel volume (iii) life cycle (Well‐To‐ Wake—WTW) energy intensity (iv) WTW cost (v) WTW greenhouse gas (GHG) emission and (vi) non‐GHG emissions estimated from the literature and ASPEN HYSYS modelling. From an energy perspective renewable electricity with battery technology is the most efficient route albeit still impractical for long‐distance shipping due to the low energy density of today’s batteries. The next best is fossil fuels with CCS (assuming 90% removal efficiency) which also happens to be the lowest cost solution although the long‐term storage and utilization of CO2 are still unresolved. Biofuels offer a good compromise in terms of cost availability and technology readiness level (TRL); however the non‐GHG emissions are not eliminated. Hydrogen and ammonia are among the worst in terms of overall energy and cost needed and may also need NOx clean‐up measures. Methanol from LNG needs CCS for decarbonization while methanol from biomass does not and also seems to be a good candidate in terms of energy financial cost and TRL. The present analysis consistently compares the various options and is useful for stakeholders involved in shipping decarbonization.
Functional Model of Power Grid Stabilization in the Green Hydrogen Supply Chain System—Conceptual Assumptions
Dec 2022
Publication
Green hydrogen supply chain includes supply sources production and distribution of hydrogen produced from renewable energy sources (RES). It is a promising scientific and application area as it is related to the problem of instability of power grids supplied with RES. The article presents the conceptual assumptions of the research on the design of a functional multi-criteria model of the stabilization model architecture of energy distribution networks based on a hydrogen energy buffer taking into account the applicable use of hydrogen. The aim of the research was to identify the variables contributing to the stabilization of the operation of distribution networks. The method used to obtain this result was a systematic review of the literature using the technique of in-depth analysis of full-text articles and expert consultations. The concept of a functional model was described as a matrix in two dimensions in which the identified variables were embedded. The first dimension covers the phases of the supply chain: procurement and production along with storage and distribution. The second dimension divides the separate factors into technical economic and logistic. The research was conducted in the context of system optimization from the point of view of the operator of the energy distribution system. As a result of the research several benefits resulting from stabilization using a hydrogen buffer were identified. Furthermore the model may be used in designing solutions stabilizing the operation of power grids in which there are surpluses of electricity produced from RES. Due to the applied multidimensional approach the developed model is recommended for use as it enables the design of solutions in a systemic manner. Due to the growing level of energy obtained from renewable energy sources the issue of stabilizing the energy network is becoming increasingly important for energy network distributors.
Measurement Challenges for Hydrogen Vehicles
Apr 2019
Publication
Uptake of hydrogen vehicles is an ideal solution for countries that face challenging targets for carbon dioxide reduction. The advantage of hydrogen fuel cell electric vehicles is that they behave in a very similar way to petrol engines yet they do not emit any carbon containing products during operation. The hydrogen industry currently faces the dilemma that they must meet certain measurement requirements (set by European legislation) but cannot do so due to a lack of available methods and standards. This paper outlines the four biggest measurement challenges that are faced by the hydrogen industry including flow metering quality assurance quality control and sampling.
Study Navigating the Way to a Renewable Future – Solutions to Decarbonise Shipping
Sep 2019
Publication
On average the shipping sector is responsible for 3% of annual global green-house gas emissions on a CO2-equivalent basis. International shipping represents around 9% of the global emissions associated with the transport sector.<br/>This report from the International Renewable Energy Agency (IRENA) explores the impact of maritime shipping on CO2 emissions the structure of the shipping sector and key areas that need to be addressed to reduce the sector’s carbon footprint.<br/>There is no clear-cut path to decarbonisation. Cutting CO2 emissions in half is therefore likely to require a combination of approaches including the use of alternative fuels upgrading of onshore infrastructure and reducing fuel demand by improving operational performance the report finds.<br/>The shipping sector is strategically important for global efforts against climate change and could be crucial in the long-term shift to a zero-carbon economy. Large-scale deployment of low-carbon fuel infrastructure for shipping could also help to build the necessary momentum to decarbonise other sectors.
Adopting Hydrogen Direct Reduction for the Swedish Steel Industry: A Technological Innovation System (TIS) Study
Sep 2019
Publication
The Swedish steel industry stands before a potential transition to drastically lower its CO2 emissions using direct hydrogen reduction instead of continuing with coke-based blast furnaces. Previous studies have identified hydrogen direct reduction as a promising option. We build upon earlier efforts by performing a technological innovation system study to systematically examine the barriers to a transition to hydrogen direct reduction and by providing deepened quantitative empirics to support the analysis. We also add extended paper and patent analysis methodology which is particularly useful for identifying actors and their interactions in a technological system. We conclude that while the innovation system is currently focused on such a transition notable barriers remain particularly in coordination of the surrounding technical infrastructure and the issue of maintaining legitimacy for such a transition in the likely event that policies to address cost pressures will be required to support this development.
Spatially Resolved Optimization for Studying the Role of Hydrogen for Heat Decarbonization Pathways
Apr 2018
Publication
This paper studies the economic feasibility of installing hydrogen networks for decarbonizing heat in urban areas. The study uses the Heat Infrastructure and Technology (HIT) spatially resolved optimization model to trade-off energy supply infrastructure and end-use technology costs for the most important heat-related energy vectors: gas heat electricity and hydrogen. Two model formulations are applied to a UK urban area: one with an independent hydrogen network and one that allows for retrofitting the gas network into hydrogen. Results show that for average hydrogen price projections cost-effective pathways for heat decarbonization toward 2050 include heat networks supplied by a combination of district-level heat pumps and gas boilers in the domestic and commercial sectors and hydrogen boilers in the domestic sector. For a low hydrogen price scenario when retrofitting the gas network into hydrogen a cost-effective pathway is replacing gas by hydrogen boilers in the commercial sector and a mixture of hydrogen boilers and heat networks supplied by district-level heat pumps gas and hydrogen boilers for the domestic sector. Compared to the first modelled year CO2 emission reductions of 88% are achieved by 2050. These results build on previous research on the role of hydrogen in cost-effective heat decarbonization pathways.
Review of the Current Status of Ammonia-Blended Hydrogen Fuel Engine Development
Jan 2022
Publication
As fossil fuels continue to be extracted and used issues such as environmental pollution and energy scarcity are surfacing. For the transportation industry the best way to achieve the goal of “carbon neutrality” is to research efficient power systems and develop new alternative fuels. As the world’s largest product of chemicals ammonia is a new renewable fuel with good combustion energy. It can be used as an alternative fuel to reduce carbon emissions because of its proven production process low production and transportation costs safe storage the absence of carbon-containing compounds in its emissions and its future recyclability. This paper firstly introduces the characteristics of ammonia fuel engine and its problems; then it summarizes the effects of various ammonia-blended fuels on the combustion and emission characteristics of the engine from the combustion problem of ammonia-blended engine; then the fuel storage of ammonia-blended hydrogen is discussed the feasibility of hydrogen production instead of hydrogen storage is introduced.
Direct Ammonia Low-temperature Symmetrical Solid Oxide Fuel Cells with Composite Semiconductor Electrolyte
Jan 2022
Publication
In this work a low-temperature symmetrical solid oxide fuel cell with Ni-NCAL|SDC/NCAL|Ni-NCAL (70 SDC:30 NCAL) configuration was successfully constructed by a simple dry press method. At 500 and 550 ◦C the peak power densities of the cell in ammonia were 501 and 755 mW cm− 2 and in hydrogen were 670 and 895 mW cm− 2 respectively. EIS data showed that the Rp values of the cell in ammonia and hydrogen at 550 ◦C were 0.250 and 0.246 Ω cm− 2 respectively indicating the excellent catalytic activity of the Ni-NCAL electrode toward ammonia decomposition and hydrogen oxidation. The different cell output can be ascribed to additional ammonia decomposition steps compared to hydrogen. The noticeable reaction product on the surface of the Ni foam was detrimental to ammonia decomposition. In summary a symmetrical cell with SDC/NCAL semi-conductor electrolyte and Ni-NCAL electrodes exhibited higher electrochemical performance at low temperature than the results reported to date. Therefore higher electrochemical performance can be expected from this cell configuration with more efficient ammonia decomposition catalysts.
Scottish Hydrogen Assessment
Dec 2020
Publication
During 2020 the Scottish Government in partnership with Highlands and Islands Enterprise and Scottish Enterprise commissioned Arup and E4Tech to carry out a hydrogen assessment to deepen our evidence base in order to inform our policies on hydrogen going forward. The assessment aims to investigate how and where hydrogen may fit within the evolving energy system technically geographically and economically. To assist in this consideration a key part of the Hydrogen Assessment is the development of distinct viable scenarios for hydrogen deployment in Scotland and the economic assessment of those scenarios.<br/>From our assessment it is clear that hydrogen is not just an energy and emissions reduction opportunity; it could also have an important role in generating new economic opportunities in Scotland. The assessment forms an important part of the evidence base that informed the development of the Hydrogen Policy Statement.
Five Minute Guide to Hydrogen
Feb 2016
Publication
Hydrogen is an emerging energy vector many components of which are mature technologies. Current hydrogen technology is already able to provide advantages over other energy vectors and many of its challenges are being actively addressed by research and development.<br/><br/>Hydrogen can be derived stored and converted through various processes each of which represents different levels of carbon intensity efficiency and end use functionality. Our latest five minute guide looks at this energy vector in brief including public perception transportation and storage as well as using hydrogen as a solution.
Scottish Offshore Wind to Green Hydrogen Opportunity Assessment
Dec 2020
Publication
Initial assessment of Scotland’s opportunity to produce green hydrogen from offshore wind
Summary of Key Findings
Summary of Key Findings
- Scotland has an abundant offshore wind resource that has the potential to be a vital component in our net zero transition. If used to produce green hydrogen offshore wind can help abate the emissions of historically challenging sectors such as heating transport and industry.
- The production of green hydrogen from offshore wind can help overcome Scotland’s grid constraints and unlock a massive clean power generation resource creating a clean fuel for Scottish industry and households and a highly valuable commodity to supply rapidly growing UK and European markets.
- The primary export markets for Scottish green hydrogen are expected to be in Northern Europe (Germany Netherlands & Belgium). Strong competition to supply these markets is expected to come from green hydrogen produced from solar energy in Southern Europe and North Africa.
- Falling wind and electrolyser costs will enable green hydrogen production to be cost-competitive in the key transport and heat sectors by 2032. Strategic investment in hydrogen transportation and storage is essential to unlocking the economic opportunity for Scotland.
- Xodus’ analysis supports a long-term outlook of LCoH falling towards £2/kg with an estimated reference cost of £2.3 /kg in 2032 for hydrogen delivered to shore.
- Scotland has extensive port and pipeline infrastructure that can be repurposed for hydrogen export to the rest of UK and to Europe. Pipelines from the ‘90s are optimal for this purpose as they are likely to retain acceptable mechanical integrity and have a metallurgy better suited to hydrogen service. A more detailed assessment of export options should be performed to provide a firm foundation for early commercial green hydrogen projects.
- There is considerable hydrogen supply chain overlap with elements of parallel sectors most notably the oil and gas offshore wind and subsea engineering sectors. Scotland already has a mature hydrocarbon supply chain which is engaged in supporting green hydrogen. However a steady pipeline of early projects supported by a clear financeable route to market will be needed to secure this supply chain capability through to widescale commercial deployment.
- There are gaps in the Scottish supply chain in the areas of design manufacture and maintenance of hydrogen production storage and transportation systems. Support including apprenticeships will be needed to develop indigenous skills and capabilities in these areas.
- The development of green hydrogen from offshore wind has the potential to create high value jobs a significant proportion which are likely to be in remote rural/coastal communities located close to offshore wind resources. These can serve as an avenue for workers to redeploy and develop skills learned from oil and gas in line with Just Transition principles.
Hydrogen for Cooking: A Review of Cooking Technologies, Renewable Hydrogen Systems and Techno-Economics
Dec 2022
Publication
About 3 billion people use conventional carbon-based fuels such as wood charcoal and animal dung for their daily cooking needs. Cooking with biomass causes deforestation and habitat loss emissions of greenhouse gases and smoke pollution that affects people’s health and well-being. Hydrogen can play a role in enabling clean and safe cooking by reducing household air pollution and reducing greenhouse gas emissions. This first-of-a-kind review study on cooking with hydrogen assessed existing cooking technologies and hydrogen systems in developing country contexts. Our critical assessment also included the modelling and experimental studies on hydrogen. Renewable hydrogen systems and their adoptability in developing countries were analysed. Finally we presented a scenario for hydrogen production pathways in developing countries. Our findings indicated that hydrogen is attractive and can be safely used as a cooking fuel. However radical and disruptive models are necessary to transform the traditional cooking landscape. There is a need to develop global south-based hydrogen models that emphasize adoptability and capture the challenges in developing countries. In addition the techno-economic assumptions of the models vary significantly leading to a wide-ranging levelized cost of electricity. This finding underscored the necessity to use comprehensive techno-economic assumptions that can accurately predict hydrogen costs.
Hydrogen for Heating? Decarbonization Options for Households in the European Union in 2050
Mar 2021
Publication
This study compares the cost of several low-greenhouse gas (GHG) or GHG-neutral residential heating technologies in the year 2050: (1) hydrogen boilers (2) hydrogen fuel cells with an auxiliary hydrogen boiler for cold spells (3) air-source heat pumps using renewable electricity and (4) heat pumps with an auxiliary hydrogen boiler for cold spells. The assessment includes low-carbon hydrogen from steam-methane reforming (SMR) using natural gas combined with carbon capture and storage (CCS) or SMR + CCS and zero-carbon hydrogen produced from renewable electricity using electrolysis.
The analysis finds that air-source heat pumps are the most cost-effective residential heating technology in 2050 and are at least 50% lower cost than the hydrogen-only technologies. In a sensitivity analysis we find that even if natural gas costs were 50% lower or renewable electricity prices were 50% higher in 2050 compared to our central assumptions heat pumps would still be more cost-effective than hydrogen boilers or fuel cells. Renewable electrolysis hydrogen can be cost-competitive with SMR + CCS hydrogen in 2050 although electrolysis hydrogen is not produced at scale today. At the same time energy efficiency measures to reduce heat demand would be a more cost-effective strategy for achieving GHG reductions than any of the low-GHG heating pathways we assess in this study.
The analysis shows that all pathways using renewable electricity have a near-zero GHG intensity while SMR + CCS hydrogen could reduce GHG emissions by 69%–93% compared to natural gas if improvements are made in the future to reduce the GHG intensity of this pathway. Quantifying the GHG impact and cost effectiveness of various heating pathways is relevant for European policymakers facing decisions on how to both decarbonize buildings and alleviate energy poverty in line with commitments made in the Renovation Wave Initiative.
The document can be downloaded from the ICCT website
The analysis finds that air-source heat pumps are the most cost-effective residential heating technology in 2050 and are at least 50% lower cost than the hydrogen-only technologies. In a sensitivity analysis we find that even if natural gas costs were 50% lower or renewable electricity prices were 50% higher in 2050 compared to our central assumptions heat pumps would still be more cost-effective than hydrogen boilers or fuel cells. Renewable electrolysis hydrogen can be cost-competitive with SMR + CCS hydrogen in 2050 although electrolysis hydrogen is not produced at scale today. At the same time energy efficiency measures to reduce heat demand would be a more cost-effective strategy for achieving GHG reductions than any of the low-GHG heating pathways we assess in this study.
The analysis shows that all pathways using renewable electricity have a near-zero GHG intensity while SMR + CCS hydrogen could reduce GHG emissions by 69%–93% compared to natural gas if improvements are made in the future to reduce the GHG intensity of this pathway. Quantifying the GHG impact and cost effectiveness of various heating pathways is relevant for European policymakers facing decisions on how to both decarbonize buildings and alleviate energy poverty in line with commitments made in the Renovation Wave Initiative.
The document can be downloaded from the ICCT website
Hydrogen for Heating? Decarbonization Options for Households in the United Kingdom in 2050
Dec 2020
Publication
The heating sector makes up 10% of the United Kingdom’s carbon footprint and residential homes account for a majority of demand. At present central heating from a natural gas-fired boiler is the most common system in the UK but low or zero-carbon hydrogen and renewable electricity are the two primary energy replacement options to reduce the carbon footprint. An important consideration is how using either energy source would affect heating costs. This assessment projects the costs for a typical single-family UK household and climate performance in 2050 using low-GHG or GHG-neutral hydrogen renewable electricity or a combination of both. The cost of using boilers or fuel cells in 2050 with two types of hydrogen are assessed: produced via steam-methane reforming (SMR) combined with carbon capture and storage (CCS) and electrolysis using zero-carbon renewable electricity. The costs of heat pumps the most promising heating technology for the direct use of renewable electricity are also assessed in two scenarios: a heat pump only and a hybrid heat pump with an auxiliary hydrogen boiler.
You can download this document from the International Council On Clean Transportation website linked here
You can download this document from the International Council On Clean Transportation website linked here
Electrification Opportunities in the Medium- and Heavy-Duty Vehicle Segment in Canada
Jun 2021
Publication
The medium- and heavy-duty (MD/HD) vehicle sector is a large emitter of greenhouse gases. It will require drastic emissions reductions to realize a net-zero carbon future. This study conducts fourteen short feasibility investigations in the Canadian context to evaluate the merits of battery electric or hydrogen fuel cell alternatives to conventional city buses inter-city buses school buses courier vehicles (step vans) refuse trucks long-haul trucks and construction vehicles. These “clean transportation alternatives” were evaluated for practicality economics and emission reductions in comparison to their conventional counterparts. Conclusions were drawn on which use cases would be best suited for accelerating the transformation of the MD/HD sector.
Toward a Fossil Free Future with HYBRIT: Development of Iron and Steelmaking Technology in Sweden and Finland
Jul 2020
Publication
The Swedish and Finnish steel industry has a world-leading position in terms of efficient blast furnace operations with low CO2 emissions. This is a result of a successful development work carried out in the 1980s at LKAB (Luossavaara-Kiirunavaara Aktiebolag mining company) and SSAB (steel company) followed by the closing of sinter plants and transition to 100% pellet operation at all of SSAB’s five blast furnaces. However to further reduce CO2 emission in iron production a new breakthrough technology is necessary. In 2016 SSAB teamed up with LKAB and Vattenfall AB (energy company) and launched a project aimed at investigating the feasibility of a hydrogen-based sponge iron production process with fossil-free electricity as the primary energy source: HYBRIT (Hydrogen Breakthrough Ironmaking Technology). A prefeasibility study was carried out in 2017 which concluded that the proposed process route is technically feasible and economically attractive for conditions in northern Sweden/Finland. A decision was made in February 2018 to build a pilot plant and construction started in June 2018 with completion of the plant planned in summer 2020 followed by experimental campaigns the following years. Parallel with the pilot plant activities a four-year research program was launched from the autumn of 2016 involving several research institutes and universities in Sweden to build knowledge and competence in several subject areas.
Microbial Fuel Cells: Technologically Advanced Devices and Approach for Sustainable/renewable Energy Development
Dec 2021
Publication
There is a huge quantity of energy needs/demands for multiple developmental and domestic activities in the modern era. And in this context consumption of more non-renewable energy is reported and created many problems or issues (availability of fossil fuel stocks in the future period causes a huge quantity of toxic gases or particles or climatic change effects) at the global level. And only sustainable or renewable fuel development can provide alternate fuel and we report from various biological agents processes including microbial biofuel cell applications for future energy needs only. These will not cause any interference in natural resources or services. Microbial biofuel cells utilize the living cell to produce bioelectricity via bioelectrochemical system. It can drive electricity or other energy generation currents via lived cell interaction. Microbial fuel cells (MFCs) and enzymatic biofuel cells with their advancement in design can improve sustainable bio-energy production by proving an efficient conversion system compared to chemical fuels into electric power. Different types of MFCs operation are reported in wastewater treatment with biogas biohydrogen and other biofuel/energy generation. Later biogas can convert into electric power. Hybrid microbial biofuel cell utility with photochemical reaction is found for electricity generation. Recent research and development in microbial biofuel design and its application will emphasize bioenergy for the future.
Mapping of Hydrogen Fuel Quality in Europe
Nov 2020
Publication
As part of FCH-JU funded HyCoRA project running from 2014 to 2017 28 gaseous and 13 particulate samples were collected from hydrogen refuelling stations in Europe. Samples were collected with commercial sampling instruments and analysis performed in compliance with prevailing fuel quality standards. Sampling was conducted with focus on diversity in feedstock as well as commissioning date of the HRS. Results indicate that the strategy for sampling was good. No evidence of impurity cross-over was observed. Parallel samples collected indicate some variation in analytical results. It was however found that fuel quality was generally good. Fourteen analytical results were in violation with the fuel tolerance limits. Therefore eight or 29% of the samples were in violation with the fuel quality requirements. Nitrogen oxygen and organics were the predominant impurities quantified. Particulate impurities were found to be within fuel quality specifications. No correlation between fuel quality and hydrogen feedstock or HRS commissioning date was found. Nitrogen to oxygen ratios gave no indication of samples being contaminated by air. A comparison of analytical results between two different laboratories were conducted. Some difference in analytical results were observed.
Towards a CO2-neutral Steel Industry: Justice Aspects of CO2 Capture and Storage, Biomass- and Green Hydrogen-based Emission Reductions
Apr 2022
Publication
A rapid transition towards a CO2-neutral steel industry is required to limit climate change. Such a transition raises questions of justice as it entails positive and negative impacts unevenly distributed across societal stakeholders. To enable stakeholders to address such concerns this paper assesses the justice implications of three options that reduce emissions: CO2 capture and storage (CCS) on steel (up to 70%) bio-based steelmaking (up to 50%) and green hydrogen-based steel production (up to 100%). We select justice indicators from the energy climate labour and environmental justice literature and assess these indicators qualitatively for each of the technological routes based on literature and desk research. We find context-dependent differences in justness between the different technological routes. The impact on stakeholders varies across regions. There are justice concerns for local communities because of economic dependence on and environmental impact of the industry. Communities elsewhere are impacted through the siting of infrastructure and feedstock production. CCS and bio-based steelmaking routes can help retain industry and associated economic benefits on location while hydrogen-based steelmaking may deal better with environmental concerns. We conclude that besides techno-economic and environmental information transparency on sector-specific justice implications of transforming steel industries is essential for decision-making on technological routes
Electricity-based Plastics and their Potential Demand for Electricity and Carbon Dioxide
Apr 2020
Publication
In a future fossil-free circular economy the petroleum-based plastics industry must be converted to non-fossil feedstock. A known alternative is bio-based plastics but a relatively unexplored option is deriving the key plastic building blocks hydrogen and carbon from electricity through electrolytic processes combined with carbon capture and utilization technology. In this paper the future demand for electricity and carbon dioxide is calculated under the assumption that all plastic production is electricity-based in the EU by 2050. The two most important input chemicals are ethylene and propylene and the key finding of this paper is that the electricity demand to produce these are estimated to 20 MWh/ton ethylene and 38 MWh/ton propylene and that they both could require about 3 tons of carbon dioxide/ton product. With constant production levels this implies an annual demand of about 800 TWh of electricity and 90 Mton of carbon dioxide by 2050 in the EU. If scaled to the total production of plastics including all input hydrocarbons in the EU the annual demand is estimated to 1600 TWh of electricity and 180 Mton of carbon dioxide. This suggests that a complete shift to electricity-based plastics is possible from a resource and technology point of view but production costs may be 2 to 3 times higher than today. However the long time frame of this paper creates uncertainties regarding the results and how technical economic and social development may influence them. The conclusion of this paper is that electricity-based plastics integrated with bio-based production can be an important option in 2050 since biomass resources are scarce but electricity from renewable sources is abundant.
Comparative Technical and Economic Analyses of Hydrogen-Based Steel and Power Sectors
Mar 2024
Publication
Decarbonizing the current steel and power sectors through the development of the hydrogen direct-reduction iron ore–electric arc furnace route and the 100% hydrogen-fired gas turbine cycle is crucial. The current study focuses on three clusters of research works. The first cluster covers the investigation of the mass and energy balance of the route and the subsequent application of these values in experiments to optimize the reduction yield of iron ore. In the second cluster the existing gas turbine unit was selected for the complete replacement of natural gas with hydrogen and for finding the most optimal mass and energy balance in the cycle through an Aspen HYSYS model. In addition the chemical kinetics in the hydrogen combustion process were simulated using Ansys Chemkin Pro to research the emissions. In the last cluster a comparative economic analysis was conducted to identify the levelized cost of production of the route and the levelized cost of electricity of the cycle. The findings in the economic analysis provided good insight into the details of the capital and operational expenditures of each industrial sector in understanding the impact of each kg of hydrogen consumed in the plants. These findings provide a good basis for future research on reducing the cost of hydrogen-based steel and power sectors. Moreover the outcomes of this study can also assist ongoing large-scale hydrogen and ammonia projects in Uzbekistan in terms of designing novel hydrogen-based industries with cost-effective solutions.
Comparative Life Cycle Assessment of Hydrogen-fuelled Passenger Cars
Feb 2021
Publication
In order to achieve gradual but timely decarbonisation of the transport sector it is essential to evaluate which types of vehicles provide a suitable environmental performance while allowing the use of hydrogen as a fuel. This work compares the environmental life-cycle performance of three different passenger cars fuelled by hydrogen: a fuel cell electric vehicle an internal combustion engine car and a hybrid electric vehicle. Besides two vehicles that use hydrogen in a mixture with natural gas or gasoline were considered. In all cases hydrogen produced by wind power electrolysis was assumed. The resultant life-cycle profiles were benchmarked against those of a compressed natural gas car and a hybrid electric vehicle fed with natural gas. Vehicle infrastructure was identified as the main source of environmental burdens. Nevertheless the three pure hydrogen vehicles were all found to be excellent decarbonisation solutions whereas vehicles that use hydrogen mixed with natural gas or gasoline represent good opportunities to encourage the use of hydrogen in the short term while reducing emissions compared to ordinary vehicles.
Recyclable Metal Fuels for Clean and Compact Zero-carbon Power
Jun 2018
Publication
Metal fuels as recyclable carriers of clean energy are promising alternatives to fossil fuels in a future low-carbon economy. Fossil fuels are a convenient and widely-available source of stored solar energy that have enabled our modern society; however fossil-fuel production cannot perpetually keep up with increasing energy demand while carbon dioxide emissions from fossil-fuel combustion cause climate change. Low-carbon energy carriers with high energy density are needed to replace the multiple indispensable roles of fossil fuels including for electrical and thermal power generation for powering transportation fleets and for global energy trade. Metals have high energy densities and metals are therefore fuels within many batteries energetic materials and propellants. Metal fuels can be burned with air or reacted with water to release their chemical energy at a range of power-generation scales. The metal-oxide combustion products are solids that can be captured and then be recycled using zero-carbon electrolysis processes powered by clean energy enabling metals to be used as recyclable zero-carbon solar fuels or electrofuels. A key technological barrier to the increased use of metal fuels is the current lack of clean and efficient combustor/reactor/engine technologies to convert the chemical energy in metal fuels into motive or electrical power (energy). This paper overviews the concept of low-carbon metal fuels and summarizes the current state of our knowledge regarding the reaction of metal fuels with water to produce hot hydrogen on demand and the combustion of metal fuels with air in laminar and turbulent flames. Many important questions regarding metal-fuel combustion processes remain unanswered as do questions concerning the energy-cycle efficiency and life-cycle environmental impacts and economics of metals as recyclable fuels. Metal fuels can be an important technology option within a future low-carbon society and deserve focused attention to address these open questions.
Market Segmentation of Domestic and Commercial Natural Gas Appliances
Jan 2021
Publication
The main goal of the project is to enable the wide adoption of H2NG (hydrogen in natural gas) blends by closing knowledge gaps regarding technical impacts on residential and commercial gas appliances. The project consortium will identify and recommend appropriate codes and standards that should be adapted to answer the needs and develop a strategy for addressing the challenges for new and existing appliances.<br/>This deliverable on market segmentation is part of work package 2 and provides a quantitative segmentation of the gas appliance market in terms of appliance population numbers. It therefore prepares the project partners to perform the subsequent selection of the most representative product types to be tested in the laboratories of the THyGA partners.<br/>The classification is developed to categorise appliances installed in the field based on available statistics calculation methods and estimations. As a result appliance populations are provided for each technology segment that draw a representative picture of the installed end-use appliances within the European Union in 2020.
Application of Liquid Hydrogen Carriers in Hydrogen Steelmaking
Mar 2021
Publication
Steelmaking is responsible for approximately one third of total industrial carbon dioxide (CO2) emissions. Hydrogen (H2) direct reduction (H-DR) may be a feasible route towards the decarbonization of primary steelmaking if H2 is produced via electrolysis using fossil-free electricity. However electrolysis is an electricity-intensive process. Therefore it is preferable that H2 is predominantly produced during times of low electricity prices which is enabled by the storage of H2. This work compares the integration of H2 storage in four liquid carriers methanol (MeOH) formic acid (FA) ammonia (NH3) and perhydro-dibenzyltoluene (H18-DBT) in H-DR processes. In contrast to conventional H2 storage methods these carriers allow for H2 storage in liquid form at moderate overpressures reducing the storage capacity cost. The main downside to liquid H2 carriers is that thermochemical processes are necessary for both the storage and release processes often with significant investment and operational costs. The carriers are compared using thermodynamic and economic data to estimate operational and capital costs in the H-DR context considering process integration options. It is concluded that the use of MeOH is promising compared to the other considered carriers. For large storage volumes MeOH-based H2 storage may also be an attractive option to the underground storage of compressed H2. The other considered liquid H2 carriers suffer from large thermodynamic barriers for hydrogenation (FA) or dehydrogenation (NH3 H18-DBT) and higher investment costs. However for the use of MeOH in an H-DR process to be practically feasible questions regarding process flexibility and the optimal sourcing of CO2 and heat must be answered
Opportunities and Barriers of Hydrogen–Electric Hybrid Powertrain Vans: A Systematic Literature Review
Oct 2020
Publication
The environmental impact of the road transport sector together with urban freight transport growth has a notable repercussions in global warming health and economy. The need to reduce emissions caused by fossil fuel dependence and to foster the use of renewable energy sources has driven the development of zero-emissions powertrains. These clean transportation technologies are not only necessary to move people but to transport the increasing demand for goods and services that is currently taking place in the larger cities. Full electric battery-powered vans seem to be the best-placed solution to the problem. However despite the progress in driving range and recharge options those and other market barriers remain unsolved and the current market share of battery electric vehicles (BEVs) is not significant. Based on the development of hydrogen fuel cell stacks this work explains an emerging powertrain architecture concept for N1 class type vans that combines a battery-electric configuration with a fuel cell stack powered by hydrogen that works as a range extender (FC-EREV). A literature review is conducted with the aim to shed light on the possibilities of this hybrid light-duty commercial van for metropolitan delivery tasks providing insights into the key factors and issues for sizing the powertrain components and fuel management strategies to meet metropolitan freight fleet needs.
Hydrogen Station Technology Development Review Through Patent Analysis
May 2018
Publication
This study is a review of hydrogen station patents using the Derwent Innovation system and also a secondary screening. This was undertaken by the researchers to better understand and identify hydrogen station trends. The review focuses on analyzing the developing trends of patent technologies associated with a hydrogen station. The results of the review indicated that the countries with the major distribution of patents were Japan China the USA and Europe. Japan is leading the developmental trajectory of hydrogen stations. The results of the analysis found the leading developers of these patented technologies are Kobe Steel Nippon Oil Toyota and Honda. Other active patent developers analyzed include Linde Hyundai and Texaco. The review concludes with a suggestion that using a patent analysis methodology is a good starting point to identify evaluate and measure the trend in hydrogen station commercial development.
Assessment of Full Life-cycle Air Emissions of Alternative Shipping Fuels
Oct 2017
Publication
There is a need for alternative fuels in the shipping sector for two main motivations: to deliver a reduction in local pollutants and comply with existing regulation; and to mitigate climate change and cut greenhouse gas emissions. However any alternative fuel must meet a range of criteria to become a viable option. Key among them is the requirement that it can deliver emissions reductions over its full life-cycle. For a set of fuels comprising both conventional and alternative fuels together with associated production pathways this paper presents a life-cycle assessment with respect to six emissions species: local pollutants sulphur oxides nitrogen oxides and particulate matter; and greenhouse gases carbon dioxide methane and nitrous oxide. While the analysis demonstrates that no widely available fuel exists currently to deliver on both motivations some alternative fuel options have the potential if key barriers can be overcome. Hydrogen or other synthetic fuels rely on decarbonisation of both energy input to production and other feedstock materials to deliver reductions in greenhouse gas emissions. Similarly bio-derived fuels can be an abatement option but only if it can be ensured that land-use change whilst growing biomass does not impact wider potential savings and the sector is able to compete sufficiently for their use. These examples show that crucial barriers are located upstream in the respective fuel life-cycle and that the way to overcome them may reside beyond the scope of the shipping sector alone.
Fuel Cell and Hydrogen Technology- Europe's Journey to a Greener World
Nov 2017
Publication
On the occasion of its 10th Stakeholder forum the FCH JU published a unique and exclusive book. This book sets out the story behind both the FCH JU and fuel cell and hydrogen technology in Europe. It reviews the events leading to its creation and examines the achievements that have allowed Europe to take a leading role in fuel cell and hydrogen excellence. It also looks at what this investment in fuel cell technology will mean for the EU in the coming years
Fuel Cells and Hydrogen Technologies in Europe: Financial and Technology Outlook on the European Sector Ambition 2014-2020
Nov 2011
Publication
Sustainable secure and competitive energy supply and transport services are at the heart of the EU2020 strategy towards a low carbon and inclusive economy geared towards a reduction of 80% of CO2 emissions by 2050. This objective has been endorsed by the European Institutions and Member States. It is widely recognised that a technological shift and the deployment of new clean technologies are critical for a successful transition to such a new sustainable economy. Furthermore in addition to bringing a healthier environment and securing energy supply innovation will provide huge opportunities for the European economy. However this paradigm shift will not be purely driven by the market. A strong and determined commitment of public institutions and the private sector together are necessary to support the European political ambition. The period 2014-2020 will be critical to ensure that the necessary investments are realized to support the EU2020 vision. In terms of hydrogen and fuel cell technologies significant investments are required for (a) transportation for scaling up the car fleet and building up of refuelling infrastructure needs (b) hydrogen production technologies to integrate renewable intermittent power sources to the electrical grid (wind and solar) (c) stationary fuel cell applications with large demonstration projects in several European cities and (d) identified early markets (material handling vehicles back-up power systems) to allow for volume developments and decrease of system-costs.<br/>This Report summarizes the sector’s financial ambition to reach Europe’s objectives in 2020.
Strategies for Joint Procurement of Fuel Cell Buses
Jun 2018
Publication
The Fuel Cells and Hydrogen Joint Undertaking (FCH JU) has supported a range of initiatives in recent years designed to develop hydrogen fuel cell buses to a point where they can fulfil their promise as a mainstream zero emission vehicle for public transport.<br/>Within this study 90 different European cities and regions have been supported in understanding the business case of fuel cell bus deployment and across these locations. The study analyses the funding and financing for fuel cell bus deployment to make them become a mainstream zero emission choice for public transport providers in cities and regions across Europe. It also outlines possible solutions for further deployment of FC buses beyond the subsidised phase.<br/>In the light of the experience of the joint tender process in the UK and in Germany the study highlights best practices for ordering fuel cell buses. Other innovative instruments explored in other countries for the orders of large quantities of fuel cells buses are presented: Special Purpose Vehicles and centralised purchase office. Finally the study deeply analyses the funding and financing for fuel cell bus deployment to make them become a mainstream zero emission choice for public transport providers in cities and regions across Europe.
CFD Simulations of Filling and Emptying of Hydrogen Tanks
Jun 2016
Publication
During the filling of hydrogen tanks high temperatures can be generated inside the vessel because of the gas compression while during the emptying low temperatures can be reached because of the gas expansion. The design temperature range goes from −40 °C to 85 °C. Temperatures outside that range could affect the mechanical properties of the tank materials. CFD analyses of the filling and emptying processes have been performed in the HyTransfer project. To assess the accuracy of the CFD model the simulation results have been compared with new experimental data for different filling and emptying strategies. The comparison between experiments and simulations is shown for the temperatures of the gas inside the tank for the temperatures at the interface between the liner and the composite material and for the temperatures on the external surface of the vessel.
Influence of the Gas Injector Configuration on the Temperature Evolution During Refueling of On-board Hydrogen Tanks
Jul 2016
Publication
In this article we show a refuelling strategy analysis using different injector configurations to refuel a 70 MPa composite reinforced type 4 tank. The gas has been injected through single openings of different diameters (3 mm 6 mm and 10 mm) and alternatively through multiple small holes (4 × 3 mm). For each injector configuration slow (12 min) and faster (3 min) fillings have been performed. The gas temperature has been measured at different positions inside the tank as well as the temperatures of the wall materials at various locations: on the external surface and at the interface between the liner and the fiber reinforced composite. In general the larger the injector diameter and the slower the filling the higher the chance that the gas develops vertical temperature gradients (a so-called gas temperature stratification) resulting in higher than average temperatures near the top of the tank and lower than average at its bottom. While the single 3 mm opening injector causes homogeneous gas temperatures for both filling speeds both the 6 mm and 10 mm opening injectors induce gas temperature stratification during the 12 min fillings. The injector with multiple holes has an area comparable to the 6 mm single opening injector: in general this more complex geometry tends to limit the inhomogeneity of gas temperatures during slow fillings. When gas temperature stratification develops the wall materials temperature is also locally affected. This results in a higher than average temperature at the top of the tank and higher the slower the filling.
FCH JU – Key to Sustainable Energy and Transport
Jan 2019
Publication
This brochure offers an overview of the main applications of fuel cell and hydrogen technologies and how they work and provides insights into our programme and our accomplishments.
Advancing Europe's Energy Systems- Stationary Fuel Cells in Distributed Generation
Mar 2015
Publication
Stationary fuel cells can play a beneficial role in Europe's changing energy landscape. The energy systems across Europe face significant challenges as they evolve against the backdrop of an ambitious climate agenda. As energy systems integrate more and more generation capacity from intermittent renewables numerous challenges arise. Amongst others Europe's energy systems of the future require new concepts for complementary supply such as efficient distributed power generation from natural gas. At the same time significant investments to modernise the electricity grid infrastructure are needed. Long-term storage solutions become a growing priority to ensure permanent power supply e.g. power-to-gas. Moreover Europe puts greater emphasis on energy efficiency in order to save primary energy reduce fuel imports and increase energy security.
Against this background distributed generation from stationary fuel cells promises significant benefits. This study outlines a pathway for commercialising stationary fuel cells in Europe The present study outlines a pathway for commercialising stationary fuel cells in Europe. It produces a comprehensive account of the current and future market potential for fuel cell distributed energy generation in Europe benchmarks stationary fuel cell technologies against competing conventional technologies in a variety of use cases and assesses potential business models for commercialisation. Considering the results of the technological and commercial analysis the study pinpoints focus areas for further R&D to sustain innovation and provides recommendations for supportive policy frameworks.
The study has been sponsored by the Fuel Cells and Hydrogen Joint Undertaking. Compiled by Roland Berger Strategy Consultants it builds on an interactive approach involving a coalition of more than 30 companies public institutions and associations from the stakeholder community of the European stationary fuel cell industry.
Against this background distributed generation from stationary fuel cells promises significant benefits. This study outlines a pathway for commercialising stationary fuel cells in Europe The present study outlines a pathway for commercialising stationary fuel cells in Europe. It produces a comprehensive account of the current and future market potential for fuel cell distributed energy generation in Europe benchmarks stationary fuel cell technologies against competing conventional technologies in a variety of use cases and assesses potential business models for commercialisation. Considering the results of the technological and commercial analysis the study pinpoints focus areas for further R&D to sustain innovation and provides recommendations for supportive policy frameworks.
The study has been sponsored by the Fuel Cells and Hydrogen Joint Undertaking. Compiled by Roland Berger Strategy Consultants it builds on an interactive approach involving a coalition of more than 30 companies public institutions and associations from the stakeholder community of the European stationary fuel cell industry.
Design of Clean Steel Production with Hydrogen: Impact of Electricity System Composition
Dec 2021
Publication
In Europe electrification is considered a key option to obtain a cleaner production of steel at the same time as the electricity system production portfolio is expected to consist of an increasing share of varying renewable electricity (VRE) generation mainly in the form of solar PV and wind power. We investigate cost-efficient designs of hydrogen-based steelmaking in electricity systems dominated by VRE. We develop and apply a linear cost-minimization model with an hourly time resolution which determines cost-optimal operation and sizing of the units in hydrogen-based steelmaking including an electrolyser direct reduction shaft electric arc furnace as well as storage for hydrogen and hot-briquetted iron pellets. We show that the electricity price following steelmaking leads to savings in running costs but to increased capital cost due to investments in the overcapacity of steel production units and storage units for hydrogen and hot-briquetted iron pellets. For two VRE-dominated regions we show that the electricity price following steel production reduces the total steel production cost by 23% and 17% respectively as compared to continuous steel production at a constant level. We also show that the cost-optimal design of the steelmaking process is dependent upon the electricity system mix.
Roadmap to Hydrogen in the NTS - National Grid Gas Transmission
Jan 2020
Publication
DNV GL believes that the National Transmission System (NTS) will be central to the future of decarbonised energy in the UK. The future NTS could transmit natural gas hydrogen blends of the two and carbon dioxide. New pipelines will be built however a large cost-saving is available if the existing NTS assets can also be re-purposed. To move towards this future National Grid Gas Transmission wants to develop a project to trial injection hydrogen into the NTS. This is an opportunity to show that National Grid is part of the solution to achieving Net Zero. The trial will demonstrate to the Government and public that re-purposing the NTS is cost-effective safe and involves minimal disruption.
This report sets out a roadmap of projects to provide the knowledge needed for the trial. The roadmap was developed by assessing the knowledge required and how much of it already existed. The knowledge already available is summarised in this report with references to where further details can be found. Gaps in the knowledge are then described. The roadmap consists of projects to conduct work to close the knowledge gaps. The results are summarised in the figures below and in the box to the right.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
This report sets out a roadmap of projects to provide the knowledge needed for the trial. The roadmap was developed by assessing the knowledge required and how much of it already existed. The knowledge already available is summarised in this report with references to where further details can be found. Gaps in the knowledge are then described. The roadmap consists of projects to conduct work to close the knowledge gaps. The results are summarised in the figures below and in the box to the right.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Hydrogen Impact on Gas Engine CHP - Cadent Ltd
Feb 2019
Publication
The key project objectives include:
The output from this project will also inform the HyDeploy NIC project in relation to potential hydrogen content limits. The project will be presented at the IGEM Gas Quality Working Group (IGEM GQWG).
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
- Understand the range size type mode of operation and control system of installed gas engines in the UK. This will include equipment for CHP and for stand-by power operation.
- Produce data sets on the impact of hydrogen on gas engine operational performance.
- Develop knowledge on the impact of hydrogen content on the operation of the gas engine including overall efficiency changes to emissions profiles overall system operability.
- Providing outline guidance on a potential hydrogen limit that should be considered regarding use of natural gas/hydrogen mixed fuels in gas engines.
- Outlining a high-level view on the reliability and impact on maintenance and replacement regimes if gas engines operate on natural gas/hydrogen mixed fuels for extended time periods.
- Highlight any existing barriers to use of natural gas and hydrogen blends in gas engine and through contact with OEMs develop an understanding of future technology developments that may be needed to enable the use of “high” hydrogen blends.
The output from this project will also inform the HyDeploy NIC project in relation to potential hydrogen content limits. The project will be presented at the IGEM Gas Quality Working Group (IGEM GQWG).
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Developing a Hydrogen Fuel Cell Vehicle (HFCV) Energy Consumption Model for Transportation Applications
Jan 2022
Publication
This paper presents a simple hydrogen fuel cell vehicle (HFCV) energy consumption model. Simple fuel/energy consumption models have been developed and employed to estimate the energy and environmental impacts of various transportation projects for internal combustion engine vehicles (ICEVs) battery electric vehicles (BEVs) and hybrid electric vehicles (HEVs). However there are few published results on HFCV energy models that can be simply implemented in transportation applications. The proposed HFCV energy model computes instantaneous energy consumption utilizing instantaneous vehicle speed acceleration and roadway grade as input variables. The mode accurately estimates energy consumption generating errors of 0.86% and 2.17% relative to laboratory data for the fuel cell estimation and the total energy estimation respectively. Furthermore this work validated the proposed model against independent data and found that the new model accurately estimated the energy consumption producing an error of 1.9% and 1.0% relative to empirical data for the fuel cell and the total energy estimation respectively. The results demonstrate that transportation engineers policy makers automakers and environmental engineers can use the proposed model to evaluate the energy consumption effects of transportation projects and connected and automated vehicle (CAV) transportation applications within microscopic traffic simulation models.
Conceptual Propulsion System Design for a Hydrogen-powered Regional Train
Apr 2015
Publication
Many railway vehicles use diesel as their energy source but exhaust emissions and concerns about economical fuel supply demand alternatives. Railway electrification is not cost effective for some routes particularly low-traffic density regional lines. The journey of a regional diesel–electric train is simulated over the British route Birmingham Moor Street to Stratford-upon-Avon and return to establish a benchmark for the conceptual design of a hydrogen-powered and hydrogen-hybrid vehicle. A fuel cell power plant compressed hydrogen at 350 and 700 bar and metal-hydride storage are evaluated. All equipment required for the propulsion can be accommodated within the space of the original diesel– electric train while not compromising passenger-carrying capacity if 700 bar hydrogen tanks are employed. The hydrogen trains are designed to meet the benchmark journey time of 94 min and the operating range of a day without refuelling. An energy consumption reduction of 34% with the hydrogen-powered vehicle and a decrease of 55% with the hydrogen-hybrid train are achieved compared with the original diesel–electric. The well-to-wheel carbon dioxide emissions are lower for the conceptual trains: 55% decrease for the hydrogen-powered and 72% reduction for the hydrogen-hybrid assuming that the hydrogen is produced from natural gas.
Assessment of the Impact of Material Selection on Aviation Sustainability, from a Circular Economy Perspective
Jan 2022
Publication
Climate change and global warming pose great sustainability challenges to the aviation industry. Alternatives to petroleum-based fuels (hydrogen natural gas etc.) have emerged as promising aviation fuels for future aircraft. The present study aimed to contribute to the understanding of the impact of material selection on aviation sustainability accounting for the type of fuel implemented and circular economy aspects. In this context a decision support tool was introduced to aid decisionmakers and relevant stakeholders to identify and select the best-performing materials that meet their defined needs and preferences expressed through a finite set of conflicting criteria associated with ecological economic and circularity aspects. The proposed tool integrates life-cycle-based metrics extending to both ecological and economical dimensions and a proposed circular economy indicator (CEI) focused on the material/component level and linked to its quality characteristics which also accounts for the quality degradation of materials which have undergone one or more recycling loops. The tool is coupled with a multi-criteria decision analysis (MCDA) methodology in order to reduce subjectivity when determining the importance of each of the considered criteria.
The Role of Lock-in Mechanisms in Transition Processes: The Case of Energy for Road Transport
Jul 2015
Publication
This paper revisits the theoretical concepts of lock-in mechanisms to analyse transition processes in energy production and road transportation in the Nordic countries focussing on three technology platforms: advanced biofuels e-mobility and hydrogen and fuel cell electrical vehicles. The paper is based on a comparative analysis of case studies.<br/>The main lock-in mechanisms analysed are learning effects economies of scale economies of scope network externalities informational increasing returns technological interrelatedness collective action institutional learning effects and the differentiation of power.<br/>We show that very different path dependencies have been reinforced by the lock-in mechanisms. Hence the characteristics of existing regimes set the preconditions for the development of new transition pathways. The incumbent socio-technical regime is not just fossil-based but may also include mature niches specialised in the exploitation of renewable sources. This implies a need to distinguish between lock-in mechanisms favouring the old fossil-based regime well-established (mature) renewable energy niches or new pathways.
Fuel Cell Electric Vehicles and Hydrogen Balancing 100 Percent Renewable and Integrated National Transportation and Energy Systems
Feb 2021
Publication
Future national electricity heating cooling and transport systems need to reach zero emissions. Significant numbers of back-up power plants as well as large-scale energy storage capacity are required to guarantee the reliability of energy supply in 100 percent renewable energy systems. Electricity can be partially converted into hydrogen which can be transported via pipelines stored in large quantities in underground salt caverns to overcome seasonal effects and used as electricity storage or as a clean fuel for transport. The question addressed in this paper is how parked and grid-connected hydrogen-fuelled Fuel Cell Electric Vehicles might balance 100 per cent renewable electricity heating cooling and transport systems at the national level in Denmark Germany Great Britain France and Spain? Five national electricity heating cooling and transport systems are modeled for the year 2050 for the five countries assuming only 50 percent of the passenger cars to be grid-connected Fuel Cell Electric Vehicles the remaining Battery Electric Vehicles. The grid-connected Fuel Cell Electric Vehicle fleet can always balance the energy systems and their usage is low having load factors of 2.1–5.5 percent corresponding to an average use of 190–480 h per car per year. At peak times occurring only a few hours per year 26 to 43 percent of the grid-connected Fuel Cell Electric Vehicle are required and in particular for energy systems with high shares of solar energy such as Spain balancing by grid-connected Fuel Cell Electric Vehicles is mainly required during the night which matches favorably with driving usage.
Opportunities and Challenges of Low-Carbon Hydrogen via Metallic Membranes
Jun 2020
Publication
Today electricity & heat generation transportation and industrial sectors together produce more than 80% of energy-related CO2 emissions. Hydrogen may be used as an energy carrier and an alternative fuel in the industrial residential and transportation sectors for either heating energy production from fuel cells or direct fueling of vehicles. In particular the use of hydrogen fuel cell vehicles (HFCVs) has the potential to virtually eliminate CO2 emissions from tailpipes and considerably reduce overall emissions from the transportation sector. Although steam methane reforming (SMR) is the dominant industrial process for hydrogen production environmental concerns associated with CO2 emissions along with the process intensification and energy optimization are areas that still require improvement. Metallic membrane reactors (MRs) have the potential to address both challenges. MRs operate at significantly lower pressures and temperatures compared with the conventional reactors. Hence the capital and operating expenses could be considerably lower compared with the conventional reactors. Moreover metallic membranes specifically Pd and its alloys inherently allow for only hydrogen permeation making it possible to produce a stream of up to 99.999+% purity.
For smaller and emerging hydrogen markets such as the semiconductor and fuel cell industries Pd-based membranes may be an appropriate technology based on the scales and purity requirements. In particular at lower hydrogen production rates in small-scale plants MRs with CCUS could be competitive compared to centralized H2 production. On-site hydrogen production would also provide a self-sufficient supply and further circumvent delivery delays as well as issues with storage safety. In addition hydrogen-producing MRs are a potential avenue to alleviate carbon emissions. However material availability Pd cost and scale-up potential on the order of 1.5 million m3/day may be limiting factors preventing wider application of Pd-based membranes.
Regarding the economic production of hydrogen the benchmark by the year 2020 has been determined and set in place by the U.S. DOE at less than $2.00 per kg of produced hydrogen. While the established SMR process can easily meet the set limit by DOE other carbon-free processes such as water electrolysis electron beam radiolysis and gliding arc technologies do not presently meet this requirement. In particular it is expected that the cost of hydrogen produced from natural gas without CCUS will remain the lowest among all of the technologies while the hydrogen cost produced from an SMR plant with solvent-based carbon capture could be twice as expensive as the conventional SMR without carbon capture. Pd-based MRs have the potential to produce hydrogen at competitive prices with SMR plants equipped with carbon capture.
Despite the significant improvements in the electrolysis technologies the cost of hydrogen produced by electrolysis may remain significantly higher in most geographical locations compared with the hydrogen produced from fossil fuels. The cost of hydrogen via electrolysis may vary up to a factor of ten depending on the location and the electricity source. Nevertheless due to its modular nature the electrolysis process will likely play a significant role in the hydrogen economy when implemented in suitable geographical locations and powered by renewable electricity.
This review provides a critical overview of the opportunities and challenges associated with the use of the MRs to produce high-purity hydrogen with low carbon emissions. Moreover a technoeconomic review of the potential methods for hydrogen production is provided and the drawbacks and advantages of each method are presented and discussed.
For smaller and emerging hydrogen markets such as the semiconductor and fuel cell industries Pd-based membranes may be an appropriate technology based on the scales and purity requirements. In particular at lower hydrogen production rates in small-scale plants MRs with CCUS could be competitive compared to centralized H2 production. On-site hydrogen production would also provide a self-sufficient supply and further circumvent delivery delays as well as issues with storage safety. In addition hydrogen-producing MRs are a potential avenue to alleviate carbon emissions. However material availability Pd cost and scale-up potential on the order of 1.5 million m3/day may be limiting factors preventing wider application of Pd-based membranes.
Regarding the economic production of hydrogen the benchmark by the year 2020 has been determined and set in place by the U.S. DOE at less than $2.00 per kg of produced hydrogen. While the established SMR process can easily meet the set limit by DOE other carbon-free processes such as water electrolysis electron beam radiolysis and gliding arc technologies do not presently meet this requirement. In particular it is expected that the cost of hydrogen produced from natural gas without CCUS will remain the lowest among all of the technologies while the hydrogen cost produced from an SMR plant with solvent-based carbon capture could be twice as expensive as the conventional SMR without carbon capture. Pd-based MRs have the potential to produce hydrogen at competitive prices with SMR plants equipped with carbon capture.
Despite the significant improvements in the electrolysis technologies the cost of hydrogen produced by electrolysis may remain significantly higher in most geographical locations compared with the hydrogen produced from fossil fuels. The cost of hydrogen via electrolysis may vary up to a factor of ten depending on the location and the electricity source. Nevertheless due to its modular nature the electrolysis process will likely play a significant role in the hydrogen economy when implemented in suitable geographical locations and powered by renewable electricity.
This review provides a critical overview of the opportunities and challenges associated with the use of the MRs to produce high-purity hydrogen with low carbon emissions. Moreover a technoeconomic review of the potential methods for hydrogen production is provided and the drawbacks and advantages of each method are presented and discussed.
Using Hydrogen Reactors to Improve the Diesel Engine Performance
Apr 2022
Publication
This work is aimed at solving the problem of converting diesel power drives to diesel– hydrogen fuels which are more environmentally friendly and less expensive alternatives to diesel fuel. The method of increasing the energy efficiency of diesel fuels has been improved. The thermochemical essence of using methanol as an alternative fuel to increase energy efficiency based on the provisions of thermotechnics is considered. Alternative methanol fuel has been chosen as the initial product for the hydrogen conversion process and its energy value cost and temperature conditions have been taken into account. Calculations showed that the caloric effect from the combustion of the converted mixture of hydrogen H2 and carbon monoxide CO exceeds the effect from the combustion of the same amount of methanol fuel. Engine power and fuel energy were increased due to the thermochemical regeneration of engine exhaust gas heat. An experimental setup was created to study the operation of a converted diesel engine on diesel–hydrogen products. Experimental studies of power and environmental parameters of a diesel engine converted for diesel–hydrogen products were performed. The studies showed that the conversion of diesel engines to operate using diesel– hydrogen products is technically feasible. A reduction in energy consumption was accompanied by an improvement in the environmental performance of the diesel–hydrogen engine working together with a chemical methanol conversion thermoreactor. The formation of carbon monoxide occurred in the range of 52–62%; nitrogen oxides in the exhaust gases decreased by 53–60% according to the crankshaft speed and loading on the experimental engine. In addition soot emissions were reduced by 17% for the engine fueled with the diesel–hydrogen fuel. The conversion of diesel engines for diesel–hydrogen products is very profitable because the price of methanol is on average 10–20% of the cost of petroleum fuel.
Techno-economic calculations of small-scale hydrogen supply systems for zero emission transport in Norway
Jun 2019
Publication
In Norway where nearly 100% of the power is hydroelectric it is natural to consider water electrolysis as the main production method of hydrogen for zero-emission transport. In a start-up market with low demand for hydrogen one may find that small-scale WE-based hydrogen production is more cost-efficient than large-scale production because of the potential to reach a high number of operating hours at rated capacity and high overall system utilization rate. Two case studies addressing the levelized costs of hydrogen in local supply systems have been evaluated in the present work: (1) Hydrogen production at a small-scale hydroelectric power plant (with and without on-site refuelling) and (2) Small hydrogen refuelling station for trucks (with and without on-site hydrogen production). The techno-economic calculations of the two case studies show that the levelized hydrogen refuelling cost at the small-scale hydroelectric power plant (with a local station) will be 141 NOK/kg while a fleet of 5 fuel cell trucks will be able to refuel hydrogen at a cost of 58 NOK/kg at a station with on-site production or 71 NOK/kg at a station based on delivered hydrogen. The study shows that there is a relatively good business case for local water electrolysis and supply of hydrogen to captive fleets of trucks in Norway particularly if the size of the fleet is sufficiently large to justify the installation of a relatively large water electrolyzer system (economies of scale). The ideal concept would be a large fleet of heavy-duty vehicles (with a high total hydrogen demand) and a refuelling station with nearly 100% utilization of the installed hydrogen production capacity.
Voltammetric and Galvanostatic Methods for Measuring Hydrogen Crossover in Fuel Cell
Dec 2021
Publication
Hydrogen crossover rate is an important indicator for characterizing the membrane degradation and failure in proton exchange membrane fuel cell. Several electrochemical methods have been applied to quantify it. But most of established methods are too rough to support follow-up applications. In this paper a systematic and consistent theoretical foundation for electrochemical measurements of hydrogen crossover is established for the first time. Different electrochemical processes occurring throughout the courses of applying potentiostatic or galvanostatic excitations on fuel cell are clarified and the linear current–voltage behavior observed in the steady-state voltammogram is reinterpreted. On this basis we propose a modified galvanostatic charging method with high practicality to achieve accurate electrochemical measurement of hydrogen crossover and the validity of this method is fully verified. This research provides an explicit framework for implementation of galvanostatic charging method and offers deeper insights into the principles of electrochemical methods for measuring hydrogen crossover.
Achieving Carbon-neutral Iron and Steelmaking in Europe Through the Deployment of Bioenergy with Carbon Capture and Storage
Jan 2019
Publication
The 30 integrated steel plants operating in the European Union (EU) are among the largest single-point CO2 emitters in the region. The deployment of bioenergy with carbon capture and storage (bio-CCS) could significantly reduce their emission intensities. In detail the results demonstrate that CO2 emission reduction targets of up to 20% can be met entirely by biomass deployment. A slow CCS technology introduction on top of biomass deployment is expected as the requirement for emission reduction increases further. Bio-CCS could then be a key technology particularly in terms of meeting targets above 50% with CO2 avoidance costs ranging between €60 and €100 tCO2−1 at full-scale deployment. The future of bio-CCS and its utilisation on a larger scale would therefore only be viable if such CO2 avoidance cost were to become economically appealing. Small and medium plants in particular would economically benefit from sharing CO2 pipeline networks. CO2 transport however makes a relatively small contribution to the total CO2 avoidance cost. In the future the role of bio-CCS in the European iron and steelmaking industry will also be influenced by non-economic conditions such as regulations public acceptance realistic CO2 storage capacity and the progress of other mitigation technologies.
Assessment of Hydrogen Quality Dispensed for Hydrogen Refuelling Stations in Europe
Dec 2020
Publication
The fuel quality of hydrogen dispensed from 10 refuelling stations in Europe was assessed. Representative sampling was conducted from the nozzle by use of a sampling adapter allowing to bleed sample gas in parallel while refuelling an FCEV. Samples were split off and distributed to four laboratories for analysis in accordance with ISO 14687 and SAE J2719. The results indicated some inconsistencies between the laboratories but were still conclusive. The fuel quality was generally good. Elevated nitrogen concentrations were detected in two samples but not in violation with the new 300 μmol/mol tolerance limit. Four samples showed water concentrations higher than the 5 μmol/mol tolerance limit estimated by at least one laboratory. The results were ambiguous: none of the four samples showed all laboratories in agreement with the violation. One laboratory reported an elevated oxygen concentration that was not corroborated by the other two laboratories and thus considered an outlier.
Hydrogen-powered Vehicles in Urban Transport Systems – Current State and Development
Mar 2020
Publication
The work is dedicated to the possibility of using hydrogen-powered vehicles in urban transport systems. Due to the need to look for alternative solutions for vehicles with conventional drive in cities hydrogen-powered cars are one of the practical possibilities of realizing the sustainable transport assumptions and independence from oil imports - which is one of the main priorities of the European Union. This paper presents a literature analysis the analysis of the current state and development of use hydrogen-powered vehicles in the world.<br/>The article refers to the possibilities of use hydrogen-vehicles in different ways of mobility: individual vehicles taxis and shared mobility. In addition the author focused on showing the advantages and disadvantages of using hydrogen-powered vehicles in urban transport systems.
Evaluation of Performance Characteristics of a Novel Hydrogen-fuelled Free-piston Engine Generator
Mar 2020
Publication
In this work we present the experimental results obtained from hydrogen fuelled spark-ignited dual piston free-piston engine generator (FPEG) prototype operated in two-stroke and four-stroke mode. The FPEG testing was successfully conducted at 3.7 compression ratio engine speed between 5 Hz and 11 Hz and with different equivalence ratios. The FPEG technical details experimental set-up and operational control are explained in detail. Performance indicators show that both equivalence ratio and engine speed affect the engine operation characteristics. For every set of specified FPEG parameters appropriate range of equivalence ratio is recommended to prevent unwanted disturbance to electric generator operation. Both two-stroke and four-stroke cycle mode were tested and the results showed different combustion characteristics with the two thermodynamic cycles. Four-stroke cycle mode could operate with indicated thermal efficiency gain up to 13.2% compared with the two-stroke cycle.
Recent Developments in Pd-CeO2 Nano-composite Electrocatalysts for Anodic Reactions in Anion Exchange Membrane Fuel Cells
Jan 2022
Publication
In 2016 for the first time a polymer electrolyte fuel cell free of Pt electrocatalysts was shown to deliver more than 0.5 W cm-2 of peak power density from H2 and air (CO2 free). This was achieved with a silver-based oxygen reduction (ORR) cathode and a Pd-CeO2 hydrogen oxidation reaction (HOR) anodic electrocatalyst. The poor kinetics of the HOR under alkaline conditions is a considerable challenge to Anion Exchange Membrane Fuel Cell (AEMFC) development as high Pt loadings are still required to achieve reasonable performance. Previously the ameliorative combination of Pd and CeO2 nanocomposites has been exploited mostly in heterogeneous catalysis where the positive interaction is well documented. Carbon supported PdCeO2 HOR catalysts have now been prepared by different synthetic techniques and employed in AEMFCs as alternative to Pt and PtRu standards. Important research has also been recently reported delving into the origin of the HOR enhancement on Pd-CeO2. Such work has highlighted the importance of the bifunctional mechanism of the HOR at high pHs. Carefully prepared nano-structures of Pd and CeO2 that promote the formation of the Pd-O-Ce interface provide optimal binding of both Had and OHad species aspects which are crucial for enhanced HOR kinetics. This review paper discusses the recent advances in Pd-CeO2 electrocatalysts for AEMFC anodes.
Development of a Gaseous and Solid-state Hybrid System for Stationary Hydrogen Energy Storage
Jun 2020
Publication
Hydrogen can serve as a carrier to store renewable energy in large scale. However hydrogen storage still remains a challenge in the current stage. It is difficult to meet the technical requirements applying the conventional storage of compressed gaseous hydrogen in high-pressure tanks or the solid-state storage of hydrogen in suitable materials. In the present work a gaseous and solid-state (G-S) hybrid hydrogen storage system with a low working pressure below 5 MPa for a 10 kW hydrogen energy storage experiment platform is developed and validated. A Ti−Mn type hydrogen storage alloy with an effective hydrogen capacity of 1.7 wt% was prepared for the G-S hybrid hydrogen storage system. The G-S hybrid hydrogen storage tank has a high volumetric hydrogen storage density of 40.07 kg H2 m−3 and stores hydrogen under pressure below 5 MPa. It can readily release enough hydrogen at a temperature as low as −15 °C when the FC system is not fully activated and hot water is not available. The energy storage efficiency of this G-S hybrid hydrogen storage system is calculated to be 86.4%−95.9% when it is combined with a FC system. This work provides a method on how to design a G-S hydrogen storage system based on practical demands and demonstrates that the G-S hybrid hydrogen storage is a promising method for stationary hydrogen storage application.
Biomass Derived Porous Nitrogen Doped Carbon for Electrochemical Devices
Mar 2017
Publication
Biomass derived porous nanostructured nitrogen doped carbon (PNC) has been extensively investigated as the electrode material for electrochemical catalytic reactions and rechargeable batteries. Biomass with and without containing nitrogen could be designed and optimized to prepare PNC via hydrothermal carbonization pyrolysis and other methods. The presence of nitrogen in carbon can provide more active sites for ion absorption improve the electronic conductivity increase the bonding between carbon and sulfur and enhance the electrochemical catalytic reaction. The synthetic methods of natural biomass derived PNC heteroatomic co- or tri-doping into biomass derived carbon and the application of biomass derived PNC in rechargeable Li/Na batteries high energy density Li–S batteries supercapacitors metal-air batteries and electrochemical catalytic reaction (oxygen reduction and evolution reactions hydrogen evolution reaction) are summarized and discussed in this review. Biomass derived PNCs deliver high performance electrochemical storage properties for rechargeable batteries/supercapacitors and superior electrochemical catalytic performance toward hydrogen evolution oxygen reduction and evolution as promising electrodes for electrochemical devices including battery technologies fuel cell and electrolyzer.
Towards Climate Resilient Urban Energy Systems: A Review
Jun 2020
Publication
Climate change and increased urban population are two major concerns for society. Moving towards more sustainable energy solutions in the urban context by integrating renewable energy technologies supports decarbonizing the energy sector and climate change mitigation. A successful transition also needs adequate consideration of climate change including extreme events to ensure the reliable performance of energy systems in the long run. This review provides an overview of and insight into the progress achieved in the energy sector to adapt to climate change focusing on the climate resilience of urban energy systems. The state-of-the-art methodology to assess impacts of climate change including extreme events and uncertainties on the design and performance of energy systems is described and discussed. Climate resilience is an emerging concept that is increasingly used to represent the durability and stable performance of energy systems against extreme climate events. However it has not yet been adequately explored and widely used as its definition has not been clearly articulated and assessment is mostly based on qualitative aspects. This study reveals that a major limitation in the state-of-the-art is the inadequacy of climate change adaptation approaches in designing and preparing urban energy systems to satisfactorily address plausible extreme climate events. Furthermore the complexity of the climate and energy models and the mismatch between their temporal and spatial resolutions are the major limitations in linking these models. Therefore few studies have focused on the design and operation of urban energy infrastructure in terms of climate resilience. Considering the occurrence of extreme climate events and increasing demand for implementing climate adaptation strategies the study highlights the importance of improving energy system models to consider future climate variations including extreme events to identify climate resilient energy transition pathways.
A Host-guest Approach to Fabricate Metallic Cobalt Nanoparticles Embedded in Silk-derived N-doped Carbon Fibers for Efficient Hydrogen Evolution
Feb 2017
Publication
Hydrogen evolution reaction (HER) plays a key role in generating clean and renewable energy. As the most effective HER electrocatalysts Pt group catalysts suffer from severe problems such as high price and scarcity. It is highly desirable to design and synthesize sustainable HER electrocatalysts to replace the Pt group catalysts. Due to their low cost high abundance and high activities cobalt-incorporated N-doped nanocarbon hybrids are promising candidate electrocatalysts for HER. In this report we demonstrated a robust and eco-friendly host-guest approach to fabricate metallic cobalt nanoparticles embedded in N-doped carbon fibers derived from natural silk fibers. Benefiting from the one-dimensional nanostructure the well-dispersed metallic cobalt nanoparticles and the N-doped thin graphitized carbon layer coating the best Co-based electrocatalyst manifests low overpotential (61 mV@10 mA/cm2) HER activity that is comparable with commercial 20% Pt/C and good stability in acid. Our findings provide a novel and unique route to explore high-performance noble-metal-free HER electrocatalysts.
HYDRIDE4MOBILITY: An EU HORIZON 2020 Project on Hydrogen Powered Fuel Cell Utility Vehicles Using Metal Hydrides in Hydrogen Storage and Refuelling Systems
Feb 2021
Publication
Volodymyr A. Yartys,
Mykhaylo V. Lototskyy,
Vladimir Linkov,
Sivakumar Pasupathi,
Moegamat Wafeeq Davids,
Gojmir Radica,
Roman V. Denys,
Jon Eriksen,
José Bellosta von Colbe,
Klaus Taube,
Giovanni Capurso,
Martin Dornheim,
Fahmida Smith,
Delisile Mathebula,
Dana Swanepoel,
Suwarno Suwarno and
Ivan Tolj
The goal of the EU Horizon 2020 RISE project 778307 “Hydrogen fuelled utility vehicles and their support systems utilising metal hydrides” (HYDRIDE4MOBILITY) is in addressing critical issues towards a commercial implementation of hydrogen powered forklifts using metal hydride (MH) based hydrogen storage and PEM fuel cells together with the systems for their refuelling at industrial customers facilities. For these applications high specific weight of the metallic hydrides has an added value as it allows counterbalancing of a vehicle with no extra cost. Improving the rates of H2 charge/discharge in MH on the materials and system level simplification of the design and reducing the system cost together with improvement of the efficiency of system “MH store-FC” is in the focus of this work as a joint effort of consortium uniting academic teams and industrial partners from two EU and associated countries Member States (Norway Germany Croatia) and two partner countries (South Africa and Indonesia).<br/>The work within the project is focused on the validation of various efficient and cost-competitive solutions including (i) advanced MH materials for hydrogen storage and compression (ii) advanced MH containers characterised by improved charge-discharge dynamic performance and ability to be mass produced (iii) integrated hydrogen storage and compression/refuelling systems which are developed and tested together with PEM fuel cells during the collaborative efforts of the consortium.<br/>This article gives an overview of HYDRIDE4MOBILITY project focused on the results generated during its first phase (2017–2019).
The Importance of Economies of Scale, Transport Costs and Demand Patterns in Optimising Hydrogen Fuelling Infrastructure: An Exploration with SHIPMod (Spatial Hydrogen Infrastructure Planning Model)
Jul 2013
Publication
Hydrogen is widely recognised as an important option for future road transportation but a widespread infrastructure must be developed if the potential for hydrogen is to be achieved. This paper and related appendices which can be downloaded as Supplementary material present a mixed-integer linear programming model (called SHIPMod) that optimises a hydrogen supply chains for scenarios of hydrogen fuel demand in the UK including the spatial arrangement of carbon capture and storage infrastructure. In addition to presenting a number of improvements on past practice in the literature the paper focuses attention on the importance of assumptions regarding hydrogen demand. The paper draws on socio-economic data to develop a spatially detailed scenario of possible hydrogen demand. The paper then shows that assumptions about the level and spatial dispersion of hydrogen demand have a significant impact on costs and on the choice of hydrogen production technologies and distribution mechanisms.
Effect of Precooled Inlet Gas Temperature and Mass flow Rate on Final State of Charge During Hydrogen Vehicle Refueling
Mar 2015
Publication
Short refuelling time and high final state of charge are among the main hydrogen car user's requirements. To meet these requirements without exceeding the tank materials safety limits hydrogen precooling is needed. Filling experiments with different inlet gas temperatures and mass flow rates have been executed using two different types of on-board tanks (type 3 and 4). State of charge has a strong dependency on the inlet gas temperature. This dependency is more visible for type 4 tanks. Lowest precooling temperature (−40 °C) is not always required in order to meet user's requirements so energy savings can be achieved if the initial conditions of the tank are correctly identified. The results of the experiments performed have been compared with the SAE J2601 look-up tables for non-communication fillings. A big safety margin has been observed in these tables. Refuelling could be performed faster and with less demanding precooling requirements if the initial conditions and the configuration of the hydrogen storage system are well known.
Insights into Renewable Hydrogen Energy: Recent Advances and Prospects
Jan 2020
Publication
Presently the fulfilment of world’s energy demand highly relies on the fossil fuel i.e. coal oil and natural gas. Fossil fuels pose threat to environment and biological systems on the earth. Usage of these fuels leads to an increase in the CO2 content in the atmosphere that causes global warming and undesirable climatic changes. Additionally these are limited sources of energy those will eventually dwindle. There is huge urge of identifying and utilizing the renewable energy resources to replace these fossil fuels in the near future as it is expected to have no impact on environment and thus would enable one to provide energy security. Hydrogen is one of the most desirable fuel capable of replacing vanishing hydrocarbons. In this review we present the status of energy demands recent advances in renewable energy and the prospects of hydrogen as a future fuel are highlighted. It gives a broad overview of different energy systems and mainly focuses on different technologies and their reliability for the production of hydrogen in present and future.
Catalytic Transfer Hydrogenolysis as an Efficient Route in Cleavage of Lignin and Model Compounds
Aug 2018
Publication
Cleavage of aromatic ether bonds through hydrogenolysis is one of the most promising routes for depolymerisation and transformation of lignin into value-added chemicals. Instead of using pressurized hydrogen gas as hydrogen source some reductive organic molecules such as methanol ethanol isopropanol as well as formates and formic acid can serve as hydrogen donor is the process called catalytic transfer hydrogenolysis. This is an emerging and promising research field but there are very few reports. In this paper a comprehensive review of the works is presented on catalytic transfer hydrogenolysis of lignin and lignin model compounds aiming to breakdown the aromatic ethers including α-O-4 β-O-4 and 4-O-5 linkages with focus on reaction mechanisms. The works are organised regarding to different hydrogen donors used to gain an in-depth understanding of the special role of various hydrogen donors in this process. Perspectives on current challenges and opportunities of future research to develop catalytic transfer hydrogenolysis as a competitive and unique strategy for lignin valorisation are also provided.
Decarbonising City Bus Networks in Ireland with Renewable Hydrogen
Dec 2020
Publication
This paper presents techno-economic modelling results of a nationwide hydrogen fuel supply chain (HFSC) that includes renewable hydrogen production transportation and dispensing systems for fuel cell electric buses (FCEBs) in Ireland. Hydrogen is generated by electrolysers located at each existing Irish wind farm using curtailed or available wind electricity. Additional electricity is supplied by on-site photovoltaic (PV) arrays and stored using lithium-ion batteries. At each wind farm sizing of the electrolyser PV array and battery is optimised system design to obtain the minimum levelised cost of hydrogen (LCOH). Results show the average electrolyser capacity factor is 64% after the integration of wind farm-based electrolysers with PV arrays and batteries. A location-allocation algorithm in a geographic information system (GIS) environment optimises the distributed hydrogen supply chain from each wind farm to a hypothetical hydrogen refuelling station in the nearest city. Results show that hydrogen produced transported and dispensed using this system can meet the entire current bus fuel demand for all the studied cities at a potential LCOH of 5–10 €/kg by using available wind electricity. At this LCOH the future operational cost of FCEBs in Belfast Cork and Dublin can be competitive with public buses fuelled by diesel especially under carbon taxes more reflective of the environmental impact of fossil fuels.
Energy Saving Technologies and Mass-thermal Network Optimization for Decarbonized Iron and Steel Industry: A Review
Jul 2020
Publication
The iron and steel industry relies significantly on primary energy and is one of the largest energy consumers in the manufacturing sector. Simultaneously numerous waste heat is lost and discharged directly into the environment in the process of steel production. Thus considering conservation of energy energy-efficient improvement should be a holistic target for iron and steel industry. The research gap is that almost all the review studies focus on the primary energy saving measures in iron and steel industry whereas few work summarize the secondary energy saving technologies together with former methods. The objective of this paper is to develop the concept of mass-thermal network optimization in iron and steel industry which unrolls a comprehensive map to consider current energy conservation technologies and low grade heat recovery technologies from an overall situation. By presenting an overarching energy consumption in the iron and steel industry energy saving potentials are presented to identify suitable technologies by using mass-thermal network optimization. Case studies and demonstration projects around the world are also summarized. The general guideline is figured out for the energy optimization in iron and steel industry while the improved mathematical models are regarded as the future challenge.
Changing the Fate of Fuel Cell Vehicles: Can lessons be Learnt from Tesla Motors?
Dec 2014
Publication
Fuel Cell Vehicles (FCVs) are a disruptive innovation and are currently looking towards niche market entry. However commercialisation has been unsuccessful thus far and there is a limited amount of literature that can guide their market entry. In this paper a historical case study is undertaken which looks at Tesla Motors high-end encroachment market entry strategy. FCVs have been compared to Tesla vehicles due to their similarities; both are disruptive innovations both are high cost and both are zero emission vehicles. Therefore this paper looks at what can be learned form Tesla Motors successful market entry strategy and proposes a market entry strategy for FCVs. It was found that FCVs need to enact a paradigm shift from their current market entry strategy to one of high-end encroachment. When this has been achieved FCVs will have greater potential for market penetration.
Acorn: Developing Full-chain Industrial Carbon Capture and Storage in a Resource- and Infrastructure-rich Hydrocarbon Province
Jun 2019
Publication
Juan Alcalde,
Niklas Heinemann,
Leslie Mabon,
Richard H. Worden,
Heleen de Coninck,
Hazel Robertson,
Marko Maver,
Saeed Ghanbari,
Floris Swennenhuis,
Indira Mann,
Tiana Walker,
Sam Gomersal,
Clare E. Bond,
Michael J. Allen,
Stuart Haszeldine,
Alan James,
Eric J. Mackay,
Peter A. Brownsort,
Daniel R. Faulkner and
Steve Murphy
Research to date has identified cost and lack of support from stakeholders as two key barriers to the development of a carbon dioxide capture and storage (CCS) industry that is capable of effectively mitigating climate change. This paper responds to these challenges through systematic evaluation of the research and development process for the Acorn CCS project a project designed to develop a scalable full-chain CCS project on the north-east coast of the UK. Through assessment of Acorn's publicly-available outputs we identify strategies which may help to enhance the viability of early-stage CCS projects. Initial capital costs can be minimised by infrastructure re-use particularly pipelines and by re-use of data describing the subsurface acquired during oil and gas exploration activity. Also development of the project in separate stages of activity (e.g. different phases of infrastructure re-use and investment into new infrastructure) enables cost reduction for future build-out phases. Additionally engagement of regional-level policy makers may help to build stakeholder support by situating CCS within regional decarbonisation narratives. We argue that these insights may be translated to general objectives for any CCS project sharing similar characteristics such as legacy infrastructure industrial clusters and an involved stakeholder-base that is engaged with the fossil fuel industry.
A Review of Techno-economic Data for Road Transportation Fuels
May 2019
Publication
Worldwide the road transport sector typically arises as one of the main sources of air pollutants due to its high energy intensity and the use of fossil fuels. Thus governments and social agents work on the development and prospective planning of decarbonisation strategies oriented towards sustainable transport. In this regard the increase in the use of alternative fuels is the recurrent approach to energy planning e.g. through the promotion of electric vehicles biofuels natural gas liquefied petroleum gas etc. However there is a lack of comprehensive information on the techno-economic performance of production pathways for alternative fuels. The acquisition of robust techno-economic data is still a challenge for energy planners modellers analysts and policy-makers when building their prospective models to support decision-making processes. Hence this article aims to fill this gap through a deep literature review including the most representative production routes for a wide range of road transportation fuels. This led to the development of datasets including investment costs operating and maintenance costs and transformation efficiencies for more than 40 production pathways. The techno-economic data presented in this work are expected to be especially useful to those energy actors interested in performing long-term studies on the transition to a sustainable transport system.
Fundamental Study on Hydrogen Low-NOx Combustion Using Exhaust Gas Self-Recirculation
Jan 2022
Publication
Hydrogen is expected to be a next-generation energy source that does not emit carbon dioxide but when used as a fuel the issue is the increase in the amount of NOx that is caused by the increase in flame temperature. In this study we experimentally investigated NOx emissions rate when hydrogen was burned in a hydrocarbon gas burner which is used in a wide temperature range. As a result of the experiments the amount of NOx when burning hydrogen in a nozzle mixed burner was twice as high as when burning city gas. However by increasing the flow velocity of the combustion air the amount of NOx could be reduced. In addition by reducing the number of combustion air nozzles rather than decreasing the diameter of the air nozzles a larger recirculation flow could be formed into the furnace and the amount of NOx could be reduced by up to 51%. Furthermore the amount of exhaust gas recirculation was estimated from the reduction rate of NOx and the validity was confirmed by the relationship between adiabatic flame temperature and NOx calculated from the equilibrium calculation by chemical kinetics simulator software.
Combustion Analysis of Hydrogen-diesel Dual Fuel Engine with Water Injection Technique
Dec 2018
Publication
In this paper the effect of direct diesel injection timing and engine speed on the performance and emissions of CI engine operating on RCCI (H2/diesel mixture) coupled with water injection have been numerically investigated and validated. The simulation have been carried out using GT-Power professional software. A single cylinder dual fuel compression ignition model has been built. The diesel fuel was injected directly to the cylinder. The hydrogen and water were injected to the engine intake manifold and engine port with constant mass flow rate and constant temperature for all engine speed. During the simulation the engine speed was varied from 1000 to 5000 rpm and the diesel injection timing was varied from (−5° to −25° CAD). In addition the optimized diesel injection timing for specific engine operation parameters has also been performed. The results show that for specific injection timing and constant hydrogen and water mass flow rate the increase of engine speed results in an increase in the cylinder temperature engine brake power brake specific fuel consumption and NO emissions; but decreases brake thermal efficiency. Moreover the analysis performed shows that the advanced injection timing decreases the engine power brake thermal efficiency and CO emissions; but increases NO emissions.
Medium-Energy Synthesis Gases from Waste as an Energy Source for an Internal Combustion Engine
Dec 2021
Publication
The aim of the presented article is to analyse the influence of synthesis gas composition on the power economic and internal parameters of an atmospheric two-cylinder spark-ignition internal combustion engine (displacement of 686 cm3 ) designed for a micro-cogeneration unit. Synthesis gases produced mainly from waste contain combustible components as their basic material (methane hydrogen and carbon monoxide) as well as inert gases (carbon dioxide and nitrogen). A total of twelve synthesis gases were analysed that fall into the category of medium-energy gases with lower heating value in the range from 8 to 12 MJ/kg. All of the resulting parameters from the operation of the combustion engine powered by synthesis gases were compared with the reference fuel methane. The results show a decrease in the performance parameters for all operating loads and an increase in hourly fuel consumption. Specifically for the operating speed of the micro-cogeneration unit (1500 L/min) the decrease in power parameters was in the range of 7.1–23.5%; however the increase in hourly fuel consumption was higher by 270% to 420%. The decrease in effective efficiency ranged from 0.4 to 4.6% which in percentage terms represented a decrease from 1.3% to 14.5%. The process of fuel combustion was most strongly influenced by the proportion of hydrogen and inert gases in the mixture. It can be concluded that setting up the synthesis gas production in the waste gasification process in order to achieve optimum performance and economic parameters of the combustion engine for a micro cogeneration unit has an influential role and is of crucial importance.
The Influence of Hydrogen Desorption on Micromechanical Properties and Tribological Behavior of Iron and Carbon Steels
Dec 2018
Publication
The influence of the previous electrolytic hydrogenation on the micromechanical properties and tribological behavior of the surface layers of iron and carbon steels has been studied. The concentrations of diffusion-moving and residual hydrogen in steels are determined depending on the carbon content. It is shown that the amount of sorbed hydrogen is determined by the density of dislocations and the relative volume of cementite. After desorption of diffusion-moving hydrogen the microhardness increases and materials plasticity decreases. The change of these characteristics decreases with the increase of carbon content in the steels. Internal stresses increase and redistribute under hydrogen desorption. Fragmentation of ferrite and perlite occurs as a result of electrolytic hydrogenation. Ferrite is characterized by the structure fragmentation and change of the crystallographic orientation of planes. The perlite structure shows the crushing of cementite plates and their destruction. The influence of hydrogen desorption on the microhardness of structural components of ferrite-perlite steels is shown. Large scattering of microhardness is found in perlite due to different diffusion rates of hydrogen because of the unequally oriented cementite plates. It was found that the tendency of materials to blister formation is reduced with the increase of carbon content. The influence of hydrogen on the tribological behaviour of steels under dry and boundary friction has been studied. It is shown that hydrogen desorption intensifies the materials wear. After hydrogen desorption tribological behaviour is determined by the adhesion interaction between the contacting pairs.
Technology Assessment of Hydrogen Firing of Process Heaters
Apr 2011
Publication
In conjunction with John Zink Co. LLC the Chevron Energy Technology Company conducted a three part study evaluating potential issues with switching refinery process heaters from fuel gas to hydrogen fuel for the purpose of greenhouse gas emissions reduction via CO2 capture and storage.
The focus was on the following areas:
The focus was on the following areas:
- Heater performance
- Burner performance and robustness
- Fuel gas system retrofit requirements
The Status and Prospects of Hydrogen and Fuel Cell Technology in the Philippines
Jan 2022
Publication
As a developing country the Philippines must balance its rapid industrialization efforts with the realities and consequences of climate change on the country. A feasible option to achieve this is increasing the share of renewables in power generation coupled with energy storage technology. This paper examines the present situation and opportunities for development of hydrogen and fuel cell technology in the Philippines as promising alternatives with proven applications in niche energy demand sectors aside from renewables integration. Although the Philippines is considered a latecomer there is significant renewable resource potential available local experts and trained talents and enabling legislations in the country that provide opportunities in harnessing fuel cell technologies for the transition to energy self-sufficient and low-carbon society. Current advancement of the technology in the country is limited to an initial 5-year roadmap focused on component development from cheap and local materials. Provisions for large-scale hydrogen infrastructure have not yet been realized which is comparable to the early stages of development in other countries that are also pursuing fuel cell technology. Strong industry-academe partnerships should be pursued through a specific legislated agency to ensure future development of this technology for the country’s benefit. Lastly applications in distributed power generation poised to be a lucrative direction as demonstration and validation with other potential uses such as transportation remains a challenge.
Hy4Heat Understanding Commercial Appliances - Work Package 5
Nov 2020
Publication
The 'Hydrogen for Heat' (Hy4Heat) programme aims to support the UK Government in its ambitions to decarbonise the UK energy sector in line with the targets of the Climate Change Act 2008 by attempting to evaluate and de-risk the natural gas to hydrogen network conversion option. The impact on the commercial sector is an important factor in understanding the feasibility of utilising hydrogen to decarbonise heat in the UK. The overall objective of the market research study Work Package 5 (WP5) was to determine if it is theoretically possible to successfully convert the commercial sector to hydrogen. This work will contribute to the understanding of the scale type and capacity of gas heating appliances within the sector providing a characterisation of the market and determining the requirements and feasibility for successfully transitioning them to hydrogen in the future.
This report and any attachment is freely available on the Hy4Heat website here. The report can also be downloaded directly by clicking on the pdf icon above
This report and any attachment is freely available on the Hy4Heat website here. The report can also be downloaded directly by clicking on the pdf icon above
Assessment of Operational Performance for an Integrated ‘Power to Synthetic Natural Gas’ System
Dec 2021
Publication
This article presents a power to SNG (synthetic natural gas) system that converts hydrogen into SNG via a methanation process. In our analysis detailed models for all the elements of the system are built. We assume a direct connection between a wind farm and a hydrogen generator. For the purposes of our calculations we also assume that the hydrogen generator is powered by the renewable source over a nine-hour period per day (between 21:00 and 06:00) and this corresponds to the off-peak period in energy demand. In addition a hydrogen tank was introduced to maximize the operating time of the methanation reactor. The cooperation between the main components of the system were simulated using Matlab software. The primary aim of this paper is to assess the influence of various parameters on the operation of the proposed system and to optimize its yearly operation via a consideration of the most important constraints. The analyses also examine different nominal power values of renewables from 8 to 12 MW and hydrogen generators from 3 to 6 MW. Implementing the proposed configuration taking into account the direct connection of the hydrogen generator and the methanation reactor showed that it had a positive effect on the dynamics and the operating times of the individual subsystems within the tested configuration
Green Hydrogen Value Chain in the Sustainability for Port Operations: Case Study in the Region of Valparaiso, Chile
Dec 2021
Publication
The paper presents a complete value chain for the use of green hydrogen in a port facility. The main objective was to propose the sizing of the main components that make up green hydrogen to ensure the supply of 1 MWe in replacing the diesel generator. The energy demand required for the port was determined by establishing the leading small and large-scale conventional energyconsuming equipment. Hence 60 kgH2 was required to ensure the power supply. The total electrical energy to produce all the hydrogen was generated from photovoltaic solar energy considering threegeneration scenarios (minimum maximum and the annual average). In all cases the energy supply in the electrolyzer was 3.08 MWe. In addition the effect of generating in the port facility using a diesel generator and a fuel cell was compared. The cost of 1 kgH2 could be 4.09 times higher than the cost of 1 L of diesel meaning that the output kWh of each system is economically similar. In addition the value of electrical energy through a Power Purchase Agreement (PPA) was a maximum of 79.79 times the value of a liter of diesel. Finally the Levelized Cost of Energy (LCOE) was calculated for two conditions in which the MWe was obtained from the fuel cell without and with the photovoltaic solar plant.
Innovation Insights Brief: Energy Scenarios Comparison Review
Apr 2019
Publication
Energy transition is a part of a much wider Grand Transition which is not all about energy. Energy transition cannot be achieved all at once or by any one actor. Relying only on better energy modelling and forecasting to guide successful transition will be fatal even in a data-rich era.<br/>It is timely for energy leaders to ask:<br/>Are global energy scenarios achieving their potential in opening up action on new energy futures?<br/>How do the Council’s World Energy Scenarios compare with global energy outlooks scenarios and normative visions used by others and what can we learn by contrasting the increasing richness of energy futures thinking?<br/>In anticipation of the 24th World Energy Congress the Council is refreshing its global energy foresight and updating its global scenarios narratives. The focus is on an ‘innovation twist to 2040’ and the use of scenarios to explore and navigate new exponential growth opportunities for accelerating successful energy transition in an era of epic and disruptive innovation.<br/>As a part of the refresh the Council has conducted a comparison study of global energy scenarios in order to test the continued plausibility relevance and challenge of its own existing scenario set the World Energy Scenarios 2016 launched at the 23rd World Energy Congress in Istanbul in 2016.<br/>By comparing the methods narratives and assumptions associated with a benchmarkable set of global energy futures initiatives and studies the Council seeks to provide our members with clearer understanding and new insights on energy transition while preparing them to better engage with leadership dialogues which pivot on visions of a new energy future.<br/>The review also provides an opportunity to reflect on the challenges and obstacles for utilising global energy scenarios to drive impact and the challenges in bridging agile and flexible qualitative storytelling with long term quantitative energy modelling."
Environmental Sustainability of Alternative Marine Propulsion Technologies Powered by Hydrogen - A Life Cycle Assessment Approach
Jan 2022
Publication
Shipping is a very important source of pollution worldwide. In recent years numerous actions and measures have been developed trying to reduce the levels of greenhouse gases (GHG) from the marine exhaust emissions in the fight against climate change boosting the Sustainable Development Goal 13. Following this target the action of hydrogen as energy vector makes it a suitable alternative to be used as fuel constituting a very promising energy carrier for energy transition and decarbonization in maritime transport. The objective of this study is to develop an ex-ante environmental evaluation of two promising technologies for vessels propulsion a H2 Polymeric Electrolytic Membrane Fuel Cell (PEMFC) and a H2 Internal Combustion Engine (ICE) in order to determine their viability and eligibility compared to the traditional one a diesel ICE. The applied methodology follows the Life Cycle Assessment (LCA) guidelines considering a functional unit of 1 kWh of energy produced. LCA results reveal that both alternatives have great potential to promote the energy transition particularly the H2 ICE. However as technologies readiness level is quite low it was concluded that the assessment has been conducted at a very early stage so their sustainability and environmental performance may change as they become more widely developed and deployed which can be only achieved with political and stakeholder’s involvement and collaboration.
Materials Towards Carbon-free, Emission-free and Oil-free Mobility: Hydrogen Fuel-cell Vehicles—Now and in the Future
Jul 2010
Publication
In the past material innovation has changed society through new material-induced technologies adding a new value to society. In the present world engineers and scientists are expected to invent new materials to solve the global problem of climate change. For the transport sector the challenge for material engineers is to change the oil-based world into a sustainable world. After witnessing the recent high oil price and its adverse impact on the global economy it is time to accelerate our efforts towards this change.
Industries are tackling global energy issues such as oil and CO2 as well as local environmental problems such as NOx and particulate matter. Hydrogen is the most promising candidate to provide carbon-free emission-free and oil-free mobility. As such engineers are working very hard to bring this technology into the real society. This paper describes recent progress of vehicle technologies as well as hydrogen-storage technologies to extend the cruise range and ensure the easiness of refuelling and requesting material scientists to collaborate with industry to fight against global warming.
Link to document download on Royal Society Website
Industries are tackling global energy issues such as oil and CO2 as well as local environmental problems such as NOx and particulate matter. Hydrogen is the most promising candidate to provide carbon-free emission-free and oil-free mobility. As such engineers are working very hard to bring this technology into the real society. This paper describes recent progress of vehicle technologies as well as hydrogen-storage technologies to extend the cruise range and ensure the easiness of refuelling and requesting material scientists to collaborate with industry to fight against global warming.
Link to document download on Royal Society Website
A Portfolio of Powertrains for the UK: An Energy Systems Analysis
Jul 2014
Publication
There has recently been a concerted effort to commence a transition to fuel cell vehicles (FCVs) in Europe. A coalition of companies released an influential McKinsey-coordinated report in 2010 which concluded that FCVs are ready for commercial deployment. Public–private H2Mobility programmes have subsequently been established across Europe to develop business cases for the introduction of FCVs. In this paper we examine the conclusions of these studies from an energy systems perspective using the UK as a case study. Other UK energy system studies have identified only a minor role for FCVs after 2030 but we reconcile these views by showing that the differences are primarily driven by different data assumptions rather than methodological differences. Some energy system models do not start a transition to FCVs until around 2040 as they do not account for the time normally taken for the diffusion of new powertrains. We show that applying dynamic growth constraints to the UK MARKAL energy system model more realistically represents insights from innovation theory. We conclude that the optimum deployment of FCVs from an energy systems perspective is broadly in line with the roadmap developed by UK H2Mobility and that a transition needs to commence soon if FCVs are to become widespread by 2050.
Hydrogen Ironmaking: How It Works
Jul 2020
Publication
A new route for making steel from iron ore based on the use of hydrogen to reduce iron oxides is presented detailed and analyzed. The main advantage of this steelmaking route is the dramatic reduction (90% off) in CO2 emissions compared to those of the current standard blast-furnace route. The first process of the route is the production of hydrogen by water electrolysis using CO2-lean electricity. The challenge is to achieve massive production of H2 in acceptable economic conditions. The second process is the direct reduction of iron ore in a shaft furnace operated with hydrogen only. The third process is the melting of the carbon-free direct reduced iron in an electric arc furnace to produce steel. From mathematical modeling of the direct reduction furnace we show that complete metallization can be achieved in a reactor smaller than the current shaft furnaces that use syngas made from natural gas. The reduction processes at the scale of the ore pellets are described and modeled using a specific structural kinetic pellet model. Finally the differences between the reduction by hydrogen and by carbon monoxide are discussed from the grain scale to the reactor scale. Regarding the kinetics reduction with hydrogen is definitely faster. Several research and development and innovation projects have very recently been launched that should confirm the viability and performance of this breakthrough and environmentally friendly ironmaking process.
Concepts for Preventing Metal Dissolution From Stainless-steel Bipolar Plates in PEM Fuel Cells
Dec 2021
Publication
The bipolar plate (BPP) is a component with vast cost-reduction potential in proton exchange membrane fuel cells (PEMFCs). Apart from mechanical and heat transfer requirements the most desired BPP properties are high corrosion and low electrical contact resistance. In this study we confirm that due to ionic decoupling between BPPs and electrodes the surface potentials of the BPPs remain stable even at varying operation loads. These mild potentials in combination with low metal-ion leeching due to passive-transpassive-passive dissolution in stainless steels suggest that low-cost carbon-coated stainless steel can readily be used as a BPP in PEMFCs. To prove this single-fuel cell tests were carried out under realistic driving conditions including electrochemical analysis in-situ contact-resistance measurements and post-mortem investigation of the membrane electrode assembly (MEA) by inductively coupled plasma trace-metal analysis combined with electron microscopy and Auger spectroscopy of the BPPs. The results show that due to the ionic decoupling conditions at the BPP surfaces are much less corrosive than previously thought. Furthermore carbon-coated stainless-steel BPPs prove to be unaffected by global hydrogen starvation which causes severe MEA degradation independent of the presence or absence of BPPs.
Progress in Power-to-Gas Energy Systems
Dec 2022
Publication
Hydrogen is expected to become a key component in the decarbonized energy systems of the future. Its unique chemical characteristics make hydrogen a carbon-free fuel that is suitable to be used as broadly as fossil fuels are used today. Since hydrogen can be produced by splitting water molecules using electricity as the only energy input needed hydrogen offers the opportunity to produce a fully renewable fuel if the electricity input also only stems from renewable sources. Once renewable electricity is converted into hydrogen it can be stored over long periods of time and transported over long even intercontinental distances. Underground hydrogen storage pipelines compressors liquefaction-units and transportation ships are infrastructures and suitable technologies to establish a global hydrogen energy system. Several chemical synthesis routes exist to produce more complex products from green hydrogen to fulfil the demands of various end-users and industries. One exemplary power-to-gas product is methane which can be used as a natural gas substitute. Furthermore ammonia alcohols kerosene and all other important products from hydrocarbon chemistry can be synthesized using green hydrogen.
Design and Costs Analysis of Hydrogen Refuelling Stations Based on Different Hydrogen Sources and Plant Configurations
Jan 2022
Publication
In this study the authors present a techno-economic assessment of on-site hydrogen refuelling stations (450 kg/day of H2 ) based on different hydrogen sources and production technologies. Green ammonia biogas and water have been considered as hydrogen sources while cracking autothermal reforming and electrolysis have been selected as the hydrogen production technologies. The electric energy requirements of the hydrogen refuelling stations (HRSs) are internally satisfied using the fuel cell technology as power units for ammonia and biogas-based configurations and the PV grid-connected power plant for the water-based one. The hydrogen purification where necessary is performed by means of a Palladium-based membrane unit. Finally the same hydrogen compression storage and distribution section are considered for all configurations. The sizing and the energy analysis of the proposed configurations have been carried out by simulation models adequately developed. Moreover the economic feasibility has been performed by applying the life cycle cost analysis. The ammonia-based configurations are the best solutions in terms of hydrogen production energy efficiency (>71% LHV) as well as from the economic point of view showing a levelized cost of hydrogen (LCOH) in the range of 6.28 EUR/kg to 6.89 EUR/kg a profitability index greater than 3.5 and a Discounted Pay Back Time less than five years.
No more items...