- Home
- A-Z Publications
- Publications
Publications
A Numerical Investigation on De-NOx Technology and Abnormal Combustion Control for a Hydrogen Engine with EGR System
Sep 2020
Publication
The combustion emissions of the hydrogen-fueled engines are very clean but the problems of abnormal combustion and high NOx emissions limit their applications. Nowadays hydrogen engines use exhaust gas recirculation (EGR) technology to control the intensity of premixed combustion and reduce the NOx emissions. This study aims at improving the abnormal combustion and decreasing the NOx emissions of the hydrogen engine by applying a three-dimensional (3D) computational fluid dynamics (CFD) model of a single-cylinder hydrogen-fueled engine equipped with an EGR system. The results indicated that peak in-cylinder pressure continuously increased with the increase of the ignition advance angle and was closer to the top dead center (TDC). In addition the mixture was burned violently near the theoretical air–fuel ratio and the combustion duration was shortened. Moreover the NOx emissions the average pressure and the in-cylinder temperature decreased as the EGR ratio increased. Furthermore increasing the EGR ratio led to an increase in the combustion duration and a decrease in the peak heat release rate. EGR system could delay the spontaneous combustion reaction of the end-gas and reduce the probability of knocking. The pressure rise rate was controlled and the in-cylinder hot spots were reduced by the EGR system which could suppress the occurrence of the pre-ignition in the hydrogen engine.
An Experimental Study of the Possibility of In Situ Hydrogen Generation within Gas Reservoirs
Aug 2021
Publication
Hydrogen can be generated in situ within reservoirs containing hydrocarbons through chemical reactions. This technology could be a possible solution for low-emission hydrogen production due to of simultaneous CO2 storage. In gas fields it is possible to carry out the catalytic methane conversion (CMC) if sufficient amounts of steam catalyst and heat are ensured in the reservoir. There is no confirmation of the CMC’s feasibility at relatively low temperatures in the presence of core (reservoir rock) material. This study introduces the experimental results of the first part of the research on in situ hydrogen generation in the Promyslovskoye gas field. A set of static experiments in the autoclave reactor were performed to study the possibility of hydrogen generation under reservoir conditions. It was shown that CMC can be realized in the presence of core and ex situ prepared Ni-based catalyst under high pressure up to 207 atm but at temperatures not lower than 450 ◦C. It can be concluded that the crushed core model improves the catalytic effect but releases carbon dioxide and light hydrocarbons which interfere with the hydrogen generation. The maximum methane conversion rate to hydrogen achieved at 450 ◦C is 5.8%
Hydrogen Production from Water Electrolysis: Role of Catalysts
Feb 2021
Publication
As a promising substitute for fossil fuels hydrogen has emerged as a clean and renewable energy. A key challenge is the efcient production of hydrogen to meet the commercial-scale demand of hydrogen. Water splitting electrolysis is a promising pathway to achieve the efcient hydrogen production in terms of energy conversion and storage in which catalysis or electrocatalysis plays a critical role. The development of active stable and low-cost catalysts or electrocatalysts is an essential prerequisite for achieving the desired electrocatalytic hydrogen production from water splitting for practical use which constitutes the central focus of this review. It will start with an introduction of the water splitting performance evaluation of various electrocatalysts in terms of activity stability and efciency. This will be followed by outlining current knowledge on the two half-cell reactions hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in terms of reaction mechanisms in alkaline and acidic media. Recent advances in the design and preparation of nanostructured noble-metal and non-noble metal-based electrocatalysts will be dis‑ cussed. New strategies and insights in exploring the synergistic structure morphology composition and active sites of the nanostructured electrocatalysts for increasing the electrocatalytic activity and stability in HER and OER will be highlighted. Finally future challenges and perspectives in the design of active and robust electrocatalysts for HER and OER towards efcient production of hydrogen from water splitting electrolysis will also be outlined.
Life Cycle Assessment of Carbon Footprint in Public Transportation - A Case Study of Bus Route NO. 2 in Tainan City, Taiwan
Apr 2019
Publication
Human activities have exacerbated global greenhouse effects resulting in extreme climate changes that have caused disasters and food and water shortages in recent years. Transport activities are the one of the main causes of global greenhouse gas (GHG) emissions. Therefore policy makers must develop some strategies to reduce GHG emissions. One of the Taiwan’s transportation policies intended to reduce CO2 emissions is to replace all traditional diesel fuel urban buses with alternative energy buses. This paper uses a case study of bus route NO. 2 in Tainan City and follows the international standard ISO/TS 14067 and PAS2050 to measure the carbon footprints of different energy buses. The purpose is to measure the environmental benefits of alternative energy buses. The results of the bus carbon footprints from high to low were LNG buses 63.14g CO2e/pkm; traditional diesel buses 54.6g CO2e/pkm; liquefied petroleum gas buses 47.4g CO2e/pkm; plug-in electric buses 37.82g CO2e/pkm and hydrogen fuel cell bus es 29.17g CO2e/pkm respectively. It was also found that the use of hydrogen fuel cell buses would potentially reduce CO2e emissions in Tainan City by 1244081 tons which at this time is only city bus No. 2. If all the Taiwan city buses were switched to hydrogen fuel cell buses this would potentially reduce CO2e by 227832.39 tons. The effect of the reduction in carbon emissions from the use of hydrogen fuel cells buses in all Taiwanese urban areas is the equivalent of planting 22.78 million trees. It is thus suggested that the government use hydrogen fuel cell buses as the future of the country’s major alternative energy buses since they are the most environmentally friendly alternative to reducing CO2 emissions.
A Technical, Economic and Environmental Analysis of Combining Geothermal Energy with Carbon Sequestration for Hydrogen Production
Jul 2014
Publication
Among numerous techniques for the hydrogen production without harmful emissions especially avoiding the carbon dioxide emissions hydrogen technologies driven by geothermal energy represent an attractive solution. This paper is interested in the process by which the electricity generated from geothermal power plant that is operated using CO2 as heat transmission fluid is exploited for hydrogen production through water electrolysis. A numerical simulation is used to evaluate the potential for hydrogen production and to estimate the levelized cost of electrolytic hydrogen. We also present brief analysis of environmental issues including the carbon tax. The results show that the process has a good potential for geothermal hydrogen production is capable of producing about 22 kg/h of electrolytic hydrogen for the geothermal source of carbon dioxide mass flow rate of 40 kg/s and a temperature of 296 K. In economic regard the electric energy system costs are the major component of the total hydrogen production cost (more than 90%). The estimated cost of hydrogen is 8.24 $/kg H2. By including the carbon tax the cost of hydrogen production becomes far more competitive.
Efficiency, Economic and Environmental Impact Assessment of a Newly Developed Rail Engine using Hydrogen and Other Sustainable Fuel Blends
Jan 2023
Publication
Locomotives still use antiqued engines such as internal combustion engines operated by fossil fuels which cause global warming due to their significant emissions. This paper continues investigating the newly hybridized locomotive engine containing a gas turbine system solid oxide fuel cell system energy saving system and on-board hydrogen production system. This new engine is operated using five fuel blends composed of five alternative fuels such as hydrogen methane methanol ethanol and dimethyl ether. The current investigation involves exergy analysis exergo-economic analysis and exergo-environmental analysis to assess the engine from three perspectives: efficiency/irreversibility cost and environmental impact. The study results show that the net power of this new engine is 4948.6 kW and it has an exergetic efficiency of 62.7% according to the fuel and product principle. This engine weighs about 9 tons and costs about $10.2M with a levelized cost rate of 147 $/h and 14.06 mPt/h of overall component-related environmental rate. The average overall specific fuel and product exergy costs are about 37 $/GJ and 60 $/GJ and the minimum values are 13.3 $/GJ and 21.8 $/GJ using methane and hydrogen blend respectively. Also the average overall specific fuel and product exergo-environmental impact are about 15 and 23 mPt/MJ respectively. The on-board hydrogen production has an average exergy cost of 274 $/GJ and an environmental impact of 52 mPt/MJ. Hydrogen blended with methane or methanol is found to be more economic and has less environmental impact.
Economic and Technical Analysis of Power to Gas Factory Taking Karamay as an Example
May 2022
Publication
Power to gas (PTG) refers to the technology of converting power into energy-storage gas which can absorb excess power when there is excess power and release energy-storage gas when needed. Based on the carbon dioxide (CO2 ) emission of Karamay City in Northwest China this study designed a process flow of the CO2 absorption process and the hydrogen and CO2 methanation process in PTG technology. The results show that the efficiency of the CO2 absorption process was 91.5% and the methanation efficiency was 77.5%. The heat recovery module was set during the process and the total heat recovered was 17.85 MW. The cost of producing synthetic natural gas (SNG) in the PTG factory was 1782 USD/ton. In terms of cost the cost of hydrogen production from electrolyzed water accounted for the largest proportion. In terms of product profit the sale of pure oxygen was the largest part of the profit. At present the carbon emission reduction index profit brought by SNG production accounted for a small proportion. In the future with technological progress industrial upgrading and the improvement in the carbon trading market PTG technology is expected to become one of the ways to achieve carbon-emission-reduction targets.
Risk Assessment of the Low-carbon Transition of Austria’s Steel and Electricity Sectors
Dec 2018
Publication
To limit global temperature increase below +2°C societies need to reduce greenhouse gas emissions radically within the next few decades. Amongst other mitigation measures this requires transforming process-emission intensive industries towards emission neutrality. One way to this end is the renewables-based electrification of industries. We present results of a recent coproduction process which brought together stakeholders from industry policy administration and science to co-create climate-neutral transition pathways for the steel and electricity sectors in Austria. The results summarized here are the definition of reliable pathways and the identification of associated risks pertaining to pathway implementation including a macro-economic quantification. We find that risks to implementation (barriers) are at least as important as risks of implementation (negative consequences). From the quantitative analysis we find that provided that barriers can be reduced macroeconomic costs of the transition are only moderate and that stakeholders might overestimate risks when neglecting economy-wide feedbacks.
Blowout Prediction on a Salt Cavern Selected for a Hydrogen Storage Pilot
Oct 2022
Publication
To prevent climate change Europe and the world must shift to low-carbon and renewable energies. Hydrogen as an energy vector provides viable solutions for replacing polluting and carbon-emitting fossil fuels. Gaseous hydrogen can be stored underground and coupled with existing natural gas pipe networks. Salt cavern storage is the best suited technology to meet the challenges of new energy systems. Hydrogen storage caverns are currently operated in the UK and Texas. A preliminary risk analysis dedicated to underground hydrogen salt caverns highlighted the importance of containment losses (leaks) and the formation of gas clouds following blowouts whose ignition may generate dangerous phenomena such as jet fires unconfined vapor cloud explosions (UVCEs) or flashfires. A blowout is not a frequent accident in gas storage caverns. A safety valve is often set at a 30 m depth below ground level; it is automatically triggered following a pressure drop at the wellhead. Nevertheless a blowout remains to be one of the significant accidental scenarios likely to occur during hydrogen underground storage in salt caverns. In this paper we present modelling the subterraneous and aerial parts of a blowout on an EZ53 salt cavern fully filled with hydrogen.
Effect of Au Plasmonic Material on Poly M-Toluidine for Photoelectrochemical Hydrogen Generation from Sewage Water
Feb 2022
Publication
This study provides H2 gas as a renewable energy source from sewage water splitting reaction using a PMT/Au photocathode. So this study has a dual benefit for hydrogen generation; at the same time it removes the contaminations of sewage water. The preparation of the PMT is carried out through the polymerization process from an acid medium. Then the Au sputter was carried out using the sputter device under different times (1 and 2 min) for PMT/Au-1 min and PMT/Au-2min respectively. The complete analyses confirm the chemical structure such as XRD FTIR HNMR SEM and Vis-UV optical analyses. The prepared electrode PMT/Au is used for the hydrogen generation reaction using Na2S2O3 or sewage water as an electrolyte. The PMT crystalline size is 15 nm. The incident photon to current efficiency (IPCE) efficiency increases from 2.3 to 3.6% (at 390 nm) and the number of H2 moles increases from 8.4 to 33.1 mmol h−1 cm−2 for using Na2S2O3 and sewage water as electrolyte respectively. Moreover all the thermodynamic parameters such as activation energy (Ea) enthalpy (∆H*) and entropy (∆S*) were calculated; additionally a simple mechanism is mentioned for the water-splitting reaction.
Biohydrogen—A Green Fuel for Sustainable Energy Solutions
Oct 2022
Publication
Energy plays a crucial role in the sustainable development of modern nations. Today hydrogen is considered the most promising alternative fuel as it can be generated from clean and green sources. Moreover it is an efficient energy carrier because hydrogen burning only generates water as a byproduct. Currently it is generated from natural gas. However it can be produced using other methods i.e. physicochemical thermal and biological. The biological method is considered more environmentally friendly and pollution free. This paper aims to provide an updated review of biohydrogen production via photofermentation dark fermentation and microbial electrolysis cells using different waste materials as feedstocks. Besides the role of nanotechnology in enhancing biohydrogen production is examined. Under anaerobic conditions hydrogen is produced during the conversion of organic substrate into organic acids using fermentative bacteria and during the conversion of organic acids into hydrogen and carbon dioxide using photofermentative bacteria. Different factors that enhance the biohydrogen production of these organisms either combined or sequentially using dark and photofermentation processes are examined and the effect of each factor on biohydrogen production efficiency is reported. A comparison of hydrogen production efficiency between dark fermentation photofermentation and two-stage processes is also presented.
Application and Limitations of Batteries and Hydrogen in Heavy Haul Rail using Australian Case Studies
Oct 2022
Publication
Decarbonisation of heavy haul rail is an essential contributor to a zero-emissions future. However the transition from diesel to battery locomotives is not always practical given the unique characteristics of each haul. This paper demonstrates the limitations of state-of-the-art batteries using real-world data from multiple locomotives operating in Australian rail freight. An energy model was developed to assess each route’s required energy and potential regenerated energy. The tractive and regenerative battery energy mass and cost were determined using data from the energy model coupled with battery specifications. The feasibility of implementing lithium iron phosphate (LFP) nickel manganese cobalt (NMC) and lithium titanium oxide (LTO) chemistries was explored based on cost energy density cycle lifespan and locomotive data. LFP was identified as the most suitable current battery solution based on current chemistries. Further examination of the energy demands and associated mass/volume constraints concluded that three platforms are required for heavy haul rail decarbonisation i) a battery electric locomotive for low-energy demands which can be coupled with either ii) a battery electric tender for medium energy demands or iii) a hydrogen fuel cell electric tender for higher energy demands. A future-looking techno-economic assessment of battery and hydrogen fuel cell platforms concludes that the lowest cost solution for low-energy hauls is a battery-only system and for high-energy hauls a battery-hydrogen system.
OIES Podcast: Global Trade of Hydrogen: What is the Best Way to Transfer Hydrogen Over Long Distances?
Aug 2022
Publication
In this podcast David Ledesma talks with Rahmat Poudineh Senior Research Fellow and Aliaksei Patonia Research Fellow on issues and options with respect to long distance transportation of the hydrogen.
Hydrogen currently is mainly a local or regional commodity. If hydrogen is to become a truly global-traded commodity it needs to be transported over long transoceanic distances in an economical way. However unlike natural gas shipping compressed or liquefied hydrogen over long distances is very inefficient and expensive. At the same time hydrogen can be converted into multiple carriers with a higher energy density and higher transport capacity such as liquid ammonia toluene/methylcyclohexane (MCH) or methanol. These chemicals have their own advantages and drawbacks and their techno-economic characteristics in terms of boil-off gas and thermodynamic and conversion losses play a key role in the efficiency of transoceanic transportation of the hydrogen.
On the other hand apart from techno-economic features there are other factors to consider for long distance transportation of the hydrogen via its careers. Here such issues as safety public acceptance as well as legal and regulatory constraints may come into play. Another factor is the availability of the industries and infrastructures already developed around any of possible hydrogen carriers as well as their potential industrial applicability beyond hydrogen. Finally technological progress in other decarbonization applications and most importantly full commercialization of CCUS solutions is likely to dramatically change the approach towards long distance hydrogen transportation.
The podcast can be found on their website.
Hydrogen currently is mainly a local or regional commodity. If hydrogen is to become a truly global-traded commodity it needs to be transported over long transoceanic distances in an economical way. However unlike natural gas shipping compressed or liquefied hydrogen over long distances is very inefficient and expensive. At the same time hydrogen can be converted into multiple carriers with a higher energy density and higher transport capacity such as liquid ammonia toluene/methylcyclohexane (MCH) or methanol. These chemicals have their own advantages and drawbacks and their techno-economic characteristics in terms of boil-off gas and thermodynamic and conversion losses play a key role in the efficiency of transoceanic transportation of the hydrogen.
On the other hand apart from techno-economic features there are other factors to consider for long distance transportation of the hydrogen via its careers. Here such issues as safety public acceptance as well as legal and regulatory constraints may come into play. Another factor is the availability of the industries and infrastructures already developed around any of possible hydrogen carriers as well as their potential industrial applicability beyond hydrogen. Finally technological progress in other decarbonization applications and most importantly full commercialization of CCUS solutions is likely to dramatically change the approach towards long distance hydrogen transportation.
The podcast can be found on their website.
Techno-Economic Analysis of Hydrogen Storage Technologies for Railway Engineering: A Review
Sep 2022
Publication
According to the specific requirements of railway engineering a techno-economic comparison for onboard hydrogen storage technologies is conducted to discuss their feasibility and potentials for hydrogen-powered hybrid trains. Physical storage methods including compressed hydrogen (CH2 ) liquid hydrogen (LH2 ) and cryo-compressed hydrogen (CcH2 ) and material-based (chemical) storage methods such as ammonia liquid organic hydrogen carriages (LOHCs) and metal hydrides are carefully discussed in terms of their operational conditions energy capacity and economic costs. CH2 technology is the most mature now but its storage density cannot reach the final target which is the same problem for intermetallic compounds. In contrast LH2 CcH2 and complex hydrides are attractive for their high storage density. Nevertheless the harsh working conditions of complex hydrides hinder their vehicular application. Ammonia has advantages in energy capacity utilisation efficiency and cost especially being directly utilised by fuel cells. LOHCs are now considered as a potential candidate for hydrogen transport. Simplifying the dehydrogenation process is the important prerequisite for its vehicular employment. Recently increasing novel hydrogen-powered trains based on different hydrogen storage routes are being tested and optimised across the world. It can be forecasted that hydrogen energy will be a significant booster to railway decarbonisation.
A Mini-review on Recent Trends in Prospective Use of Porous 1D Nanomaterials for Hydrogen Storage
Nov 2021
Publication
The sustainable development of hydrogen energy is a priority task for a possible solution to 26 the global energy crisis. Hydrogen is a clean and renewable energy source that today is used 27 exclusively in the form of compressed gas or in liquefied form which prevents its widespread 28 use. Storing hydrogen in solid-state systems will not only increase the bulk density and 29 gravimetric capacity but will also have a positive impact on safety issues. From this point of 30 view the current review considers the latest research in the field of application of 1D 31 nanomaterials for solid-state hydrogen storage and also discusses the mechanisms of its 32 adsorption and desorption. Despite the high publication activity the use of 1D nanomaterials for 33 hydrogen storage has not been fully studied. In the current review modern developments in the 34 field of hydrogen storage using 1D nanomaterials and composites based on them are investigated 35 in detail and their problems and future prospects are discussed.
Next Steps for the Gas Grid- Future Gas Series Part 1
Sep 2014
Publication
Policy Connect Carbon Connect and sector and Parliamentary experts have collaborated to present options for the gas grid to play a useful role in the UK’s transition to a low carbon energy system through the widespread use of low carbon gas. The report calls on Government to support the transition to a more flexible gas grid that uses various forms of gas including low carbon gases such as hydrogen and biomethane.
Far Off-shore Wind Energy-based Hydrogen Production: Technological Assessment and Market Valuation Designs
Jan 2020
Publication
This article provides a techno-economic study on coupled offshore wind farm and green hydrogen production via sea water electrolysis (OWF-H2). Offshore wind energy wind farms (OWF) and water electrolysis (WE) technologies are described. MHyWind (the tool used to perform simulations and optimisations of such plants) is presented as well as the models of the main components in the study. Three case studies focus on offshore wind farms either stand-alone or connected to the grid via export cables coupled with a battery and electrolysis systems either offshore or onshore. Exhaustive searches and optimisations performed allowed for rules of thumb to be derived on the sizing of coupled OWF-H2 plants that minimize costs of hydrogen production (LCoH2 in €/kgH2): Non-connected OWF-H2 coupled to a battery offers the lowest LCoH2 without the costs of H2 transportation when compared to cases where the WE is installed onshore and connected to the OWF. Using a simple power distribution heuristic increasing the number of installed WE allows the system to take advantage of more OWF energy but doesn’t improve plant efficiency whereas a battery always does. Finally within the scope of this study it is observed that power ratios of optimized plant architectures (leading to the lowest LCoH2) are between 0.8-0.9 for PWE/POWF and 0.3-0.35 for PBattery/POWF.
Building the Green Hydrogen Market - Current State and Outlook on Green Hydrogen Demand and Electrolyzer Manufacturing
Jul 2022
Publication
Over the past two years requirements to meet climate targets have been intensified. In addition to the tightening of the climate targets and the demand for net-zero achievement by as early as 2045 there have been discussions on implementing and realizing these goals. Hydrogen has emerged as a promising climate-neutral energy carrier. Thus over the last 1.5 years more than 25 countries have published hydrogen roadmaps. Furthermore various studies by different authorities have been released to support the development of a hydrogen economy. This paper examines published studies and hydrogen country roadmaps as part of a meta-analysis. Furthermore a market analysis of electrolyzer manufacturers is conducted. The prospected demand for green hydrogen from various studies is compared to electrolyzer manufacturing capacities and selected green hydrogen projects to identify potential market ramp-up scenarios and to evaluate if green hydrogen demand forecasts can be filled.
Effects of Compression Ratios on Combustion and Emission Characteristics of SI Engine Fueled with Hydrogen-Enriched Biogas Mixture
Aug 2022
Publication
The effects of hydrogen-enriched biogas on combustion and emissions of a dual-fuel sparkignition engine with different hydrogen concentration ratios were studied numerically. A 1-cylinder spark ignition was used to perform a numerical simulation. To reveal the influence of the compression ratios on combustion and emissions of a gaseous engine the crankshaft of the engine was modified to generate different compression ratios of 8.5 9.0 9.4 10.0 and 10.4. The biogas contained 60 and 40% methane (CH4 ) and carbon dioxide (CO2 ) respectively while the hydrogen fractions used to enrich biogas were 10 20 and 30% of the mixture by volume. The ignition timing is fixed at 350 CA◦ . The results indicate that the in-cylinder pressure combustion temperature and combustion burning speed increase gradually with increasing hydrogen concentration due to the combustion characteristics of hydrogen in blends. As increasing the compression ratio NOx emissions increase proportionally while CO2 emissions decrease gradually. Almost no combustion process occurs as operating the compression ratio below 8.5 when using pure biogas. However adding 20% of hydrogen fraction could improve the combustion process significantly even at a low compression ratio.
Assessment of Hydrogen Fuel for Rotorcraft Applications
Jun 2022
Publication
This paper presents the application of a multidisciplinary approach for the preliminary design and evaluation of the potential improvements in performance and environmental impact through the utilization of compressed (CGH2) and liquefied (LH2) hydrogen fuel for a civil tilt-rotor modelled after the NASA XV-15. The methodology deployed comprises models for rotorcraft flight dynamics engine performance flight path analysis hydrogen tank and thermal management system sizing. Trade-offs between gravimetric efficiency energy consumption fuel burn CO2 emissions and cost are quantified and compared to the kerosene-fuelled rotorcraft. The analysis carried out suggests that for these vehicle scales gravimetric efficiencies of the order of 13% and 30% can be attained for compressed and liquid hydrogen storage respectively leading to reduced range capability relative to the baseline tilt-rotor by at least 40%. At mission level it is shown that the hydrogen-fuelled configurations result in increased energy consumption by at least 12% (LH2) and 5% (CGH2) but at the same time significantly reduced life-cycle carbon emissions compared to the kerosene counterpart. Although LH2 storage at cryogenic conditions has a higher gravimetric efficiency than CGH2 (at 700 bar) it is shown that for this class of rotorcraft the latter is more energy efficient when the thermal management system for fuel pressurization and heating prior to combustion is accounted for.
Planetary Boundaries Assessment of Deep Decarbonisation Options for Building Heating in the European Union
Jan 2023
Publication
Building heating is one of the sectors for which multiple decarbonisation options exist and current geopolitical tensions provide urgency to design adequate regional policies. Heat pumps and hydrogen boilers alongside alternative district heating systems are the most promising alternatives. Although a host of city or country-level studies exist it remains controversial what role hydrogen should play for building heating in the European Union compared with electrification and how blue and green hydrogen differ in terms of costs and environmental impacts. This works assesses the optimal technology mix for staying within planetary boundaries and the influence of international cooperation and political restrictions. To perform the analysis a bottom-up optimisation model was developed incorporating life cycle assessment constraints and covering production storage transport of energy and carbon dioxide as well as grid and non-grid connected end-users of heat. It was found that a building heating system within planetary boundaries is feasible through large-scale electrification via heat pumps although at a higher cost than the current system with abatement costs of around 200 €/ton CO2. Increasing interconnector capacity or onshore wind energy is found to be vital to staying within boundaries. A strong trade-off for hydrogen was identified with blue hydrogen being cost-competitive but vastly unsustainable (when applied to heating) and green hydrogen being 2–3 times more expensive than electrification while still transgressing several planetary boundaries. The insights from this work indicate that heat pumps and renewable electricity should be prioritised over hydrogen-based heating in most cases and grid-stability and storage aspects explored further while revealing a need for policy instruments to mitigate increased costs for consumers.
Safety Compliance Verification of Fuel Cell Electric Vehicle Exhaust
Sep 2021
Publication
NREL has been developing compliance verification tools for allowable hydrogen levels prescribed by the Global Technical Regulation Number 13 (GTR-13) for hydrogen fuel cell electric vehicles (FCEVs). As per GTR-13 FCEV exhaust is to remain below 4 vol% H2 over a 3-second moving average and shall not at any time exceed 8 vol% H2 and that this requirement is to be verified with an analyzer that has a response time of less than 300 ms. To be enforceable a means to verify regulatory requirements must exist. In response to this need NREL developed a prototype analyzer that meets the GTR metrological requirements for FCEV exhaust analysis. The analyzer was tested on a commercial fuel cell electric vehicle (FCEV) under simulated driving conditions using a chassis dynamometer at the Emissions Research and Measurement Section of Environment and Climate Change Canada and FCEV exhaust was successfully profiled. Although the prototype FCEV Exhaust Analyzer met the metrological requirements of GTR-13 the stability of the hydrogen sensor was adversely impacted by condensed water in the sample gas. FCEV exhaust is at an elevated temperature and nearly saturated with water vapor. Furthermore condensed water is present in the form of droplets. Condensed water in the sample gas collected from FCEV exhaust can accumulate on the hydrogen sensing element which would not only block access of hydrogen to the sensing element but can also permanently damage the sensor electronics. In the past year the design of the gas sampling system was modified to mitigate against the transport of liquid water to the sensing element. Laboratory testing confirmed the effectiveness of the modified sampling system water removal strategy while maintaining the measurement range and response time required by GTR-13. Testing of the upgraded analyzer design on an FCEV operating on a chassis dynamometer is scheduled for the summer of 2021.
Recent Advances in Methane Pyrolysis: Turquoise Hydrogen with Solid Carbon Production
Aug 2022
Publication
Beside steam reforming methane pyrolysis is an alternative method for hydrogen production. ‘Turquoise’ hydrogen with solid carbon is formed in the pyrolysis process contrary to ‘grey’ or ‘blue’ hydrogen via steam methane reforming where waste carbon dioxide is produced. Thermal pyrolysis is conducted at higher temperatures but catalytic decomposition of methane (CDM) is a promising route for sustainable hydrogen production. CDM is generally carried out over four types of catalyst: nickel carbon noble metal and iron. The applied reactors can be fixed bed fluidized bed plasma bed or molten-metal reactors. Two main advantages of CDM are that (i) carbon-oxide free hydrogen ideal for fuel cell applications is formed and (ii) the by-product can be tailored into carbon with advanced morphology (e.g. nanofibers nanotubes). The aim of this review is to reveal the very recent research advances of the last two years achieved in the field of this promising prospective technology.
Roadmap to Achieving Sustainable Development via Green Hydrogen
Jan 2023
Publication
The conversion to renewable energy can be achieved when cities and communities start to depend on sustainable resources capable of providing for the basic needs of the community along with a reduction in the daily problems and issues that people face. These issues such as poverty hunger sanitation and economic difficulties are highlighted in the Sustainable Development Goals (SDGs) which aim to limit and eradicate these problems along with other environmental obstacles including climate change and Greenhouse Gases (GHGs). These SDGs containing 17 goals target each sector and provide propositions to solve such devastating problems. Hydrogen contributes to the targets of these sustainable developments since through its implementation in different industries the levels of GHG will drop and thus contribute to the climate change which Earth is facing. Further through the usage of such resources many job opportunities will also be developed thus enhancing the economy and lifting the status of society. This paper classifies the four different types of hydrogen and outlines the differences between them. The paper then emphasizes the importance of green hydrogen use within the shipping industry transportation and infrastructure along with economic and social development through job opportunities. Furthermore this paper provides case studies tackling green hydrogen status in the United Kingdom United States of America and European Union as well as Africa United Arab of Emirates and Asia. Finally challenges and recommendations concerning the green hydrogen industry are addressed. This paper aims to relate the use of green hydrogen to the direct and indirect goals of SDG.
Clean Energy Futures: An Australian Based Foresight Study
Aug 2022
Publication
Political decarbonisation commitments and outcompeting renewable electricity costs are disrupting energy systems. This foresight study prepares stakeholders for this dynamic reactive change by examining visions that constitute a probable plausible and possible component of future energy systems. Visions were extrapolated through an expert review of energy technologies and Australian case studies. ‘Probable–Abundant’ envisages a high penetration of solar and wind with increased value of balancing services: batteries pumped hydro and transmission. This vision is exemplified by the South Australian grid where variable and distributed sources lead generation. ‘Plausible–Traded’ envisages power and power fuel exports given hydrogen and high-voltage direct-current transmission advances reflected by public and private sector plans to leverage rich natural resources for national and intercontinental exchanges. ‘Possible–Zero’ envisages the application of carbon removal and nuclear technologies in response to the escalating challenge of deep decarbonisation. The Australian critical minerals strategy signals adaptations of high-emission industries to shifting energy resource values. These visions contribute a flexible accessible framework for diverse stakeholders to discuss uncertain energy systems changes and consider issues from new perspectives. Appraisal of preferred futures allows stakeholders to recognise observed changes as positive or negative and may lead to new planning aspirations.
Hydrogen Production from Sea Wave for Alternative Energy Vehicles for Public Transport in Trapani (Italy)
Oct 2016
Publication
The coupling of renewable energy and hydrogen technologies represents in the mid-term a very interesting way to match the tasks of increasing the reliable exploitation of wind and sea wave energy and introducing clean technologies in the transportation sector. This paper presents two different feasibility studies: the first proposes two plants based on wind and sea wave resource for the production storage and distribution of hydrogen for public transportation facilities in the West Sicily; the second applies the same approach to Pantelleria (a smaller island) including also some indications about solar resource. In both cases all buses will be equipped with fuel-cells. A first economic analysis is presented together with the assessment of the avoidable greenhouse gas emissions during the operation phase. The scenarios addressed permit to correlate the demand of urban transport to renewable resources present in the territories and to the modern technologies available for the production of hydrogen from renewable energies. The study focuses on the possibility of tapping the renewable energy potential (wind and sea wave) for the hydrogen production by electrolysis. The use of hydrogen would significantly reduce emissions of particulate matter and greenhouse gases in urban districts under analysis. The procedures applied in the present article as well as the main equations used are the result of previous applications made in different technical fields that show a good replicability.
Cost and Capacity Requirements of Electrification or Renewable Gas Transition Options that Decarbonize Building Heating in Metro Vancouver, British Columbia
Jun 2022
Publication
Northern countries face a unique challenge in decarbonizing heating demands. This study compares two pathways to reduce carbon emissions from building heating by (1) replacing natural gas heaters with electric heat pumps or (2) replacing natural gas with renewable gas. Optimal annual system cost and capacity requirements for Metro Vancouver Canada are assessed for each pathway under nine scenarios. Results show that either pathway can be lower cost but the range of costs is more narrow for the renewable gas pathway. System cost is sensitive to heat demand with colder temperatures favouring the renewable gas pathway and milder temperatures favouring the electrification pathway. These results highlight the need for a better understanding of heating profiles and associated energy system requirements.
Estimation of Liquid Hydrogen Fuels in Aviation
Sep 2022
Publication
As the demand for alternative fuels to solve environmental problems increases worldwide due to the greenhouse gas problem this study predicted the demand for liquid hydrogen fuel in aviation to achieve ‘zero‐emission flight’. The liquid hydrogen fuel models of an aircraft and all aviation sectors were produced based on the prediction of aviation fleet growth through the classification of currently operated aircraft. Using these models the required amount of liquid hydrogen fuel and the total cost of liquid hydrogen were also calculated when various environmental regulations were satisfied. As a result it was found to be necessary to convert approximately 66% to 100% of all aircraft from existing aircraft to liquid hydrogen aircraft in 2050 according to regulations. The annual liquid hydrogen cost was 4.7–5.2 times higher in the beginning due to the high production cost but after 2030 it will be maintained at almost the same price and it was found that the cost was rather low compared to jet fuel.
Policy and Pricing Barriers to Steel Industry Decarbonisation: A UK Case Study
Aug 2022
Publication
Global climate targets have highlighted the need for a whole-systems approach to decarbonisation one that includes targeted national policy and industry specific change. Situated within this context this research examines policy and pricing barriers to decarbonisation of the UK steel industry. Here the techno-economic modelling of UK green steelmaking provides a technical contribution to analysis of pricing barriers and policy solutions to these barriers in the UK specifically but also to the broader industrial decarbonisation literature. Estimated costs and associated emissions projections reveal relevant opportunities for UK steel in contributing to national climate and emissions targets. Modelling demonstrates that green steelmaking options have been put at price disadvantages compared to emissions-intensive incumbents and that fossil-free hydrogen-based steel-making has lower emissions and lower levelised costs than carbon capture and storage options including top gas recycling blast furnace (TGR-BF) with CCS and HIsarna smelter with CCS. Two primary policy recommendations are made: the removal of carbon pricing discrepancies and reductions in industrial electricity prices that would level the playing field for green steel producers in the UK. The research also provides relevant policy considerations for the international community in other industrial decarbonisation efforts and the policies that must accompany these decarbonisation choices.
Impacts of Greenhouse Gas Neutrality Strategies on Gas Infrastructure and Costs: Implications from Case Studies Based on French and German GHG-neutral Scenarios
Sep 2022
Publication
The European Union’s target to reach greenhouse gas neutrality by 2050 calls for a sharp decrease in the consumption of natural gas. This study assesses impacts of greenhouse gas neutrality on the gas system taking France and Germany as two case studies which illustrate a wide range of potential developments within the European Union. Based on a review of French and German GHG-neutral scenarios it explores impacts on gas infrastructure and estimates the changes in end-user methane price considering a business-as-usual and an optimised infrastructure pathway. Our results show that gas supply and demand radically change by mid-century across various scenarios. Moreover the analysis suggests that deep transformations of the gas infrastructure are required and that according to the existing pricing mechanisms the end-user price of methane will increase driven by the switch to low-carbon gases and intensified by infrastructure costs.
Review of Energy Challenges and Horizons of Hydrogen City Buses
Sep 2022
Publication
This paper discusses fuel cell electric vehicles and more specifically the challenges and development of hydrogen-fueled buses for people accessing this transportation in cities and urban environments. The study reveals the main innovations and challenges in the field of hydrogen bus deployment and identifies the most common approaches and errors in this area by extracting and critically appraising data from sources important to the energy perspective. Three aspects of the development and horizons of fuel cell electric buses are reviewed namely energy consumption energy efficiency and energy production. The first is associated with the need to ensure a useful and sustainable climate-neutral public transport. Herewith the properties of the hydrogen supply of electric buses and their benefits over gasoline gas and battery vehicles are discussed. The efficiency issue is related to the ratio of consumed and produced fuel in view of energy losses. Four types of engines–gasoline diesel gas and electrical–are evaluated in terms of well-to-wheel tank-to-wheel delivery and storage losses. The third problem arises from the production operating and disposal constraints of the society at the present juncture. Several future-oriented initiatives of the European Commission separate countries and companies are described. The study shows that the effectiveness of the FCEBs depends strongly on the energy generation used to produce hydrogen. In the countries where the renewables are the main energy sources the FCEBs are effective. In other regions they are not effective enough yet although the future horizons are quite broad.
Recent Development of Hydrogen and Fuel Cell Technologies: A Review
Aug 2021
Publication
Hydrogen has emerged as a new energy vector beyond its usual role as an industrial feedstock primarily for the production of ammonia methanol and petroleum refining. In addition to environmental sustainability issues energy-scarce developed countries such as Japan and Korea are also facing an energy security issue and hydrogen or hydrogen carriers such as ammonia and methylcyclohexane seem to be options to address these long-term energy availability issues. China has been eagerly developing renewable energy and hydrogen infrastructure to meet their sustainability goals and the growing energy demand. In this review we focus on hydrogen electrification through proton-exchange membrane fuel cells (PEMFCs) which are widely believed to be commercially suitable for automotive applications particularly for vehicles requiring minimal hydrogen infrastructure support such as fleets of taxies buses and logistic vehicles. This review covers all the key components of PEMFCs thermal and water management and related characterization techniques. A special consideration of PEMFCs in automotive applications is the highlight of this work leading to the infrastructure development for hydrogen generation storage and transportation. Furthermore national strategies toward the use of hydrogen are reviewed thereby setting the rationale for the hydrogen economy.
Cost, Footprint, and Reliability Implications of Deploying Hydrogen in Off-grid Electric Vehicle Charging Stations: A GIS-assisted Study for Riyadh, Saudi Arabia
Jul 2022
Publication
For the first time we quantify cost footprint and reliability implications of deploying hydrogen-based generation in off-grid electric vehicle charging stations (CS) using an optimization model coupled with a geographic information system (GIS) analysis for the city of Riyadh Saudi Arabia. We also account for the challenges associated with wind energy deployment as a candidate generation technology within city centers. The analysis was restricted to carbon-free technologies: photovoltaics (PV) wind battery and hydrogen fuel-cells. At current prevailing technology costs hydrogen can reduce the required footprint of off-grid CSs by 25% at a small incremental cost increase without impacting the charging reliability. By 2030 however hydrogen will simultaneously provide the footprint and cost advantages. If we allow as little as 5% of the annual load to be unmet the required footprint of the CS decreases by 60%. The levelized cost of energy values for the CS by 2030 can range between 0.13 and 0.20 $/kWh depending on learning-curve assumptions. The footprints calculated are then mapped to five land parcel categories in Riyadh: gas station hospital mall school and university. Incorporating hydrogen in CS design increases the number of parcels that could accommodate CSs by 15e45% via reducing the required PV array (i.e. footprint).
Charting a Course for Decarbonizing Maritime Transport
Apr 2021
Publication
As the backbone of global trade international maritime transport connects the world and facilitates economic growth and development especially in developing countries. However producing around three percent of global greenhouse gas (GHG) emissions and emitting around 15 percent of some of the world’s major air pollutants shipping is a major contributor to climate change and air pollution. To mitigate its negative environmental impact shipping needs to abandon fossil-based bunker fuels and turn to zero-carbon alternatives. This report the “Summary for Policymakers and Industry” summarizes recent World Bank research on decarbonizing the maritime sector. The analysis identifies green ammonia and hydrogen as the most promising zero-carbon bunker fuels within the maritime industry at present. These fuels strike the most advantageous balance of favorable features relating to their lifecycle GHG emissions broader environmental factors scalability economics and technical and safety implications. The analysis also identifies that LNG will likely only play a limited role in shipping’s energy transition due to concerns over methane slip and stranded assets. Crucially the research reveals that decarbonizing maritime transport offers unique business and development opportunities for developing countries. Developing countries with large renewable energy resources could take advantage of the new and emerging future zero-carbon bunker fuel market estimated at over $1 trillion to establish new export markets while also modernizing their own domestic energy and industrial infrastructure. However strategic policy interventions are needed to hasten the sector’s energy transition.
Hydrogen Deep Ocean Link: A Global Sustainable Interconnected Energy Grid<br/><br/><br/>
Mar 2022
Publication
The world is undergoing a substantial energy transition with an increasing share of intermittent sources of energy on the grid which is increasing the challenges to operate the power grid reliably. An option that has been receiving much focus after the COVID pandemic is the development of a hydrogen economy. Challenges for a hydrogen economy are the high investment costs involved in compression storage and long-distance transportation. This paper analyses an innovative proposal for the creation of hydrogen ocean links. It intends to fill existing gaps in the creation of a hydrogen economy with the increase in flexibility and viability for hydrogen production consumption compression storage and transportation. The main concept behind the proposals presented in this paper consists of using the fact that the pressure in the deep sea is very high which allows a thin and cheap HDPE tank to store and transport large amounts of pressurized hydrogen in the deep sea. This is performed by replacing seawater with pressurized hydrogen and maintaining the pressure in the pipes similar to the outside pressure. Hydrogen Deep Ocean Link has the potential of increasing the interconnectivity of different regional energy grids into a global sustainable interconnected energy system.
Hydrogen Production Technologies: Current State and Future Developments
Mar 2013
Publication
Hydrogen (H2) is currently used mainly in the chemical industry for the production of ammonia and methanol. Nevertheless in the near future hydrogen is expected to become a significant fuel that will largely contribute to the quality of atmospheric air. Hydrogen as a chemical element (H) is the most widespread one on the earth and as molecular dihydrogen (H2) can be obtained from a number of sources both renewable and nonrenewable by various processes. Hydrogen global production has so far been dominated by fossil fuels with the most significant contemporary technologies being the steam reforming of hydrocarbons (e.g. natural gas). Pure hydrogen is also produced by electrolysis of water an energy demanding process. This work reviews the current technologies used for hydrogen (H2) production from both fossil and renewable biomass resources including reforming (steam partial oxidation autothermal plasma and aqueous phase) and pyrolysis. In addition other methods for generating hydrogen (e.g. electrolysis of water) and purification methods such as desulfurization and water-gas shift reactions are discussed.
Progress and Challenges in Multi-stack Fuel Cell System for High Power Applications: Architecture and Energy Management
Jan 2023
Publication
With the development of fuel cells multi-stack fuel cell system (MFCS) for high power application has shown tremendous development potential owing to their obvious advantages including high efficiency durability reliability and pollution-free. Accordingly the state-of-the-art of MFCS is summarized and analyzed to advance its research. Firstly the MFCS applications are presented in high-power scenarios especially in transportation applications. Then to further investigate the MFCS MFCS including hydrogen and air subsystem thermal and water subsystem multi-stack architecture and prognostics and health monitoring are reviewed. It is noted that prognostics and health monitoring are investigated rarely in MFCS compared with previous research. In addition the efficiency and durability of MFCS are not only related to the application field and design principle but also the energy management strategy (EMS). The reason is that the EMS is crucial for lifespan cost and efficiency in the multi-stack fuel cell system. Finally the challenge and development potential of MFCS is proposed to provide insights and guidelines for future research.
Going Global: An Update on Hydrogen Valleys and their Role in the New Hydrogen Economy
Sep 2022
Publication
Hydrogen is a key cornerstone of the green transformation of the global economy and a major lever to diversify energy supplies and accelerate the clean energy transition. Hydrogen will be essential to replace natural gas coal and oil in hard-to-decarbonise sectors in industry mobility and energy. Hydrogen Valleys will become an important cornerstone in producing importing transporting and using clean hydrogen in Europe.
Low-carbon Planning for Park-level Integrated Energy System Considering Optimal Construction Time Sequence and Hydrogen Energy Facility
Apr 2023
Publication
With the increasing concern about global energy crisis and environmental pollution the integrated renewable energy system has gradually become one of the most important ways to achieve energy transition. In the context of the rapid development of hydrogen energy industry the proportion of hydrogen energy in the energy system has gradually increased. The conversion between various energy sources has also become more complicated which poses challenges to the planning and construction of park-level integrated energy systems (PIES). To solve this problem we propose a bi-level planning model for an integrated energy system with hydrogen energy considering multi-stage investment and carbon trading mechanism. First the mathematical models of each energy source and energy storage in the park are established respectively and the independent operation of the equipment is analyzed. Second considering the operation state of multi-energy coordination a bi-level planning optimization model is established. The upper level is the capacity configuration model considering the variable installation time of energy facilities while the lower level is the operation optimization model considering several typical daily operations. Third considering the coupling relationship between upper and lower models the bi-level model is transformed into a solvable single-level mixed integer linear programming (MILP) model by using Karush–Kuhn–Tucker (KKT) condition and big-M method. Finally the proposed model and solution methods are verified by comprehensive case studies. Simulation results show that the proposed model can reduce the operational cost and carbon emission of PIES in the planning horizon and provide insights for the multi-stage investment of PIES.
Analysis of Performance, Emissions, and Lubrication in a Spark-ignition Engine Fueled with Hydrogen Gas Mixtures
Oct 2022
Publication
Hydrogen is one of the main alternative fuels with the greatest potential to replace fossil fuels due to its renewable and environmentally friendly nature. Due to this the present investigation aims to evaluate the combustion characteristics performance parameters emissions and variations in the characteristics of the lubricating oil. The investigation was conducted in a spark-ignition engine fueled by gasoline and hydrogen gas. Four engine load conditions (25% 50% 75% and 100%) and three hydrogen gas mass concentration conditions (3% 6% and 9%) were defined for the study. The investigation results allowed to demonstrate that the injection of hydrogen gas in the gasoline engine causes an increase of 3.2% and 4.0% in the maximum values of combustion pressure and heat release rates. Additionally hydrogen causes a 2.9% increase in engine BTE. Hydrogen's more efficient combustion process allowed for reducing CO HC and smoke opacity emissions. However hydrogen gas causes an additional increase of 14.5% and 30.4% in reducing the kinematic viscosity and the total base number of the lubricating oil. In addition there was evidence of an increase in the concentration of wear debris such as Fe and Cu which implies higher rates of wear in the engine's internal components.
Powering Europe with North Sea Offshore Wind: The Impact of Hydrogen Investments on Grid Infrastructure and Power Prices
Oct 2022
Publication
Hydrogen will be a central cross-sectoral energy carrier in the decarbonization of the European energy system. This paper investigates how a large-scale deployment of green hydrogen production affects the investments in transmission and generation towards 2060 analyzes the North Sea area with the main offshore wind projects and assesses the development of an offshore energy hub. Results indicate that the hydrogen deployment has a tremendous impact on the grid development in Europe and in the North Sea. Findings indicate that total power generation capacity increases around 50%. The offshore energy hub acts mainly as a power transmission asset leads to a reduction in total generation capacity and is central to unlock the offshore wind potential in the North Sea. The effect of hydrogen deployment on power prices is multifaceted. In regions where power prices have typically been lower than elsewhere in Europe it is observed that hydrogen increases the power price considerably. However as hydrogen flexibility relieves stress in high-demand periods for the grid power prices decrease in average for some countries. This suggests that while the deployment of green hydrogen will lead to a significant increase in power demand power prices will not necessarily experience a large increase.
A Review of Hydrogen/rock/brine Interaction: Implications for Hydrogen Geo-storage
Dec 2022
Publication
Hydrogen (H2) is currently considered a clean fuel to decrease anthropogenic greenhouse gas emissions and will play a vital role in climate change mitigation. Nevertheless one of the primary challenges of achieving a complete H2 economy is the large-scale storage of H2 which is unsafe on the surface because H2 is highly compressible volatile and flammable. Hydrogen storage in geological formations could be a potential solution to this problem because of the abundance of such formations and their high storage capacities. Wettability plays a critical role in the displacement of formation water and determines the containment safety storage capacity and amount of trapped H2 (or recovery factor). However no comprehensive review article has been published explaining H2 wettability in geological conditions. Therefore this review focuses on the influence of various parameters such as salinity temperature pressure surface roughness and formation type on wettability and consequently H2 storage. Significant gaps exist in the literature on understanding the effect of organic material on H2 storage capacity. Thus this review summarizes recent advances in rock/H2/brine systems containing organic material in various geological reservoirs. The paper also presents influential parameters affecting H2 storage capacity and containment safety including liquid–gas interfacial tension rock–fluid interfacial tension and adsorption. The paper aims to provide the scientific community with an expert opinion to understand the challenges of H2 storage and identify storage solutions. In addition the essential differences between underground H2 storage (UHS) natural gas storage and carbon dioxide geological storage are discussed and the direction of future research is presented. Therefore this review promotes thorough knowledge of UHS provides guidance on operating large-scale UHS projects encourages climate engineers to focus more on UHS research and provides an overview of advanced technology. This review also inspires researchers in the field of climate change to give more credit to UHS studies.
Spatially-resolved Analysis of the Challenges and Opportunities of Power-to-Gas (PtG) in Baden-Württemberg until 2040
Mar 2017
Publication
The increasing penetration of renewable energies will make new storage technologies indispensable in the future. Power-to-Gas (PtG) is one long-term storage technology that exploits the existing gas infrastructure. However this technology faces technical economic environmental challenges and questions. This contribution presents the final results of a large research project which attempted to address and provide answers to some of these questions for Baden-Württemberg (south west Germany). Three energy scenarios out to 2040 were defined one oriented towards the Integrated Energy and Climate Protection Concept of the Federal State Government and two alternatives. Timely-resolved load profiles for gas and electricity for 2015 2020 2030 and 2040 have been generated at the level of individual municipalities. The profiles include residential and industrial electrical load gas required for heating (conventional and current-controlled CHP) as well as gas and electricity demand for mobility. The installation of rooftop PV-plants and wind power plants is projected based on bottom up cost-potential analyses which account for some social acceptance barriers. Residential load profiles are derived for each municipality. In times with negative residual load the PtG technology could be used to convert electricity into hydrogen or methane. The detailed analysis of four structurally-different model regions delivered quite different results. While in large cities no negative residual load is likely due to the continuously high demand and strong networks rural areas with high potentials for renewables could encounter several thousand hours of negative residual load. A cost-effective operation of PtG would only be possible under favorable conditions including high full load hours a strong reduction in costs and a technical improvement of efficiency. Whilst these conditions are not expected to appear in the short to mid-term but may occur in the long term in energy systems with very high shares of renewable energy sources
Stoichiometric Equilibrium Model based Assessment of Hydrogen Generation through Biomass Gasification
Sep 2016
Publication
Hydrogen produced from renewable energy sources is clean and sustainable. Biomass gasification has a significant role in the context of hydrogen generation from biomass. Assessment of the performance of biomass gasification process regarding the product gas yield and composition can be performed using mathematical models. Among the different mathematical models thermodynamic equilibrium models are simple and useful tools for the first estimate and preliminary comparison and assessment of gasification process. A stoichiometric thermodynamic equilibrium model is developed here and its performance is validated for steam gasification and air-steam gasification. The model is then used to assess the feasibility of different biomass feedstock for gasification based on hydrogen yield and lower heating value.
Alternative and Innovative Solid Oxide Electrolysis Cell Materials: A Short Review
Jun 2021
Publication
Solid oxide electrolysis cell is the leading technology for production of green hydrogen by high temperature electrolysis. However optimization of existing reference materials constituting the cell and development of innovative materials remain critical for solid oxide electrolysis cell. In particular they are key to reach performance and durability targets compatible with a commercialization for the three main markets identified as follows: large-scale H2 production Power-to-X and Power-to-Power. This short review summarizes the latest progress in research and development of alternative and innovative materials for solid oxide electrolysis cells with a main focus on cathode-supported cell materials. A brief description of the layers constituting the solid oxide electrolysis cell is provided with the associated current state-of-the-art materials. A further emphasis on the most promising alternative and innovative materials for each layer follows based on the major aspects from an industrial perspective to reach a competitive hydrogen production cost for the main targeted markets: performance durability scaling up/manufacturing ability and operational flexibility.
Hybrid PEM Fuel Cell Power Plants Fuelled by Hydrogen for Improving Sustainability in Shipping: State of the Art and Review on Active Projects
Feb 2023
Publication
The interest in hybrid polymer electrolyte membrane fuel cells (PEMFC) fuelled by hydrogen in shipping has seen an unprecedented growth in the last years as it could allow zero-emission navigation. However technical safety and regulatory barriers in PEMFC ship design and operation are hampering the use of such systems on a large scale. While several studies analyse these aspects a comprehensive and up-to-date overview on hydrogen PEMFCs for shipping is missing. Starting from the survey of past/ongoing projects on FCs in shipping this paper presents an extensive review on maritime hydrogen PEMFCs outlining the state of the art and future trends for hydrogen storage and bunkering powertrain and regulations. In addition to the need for a clear regulatory framework future studies should investigate the development of an efficient fuel supply chain and bunkering facilities ashore. As for the onboard power system health-conscious energy management low-temperature heat recovery and advancements in fuel processing have emerged as hot research topics.
Economic Feasibility of Green Hydrogen in Providing Flexibility to Medium-voltage Distribution Grids in the Presence of Local-heat Systems
Nov 2022
Publication
The recent strong increase in the penetration of renewable energy sources (RESs) in medium-voltage distribution grids (MVDNs) has raised the need for congestion management in such grids as they were not designed for this new condition. This paper examines to what extent producing green hydrogen through electrolyzers can profitably contribute to congestion alleviation in MVDNs in the presence of high amounts of RES as well as flexible consumers of electricity and a local heat system. To address this issue an incentive-based method for improving flexibility in MVDNs is used which is based on a single-leader–multiple-followers game formulated by bi-level mathematical programming. At the upper level the distribution system operator who is the leader of this game determines dynamic prices as incentives at each node based on the levels of generation and load. Next at the lower level providers of flexibility including producers using electrolyzers price-responsive power consumers heat consumers as well as heat producers respond to these incentives by reshaping their output and consumption patterns. The model is applied to a region in the North of The Netherlands. The obtained results demonstrate that converting power to hydrogen can be an economically efficient way to reduce congestion in MVDNs when there is a high amount of RES. However the economic value of electrolyzers as providers of flexibility to MVDNs decreases when more other options for flexibility provision exist.
Solid Air Hydrogen Liquefaction, the Missing Link of the Hydrogen Economy
Mar 2023
Publication
The most challenging aspect of developing a green hydrogen economy is long-distance oceanic transportation. Hydrogen liquefaction is a transportation alternative. However the cost and energy consumption for liquefaction is currently prohibitively high creating a major barrier to hydrogen supply chains. This paper proposes using solid nitrogen or oxygen as a medium for recycling cold energy across the hydrogen liquefaction supply chain. When a liquid hydrogen (LH2) carrier reaches its destination the regasification process of the hydrogen produces solid nitrogen or oxygen. The solid nitrogen or oxygen is then transported in the LH2 carrier back to the hydrogen liquefaction facility and used to reduce the energy consumption cooling gaseous hydrogen. As a result the energy required to liquefy hydrogen can be reduced by 25.4% using N2 and 27.3% using O2. Solid air hydrogen liquefaction (SAHL) can be the missing link for implementing a global hydrogen economy.
Assessment of Hydrogen Delivery Options: Feasibility of Transport of Green Hydrogen within Europe
Oct 2022
Publication
The RePowerEU plan [1] and the European Hydrogen Strategy [2] recognise the important role that the transport of hydrogen will play in enabling the penetration of renewable hydrogen in Europe. To implement the European Hydrogen Strategy it is important to understand whether the transport of hydrogen is cost effective or whether hydrogen should be produced where it is used. If transporting hydrogen makes sense a second open question is how long the transport route should be for the cost of the hydrogen to still be competitive with locally produced hydrogen. JRC has performed a comprehensive study regarding the transport of hydrogen. To investigate which renewable hydrogen delivery pathways are favourable in terms of energy demand and costs JRC has developed a database and an analytical tool to assess each step of the pathways and used it to assess two case studies. The study reveals that there is no single optimal hydrogen delivery solution across every transport scenario. The most cost effective way to deliver renewable hydrogen depends on distance amount final use and whether there is infrastructure already available. For distances compatible with the European territory compressed and liquefied hydrogen solutions and especially compressed hydrogen pipelines offer lower costs than chemical carriers do. The repurposing of existing natural gas pipelines for hydrogen use is expected to significantly lower the delivery cost making the pipeline option even more competitive in the future. By contrast chemical carriers become more competitive the longer the delivery distance (due to their lower transport costs) and open up import options from suppliers located for example in Chile or Australia.
Review of the Effects of Fossil Fuels and the Need for a Hydrogen Fuel Cell Policy in Malaysia
Feb 2023
Publication
The world has relied on fossil fuel energy for a long time producing many adverse effects. Long-term fossil fuel dependency has increased carbon emissions and accelerated climate change. In addition fossil fuels are also depleting and will soon be very costly. Moreover the expensive national electricity grid has yet to reach rural areas and will be cut off in inundation areas. As such alternative and carbon-free hydrogen fuel cell energy is highly recommended as it solves these problems. The reviews find that (i) compared to renewable energy such as solar biomass and hydropower a fuel cell does not require expensive transmission through an energy grid and is carbon-free and hence it is a faster agent to decelerate climate change; (ii) fuel cell technologies have reached an optimum level due to the high-efficiency production of energy and they are environmentally friendly; (iii) the absence of a policy on hydrogen fuel cells will hinder investment from private companies as they are not adequately regulated. It is thus recommended that countries embarking on hydrogen fuel cell development have a specific policy in place to allow the government to fund and regulate hydrogen fuel cells in the energy generation mix. This is essential as it provides the basis for alternative energy governance development and management of a country.
No more items...