- Home
- A-Z Publications
- Publications
Publications
Economic Assessment of Hydrogen Production in a Renewable Energy Community in Italy
Feb 2023
Publication
Renewable Energy Community (REC) is a new paradigm in European Union to produce transform share and sell renewables at a local consumer level also via e-fuel (i.e. hydrogen). This work investigates the economic feasibility of a hydrogen Power-to-Gas (PtG) system realized inside a REC using only excess renewable electricity not consumed by REC itself. A single centralized photovoltaic (PV) plant is directly connected to an electrolyser; a hydrogen compressor and two hydrogen storages at low and high pressure complete the PtG system. A scenario of a REC composed by 450 residential electric users (around 1000 people) has been analysed coupled with described PtG considering eight different sizes of PV plant. In the study Italian subsidies to REC shared energy are evaluated as incentives to hydrogen production. An optimal size of PtG components for each PV size is investigated at the limit of economical sustainability evaluating net present value (NPV) positive and near zero. Results show that for the considered REC it is possible to produce and sell up to around 3 tons per year of green hydrogen at most to the same lowest selling price declared currently in the Italian market (5 €/kg).
The Role of Hydrogen and H2 Mobility on the Green Transition of Islands: The Case of Anafi (Greece)
Apr 2023
Publication
The holistic green energy transition of non-interconnected islands faces several challenges if all the energy sectors are included i.e. electricity heating/cooling and mobility. On the one hand the penetration of renewable energy systems (RES) is limited due to design restrictions with respect to the peak demand. On the other hand energy-intensive heating and mobility sectors pose significant challenges and may be difficult to electrify. The focus of this study is on implementing a hybrid Wind–PV system on the non-interconnected island of Anafi (Greece) that utilizes surplus renewable energy production for both building heating through heat pumps and hydrogen generation. This comprehensive study aims to achieve a holistic green transition by addressing all three main sectors—electricity heating and transportation. The produced hydrogen is utilized to address the energy needs of the mobility sector (H2 mobility) focusing primarily on public transportation vehicles (buses) and secondarily on private vehicles. The overall RES production was modeled to be 91724 MWh with a RES penetration of 84.68%. More than 40% of the produced electricity from RES was in the form of excess electricity that could be utilized for hydrogen generation. The modeled generated hydrogen was simulated to be more than 40 kg H2/day which could cover all four bus routes of the island and approximately 200 cars for moderate use i.e. traveled distances of less than 25 km/day for each vehicle.
Pre-cooling Systems for Hydrogen Fueling Stations: Techno-economic Analysis for Scaled Enactment
Mar 2023
Publication
Hydrogen fueling standards stipulates a sustainable cooling system technically and economically. Accordingly the interior surface temperature of the on-board H2 storage tank in fuel cell electric vehicles must not exceed the maximum specified limit (358.15 K) and the fueling rate must be ≤ 42.86 sec / kg-H2 with T40 dispenser at 70 MPa. In this context H2 refueling stations often employ double-tube and block heat exchangers for heat transfer. This study examines the H2 pre-cooling system for various loads and provides a comparative techno-economic analysis of double tube heat exchangers (DTHE) and microchannel heat exchangers (MCHE) under stipulated technical operational and outlet gas standards. For this purpose thermal and hydraulic performances were simulated using ANSYS-CFX. Technical and cost models utilize manufacturer specifications and literature-based technical and economic characteristics to derive the minimum sustainable price defined as the price to sustain the product. The results showed that the MCHE outperformed the DTHE for setups in mass manufacturing improved effective heat transfer area and predicted long term unit cost. The annual quantitative output affects manufacturing expenses and profit margins substantially. With high production rates it is expected that the unit cost of the MCHE will decrease by up to 74%. In switching from DTHE to MCHE general material requirements decreased by ~60% with scrap waste savings of ~45% reflecting an appreciable footprint reduction.
Decarbonisation Options for the Cement Industry
Jan 2023
Publication
The cement industry is a building block of modern society and currently responsible for around 7% of global and 4% of EU CO2 emissions. While facing global competition and a challenging business environment the EU cement sector needs to decarbonise its production processes to comply with the EU’s ambitious 2030 and 2050 climate targets. This report provides a snapshot of the current cement production landscape and discusses future technologies that are being explored by the sector to decarbonise its processes describing the transformational change the industry faces. This report compiles the current projects and announcements to deploy breakthrough technologies which do require high capital investments. However with 2050 just one investment cycle away the sector needs to commercialise new low-CO2 technologies this decade to avoid the risk of stranded assets. As Portland cement production is highly CO2-intensive and EU plants are already operating close to optimum efficiency the industry appears to be focussing on carbon capture storage and utilisation technologies - while breakthroughs in alternative chemistries are still being explored - to reduce emissions. While the EU has played an important role in supporting early stage R&D for these technologies it is now striving to fill the funding gap for the commercialisation of breakthrough technologies. The recent momentum towards CO2-free cement provides the EU with the opportunity to be a frontrunner in creating markets for green cement.
Hydrogen Net Zero Investment Roadmap: Leading the Way to Net Zero
Apr 2023
Publication
This net zero investment roadmap summarises government’s hydrogen policies and available investment opportunities.
Recent Advancements of Polymeric Membranes in Anion Exchange Membrane Water Electrolyzer (AEMWE): A Critical Review
Apr 2023
Publication
The formation of green hydrogen from water electrolysis is one of the supreme methodologies for understanding the well-organized consumption of sporadic renewable energies and the carbon-free future. Among the different electrolysis techniques the evolving anion exchange membrane water electrolysis (AEMWE) shows the utmost promise for manufacturing green hydrogen in an inexpensive way. In the present review we establish the most current and noteworthy achievements of AEMWE which include the advancements in increasing the ionic conductivity and understanding the mechanism of degradation of AEM and the most important topics regarding the designing of the electrocatalyst. The crucial issues that affect the AEMWE behavior are highlighted and future constraints and openings are also discussed. Furthermore this review article provides the appreciated strategies for producing extremely dynamic and robust electrocatalysts and evolving the construction of AEMWE equipment.
Socio-economic Aspects of Hydrogen Energy: An Integrative Review
Apr 2023
Publication
Hydrogen can be recognized as the most plausible fuel for promoting a green environment. Worldwide developed and developing countries have established their hydrogen research investment and policy frameworks. This analysis of 610 peer-reviewed journal articles from the last 50 years provides quantitative and impartial insight into the hydrogen economy. By 2030 academics and business professionals believe that hydrogen will complement other renewable energy (RE) sources in the energy revolution. This study conducts an integrative review by employing software such as Bibliometrix R-tool and VOSviewer on socio-economic consequences of hydrogen energy literature derived from the Scopus database. We observed that most research focuses on multidisciplinary concerns such as generation storage transportation application feasibility and policy development. We also present the conceptual framework derived from in-depth literature analysis as well as the interlinkage of concepts themes and aggregate dimensions to highlight research hotspots and emerging patterns. In the future factors such as green hydrogen generation hydrogen permeation and leakage management efficient storage risk assessment studies blending and techno-economic feasibility shall play a critical role in the socio-economic aspects of hydrogen energy research.
Fuelling the Transition Podcast: Building the UK Hydrogen Backbone
Feb 2022
Publication
In this episode Tony Green Hydrogen Director at National Grid and John Williams Head of Hydrogen Expertise Cluster at AFRYManagement Consulting join us to discuss the challenges in implementing hydrogen. Tony is involved in two exciting hydrogen projects: FutureGrid andProject Union. FutureGrid involves building a facility to create a representative whole-network to trial hydrogen. Project Union will develop a UK hydrogen ‘backbone’ joining together clusters around the country potentially creating a 2000km hydrogen network.
In addition to discussing these projects this episode will explore the following issues:
♦ Managing the transition and challenges in repurposing natural gas pipelines to hydrogen
♦ The potential for blending and de-blending hydrogen
♦ The impact of hydrogen on National Grid’s regulatory approach
♦ How to take the first steps towards a hydrogen wholesale market"
The podcast can be found on their website.
In addition to discussing these projects this episode will explore the following issues:
♦ Managing the transition and challenges in repurposing natural gas pipelines to hydrogen
♦ The potential for blending and de-blending hydrogen
♦ The impact of hydrogen on National Grid’s regulatory approach
♦ How to take the first steps towards a hydrogen wholesale market"
The podcast can be found on their website.
The Role of Hydrogen for Deep Decarbonization of Energy Systems: A Chilean Case Study
Mar 2023
Publication
In this paper we implement a long-term multi-sectoral energy planning model to evaluate the role of green hydrogen in the energy mix of Chile a country with a high renewable potential under stringent emission reduction objectives in 2050. Our results show that green hydrogen is a cost-effective and environmentally friendly route especially for hard-to-abate sectors such as interprovincial and freight transport. They also suggest a strong synergy of hydrogen with electricity generation from renewable sources. Our numerical simulations show that Chile should (i) start immediately to develop hydrogen production through electrolyzers all along the country (ii) keep investing in wind and solar generation capacities ensuring a low cost hydrogen production and reinforce the power transmission grid to allow nodal hydrogen production (iii) foster the use of electric mobility for cars and local buses and of hydrogen for long-haul trucks and interprovincial buses and (iv) develop seasonal hydrogen storage and hydrogen cells to be exploited for electricity supply especially for the most stringent emission reduction objectives.
Comparative Study on Ammonia and Liquid Hydrogen Transportation Costs in Comparison to LNG
Feb 2023
Publication
Since ammonia and liquid hydrogen are the optional future shipping cargo and fuels the applicability was crucial using the current technologies and expectations. Existing studies for the economic feasibility of the energies had limitations: empirical evaluation with assumptions and insufficiency related to causality. A distorted estimation can result in failure of decision-making or policy in terms of future energy. The present study aimed to evaluate the transportation costs of future energy including ammonia and liquid hydrogen in comparison to LNG for overcoming the limitations. An integrated mathematical model was applied to the investigation for economic feasibility. The transportation costs of the chosen energies were evaluated for the given transportation plan considering key factors: ship speed BOR and transportation plan. The transportation costs at the design speed for LNG and liquid hydrogen were approximately 55 % and 80 % of that for ammonia without considering the social cost due to CO2 emission. Although ammonia was the most expensive energy for transportation ammonia could be an effective alternative due to insensitivity to the transportation plan. If the social cost was taken into account liquid hydrogen already gained competitiveness in comparison to LNG. The advantage of liquid hydrogen was maximized for higher speed where more BOG was injected into main engines.
Performance and Weight Parameters Calculation for Hydrogen and Battery-Powered Aircraft Concepts
May 2023
Publication
This article describes the creation of a program that would be useful for calculating mathematical models in order to estimate the weight of aircraft components. Using several parameters it can calculate other parameters of civil transport aircraft powered by batteries or fuel cells. The main goals of this research were to add the missing dimensions and parameters to the aircraft database create a simple but effective program for creating mathematical models and use this program to find technological barriers to battery or hydrogen fuel-cell-powered aircraft concepts. The article introduces the reader to the problem of calculating OEW (operating empty weight) using Breguet– Leduc equations. A calculation model was created for OEW calculation. The result of this work is the verification of a mathematical model for battery-powered electric aircraft of the CS-23 (European Aviation Safety Agency Certification Specification for Normal Utility Aerobatic and Commuter Category Aeroplanes) category by comparing the program’s outputs with real aircraft. Subsequently the results of mathematical models are shown in graphs that specify the space of possible concepts of aircraft powered by batteries or fuel cells sorted by the number of passengers and the range of the aircraft delimited by two or three criteria respectively.
Hydrogenerally - Episode 6: Waste to Hydrogen
Nov 2022
Publication
In this sixth episode Steffan Eldred Hydrogen Innovation Network Knowledge Transfer Manager and Debra Jones Chemistry Knowledge Transfer Manager from Innovate UK KTN discuss why converting waste to hydrogen is so important and explore the hydrogen transition opportunities and challenges in this sector alongside their special guest Rob Dent Senior Research Engineer - Energy Linde and Application Sales Engineer at BOC UK & Ireland.
The podcast can be found on their website.
The podcast can be found on their website.
Trends in the Global Steel Industry: Evolutionary Projections and Defossilisation Pathways through Power-to-steel
Sep 2022
Publication
Steel production is a carbon and energy intensive activity releasing 1.9 tons of CO2 and requiring 5.17 MWh of primary energy per ton produced on average globally resulting in 9% of all anthropogenic CO2 emissions. To achieve the goals of the Paris Agreement of limiting global temperature increase to below 1.5 °C compared to pre-industrial levels the structure of the global steel production must change fundamentally. There are several technological paths towards a lower carbon intensity for steelmaking which bring with them a paradigm shift decoupling CO2 emissions from crude steel production by transitioning from traditional methods of steel production using fossil coal and fossil methane to those based on low-cost renewable electricity and green hydrogen. However the energy system consequences of fully defossilised steelmaking has not yet been examined in detail. This research examines the energy system requirements a global defossilised power-to-steel industry using a GDP-based demand model for global steel demands which projects a growth in steel demand from 1.6 Gt in 2020 to 2.4 Gt in 2100. Three scenarios are developed to investigate the emissions trajectory energy demands and economics of a high penetration of direct hydrogen reduction and electrowinning in global steel production. Results indicate that the global steel industry will see green hydrogen demands grow significantly ranging from 2809 to 4371 TWhH2 by 2050. Under the studied conditions global steel production is projected to see reductions in final thermal energy demand of between 38.3% and 57.7% and increases in total electricity demand by factors between 15.1 and 13.3 by 2050 depending on the scenario. Furthermore CO2 emissions from steelmaking can be reduced to zero.
Everything About Hydrogen Podcast: Improving PEM Efficiency
Jan 2023
Publication
On this episode of EAH we sat down with Alejandro Oyarce Barnett Chief Technology Officer and Co-Founder at Hystar. Hystar is a technology-focused company specializing in PEM electrolysers for hydrogen production using renewable energy. The company got its start as a spin-off from SINTEF one of Europe’s largest independent research organizations and has raised private funding so the company can focus on production of its high-efficiency PEM units and keep pace with demand for hydrogen generation capacity. Hystar announced on January 11 2023 that the company has closed a Series B funding round of USD 26mn to rapidly scale-up to full commercial operations with an automated GW-capacity production line by 2025. Alejandro joined us to discuss in more detail the origins of Hystar its technology and the mission at the core of the company.
The podcast can be found on their website.
The podcast can be found on their website.
Techno-economic Assessment of Offshore Wind-to-hydrogen Scenarios: A UK Case Study
Jan 2023
Publication
The installed capacity electricity generation from wind and the curtailment of wind power in the UK between 2011 and 2021 showed that penetration levels of wind energy and the amount of energy that is curtailed in future would continue to rise whereas the curtailed energy could be utilised to produce green hydrogen. In this study data were collected technologies were chosen systems were designed and simulation models were developed to determine technical requirements and levelised costs of hydrogen produced and transported through different pathways. The analysis of capital and operating costs of the main components used for onshore and offshore green hydrogen production using offshore wind including alternative strategies for hydrogen storage and transport and hydrogen carriers showed that a significant reduction in cost could be achieved by 2030 enabling the production of green hydrogen from offshore wind at a competitive cost compared to grey and blue hydrogen. Among all scenarios investigated in this study compressed hydrogen produced offshore is the most cost-effective scenario for projects starting in 2025 although the economic feasibility of this scenario is strongly affected by the storage period and the distance to the shore of the offshore wind farm. Alternative scenarios for hydrogen storage and transport such as liquefied hydrogen and methylcyclohexane could become more cost-effective for projects starting in 2050 when the levelised cost of hydrogen could reach values of about £2 per kilogram of hydrogen or lower.
Assessing the Balance Between Direct Electrification and the Use of Decarbonised Gases in the 2050 EU Energy System
Jan 2023
Publication
If Europe is to meet its 2050 decarbonisation objectives a change of paradigm needs to materialise. The energy sector cannot be understood any more as the sum of independent silos consisting of different energy vectors. Indeed a large number of technologies that are essential to meeting our decarbonisation targets are linking systems and markets currently being planned and operated without fully considering the potential benefits of adopting a holistic approach. If this situation is to persist large-scale sub-optimalities are likely to emerge if the planning and operations of the different components of the energy system will not be able to capture synergies and interdependencies between energy vectors and markets. Interlinkages between systems are appearing between all vectors both at the planning and operation levels. In the case of hydrogen these links are especially important as hydrogen technologies are linking the electricity methane and heat sectors (via electrolysis and hydrogen turbines repurposing of gas assets and hydrogen boilers respectively). Sector integration can allow to capture benefits both in terms of planning and operations:- The production of electrolytic hydrogen poses important challenges in terms of planning the deployment of renewable energy (RES) and electrolyser capacities in a way that ensures that the overall carbon emissions decrease in an effective and cost-efficient manner. Furthermore key questions related to the benefits of co-locating renewable capacities electrolysers and hydrogen demand centres can only be explored if a holistic perspective is adopted. Finally synergies can also appear if planning decisions are taken jointly between the electricity hydrogen and methane sectors as the optimal set of hydrogen infrastructure projects strongly depends on the ability to source electrolysers (link with the electricity sector) and on the possibility to repurpose part of the current infrastructure (link with the methane sector)- Similarly operational considerations also advocate for an integrated approach as electrolysers can provide important flexibility services to the electricity sector if provided with appropriate price signals. These considerations provide the motivation for this study which aims at performing a detailed examination of planning decisions and operational management of a 2050 power system with a focus on comparing different decarbonisation options for the provision of heat of different temperature levels.
Environmental Economical Dispatching of Electric–Gas Integrated Energy System Considering Hydrogen Compressed-Natural Gas
Dec 2022
Publication
As a high-quality secondary energy hydrogen energy has great potential in energy storage and utilization. The development of power-to-hydrogen (P2H) technology has alleviated the problem of wind curtailment and improved the coupling between the power grid and the natural gas grid. Under the premise of ensuring safety using P2H technology to mix the produced hydrogen into the natural gas network for long-distance transmission and power generation can not only promote the development of hydrogen energy but also reduce carbon emissions. This paper presents a new model for incorporating hydrogen into natural gas pipelines. To minimize the sum of wind curtailment cost operation cost and carbon emission cost an electric–gas integrated energy system (EGIES) model of hydrogen-compressed natural gas (HCNG) containing P2H for power generation is constructed. Aiming at the problem of global warming caused by a lot of abandoned wind and carbon emissions the economy and environmental protection of the system model are analyzed. The results show that the model of EGIES considering HCNG can not only absorb excess wind power but also reduce carbon emission costs and system costs which can reduce the total cost of the environmental economic dispatch of the EGIES by about 34.1%. In the context of the EGIES the proposal of this model is of great significance to the economical and environmentally friendly operation of the system.
One-dimensional Numerical Investigation on Multi-cylinder Gasoline Engine Fueled by Micro-emulsions, CNG, and Hydrogen in Dual Fuel Mode
Aug 2022
Publication
This research work is the novel state-of-the-art technology performed on multi-cylinder SI engine fueled compressed natural gas emulsified fuel and hydrogen as dual fuel. This work predicts the overall features of performance combustion and exhaust emissions of individual fuels based on AVL Boost simulation technology. Three types of alternative fuels have been compared and analyzed. The results show that hydrogen produces 20% more brake power than CNG and 25% more power than micro-emulsion fuel at 1500 r/min which further increases the brake power of hydrogen CNG and micro-emulsions in the range of 25% 20% and 15% at higher engine speeds of 2500–4000 r/min respectively. In addition the brake-specific fuel consumption is the lowest for 100% hydrogen followed by CNG 100% and then micro-emulsions at 1500 r/min. At 2500– 5000 r/min there is a significant drop in brake-specific fuel consumption due to a lean mixture at higher engine speeds. The CO HC and NOx emissions significantly improve for hydrogen CNG and micro-emulsion fuel. Hydrogen fuel shows zero CO and HC emissions and is the main objective of this research to produce 0% carbon-based emissions with a slight increase in NOx emissions and CNG shows 30% lower CO emissions than micro-emulsions and 21.5% less hydrocarbon emissions than micro-emulsion fuel at stoichiometric air/fuel ratio.
Role of Low Carbon Emission H2 in the Energy Transition of Colombia: Environmental Assessment of H2 Production Pathways for a Certification Scheme
Oct 2022
Publication
Hydrogen (H2) is a low-carbon carrier. Hence measuring the impact of its supply chain is key to guaranteeing environmental benefits. This research proposes a classification of H2 in Colombia based on its carbon footprint and source. Such environmental characterization enables the design of regulatory instruments to incentivize the demand for low carbon-H2. Life cycle assessment (LCA) was used to determine the carbon footprint of H2 production technologies. Based on our LCA four classes of H2 were defined based on the emission threshold: (i) gray-H2 (21.8 - 17.0 kg CO2-eq/kg H2) (ii) low carbon-H2 (4.13 – 17.0 kg CO2-eq/kg H2) (iii) blue-H2 (<4.13 kg CO2-eq/kg H2) and (iv) green-H2 (<4.13 kg CO2-eq/kg H2). While low carbon-H2 could be employed to reduce 22% of the national greenhouse gas (GHG) emissions as defined in the National Determined Contribution (NDC) both blue and green-H2 could be employed for national and international trade since the standard emissions are aligned with international schemes such as CertifHy and the Chinese model. Besides gasification of biomass results in environmental savings indicating that biomass is a promising feedstock for international and local trade. Furthermore combinations of H2 production technologies such as renewable-based electrolysis natural gas steam reforming with CCS and ethanol conversion were evaluated to explore the production of a combination of green- and blue-H2 to meet the current and future demand of low carbon emission H2 in Colombia. However to comply with the proposed carbon emission threshold the installed capacities of solar and wind energies must be increase.
Modeling and Simulation of an Isolated Hybrid Micro-grid with Hydrogen Production and Storage
Jan 2014
Publication
This work relates the study of system performance in operational conditions for an isolated micro-grid powered by a photovoltaic system and a wind turbine. The electricity produced and not used by the user will be accumulated in two different storage systems: a battery bank and a hydrogen storage system composed of two PEM electrolyzers four pressurized tanks and a PEM fuel cell. One of the main problems to be solved in the development of isolated micro-grids is the management of the various devices and energy flows to optimize their functioning in particular in relation to the load profile and power produced by renewable energy systems depending on weather conditions. For this reason through the development and implementation of a specific simulation program three different energy management systems were studied to evaluate the best strategy for effectively satisfying user requirements and optimizing overall system efficiency.
High Technical and Temporal Resolution Integrated Energy System Modelling of Industrial Decarbonisation
Aug 2022
Publication
Owing to the complexity of the sector industrial activities are often represented with limited technological resolution in integrated energy system models. In this study we enriched the technological description of industrial activities in the integrated energy system analysis optimisation (IESA-Opt) model a peer-reviewed energy system optimisation model that can simultaneously provide optimal capacity planning for the hourly operation of all integrated sectors. We used this enriched model to analyse the industrial decarbonisation of the Netherlands for four key activities: high-value chemicals hydrocarbons ammonia and steel production. The analyses performed comprised 1) exploring optimality in a reference scenario; 2) exploring the feasibility and implications of four extreme industrial cases with different technological archetypes namely a bio-based industry a hydrogen-based industry a fully electrified industry and retrofitting of current assets into carbon capture utilisation and storage; and 3) performing sensitivity analyses on key topics such as imported biomass hydrogen and natural gas prices carbon storage potentials technological learning and the demand for olefins. The results of this study show that it is feasible for the energy system to have a fully bio-based hydrogen-based fully electrified and retrofitted industry to achieve full decarbonisation while allowing for an optimal technological mix to yield at least a 10% cheaper transition. We also show that owing to the high predominance of the fuel component in the levelled cost of industrial products substantial reductions in overnight investment costs of green technologies have a limited effect on their adoption. Finally we reveal that based on the current (2022) energy prices the energy transition is cost-effective and fossil fuels can be fully displaced from industry and the national mix by 2050
Low-Carbon Optimal Scheduling Model for Peak Shaving Resources in Multi-Energy Power Systems Considering Large-Scale Access for Electric Vehicles
May 2023
Publication
Aiming at the synergy between a system’s carbon emission reduction demand and the economy of peak shaving operation in the process of optimizing the flexible resource peaking unit portfolio of a multi-energy power system containing large-scale electric vehicles this paper proposes a low-carbon optimal scheduling model for peak shaving resources in multi-energy power systems considering large-scale access for electric vehicles. Firstly the charging and discharging characteristics of electric vehicles were studied and a comprehensive cost model for electric vehicles heat storage and hydrogen storage was established. At the same time the carbon emission characteristics of multienergy power systems and their emission cost models under specific carbon trading mechanisms were established. Secondly the change characteristics of the system’s carbon emissions were studied and a carbon emission cost model of multi-energy power was established considering the carbon emission reduction demand of the system. Then taking the carbon emission of the system and the peak regulating operation costs of traditional units energy storage and new energy unit as optimization objectives the multi-energy power system peak regulation multi-objective optimization scheduling model was established and NSGA-II was used to solve the scheduling model. Finally based on a regional power grid data in Northeast China the improved IEEE 30 node multi-energy power system peak shaving simulation model was built and the simulation analysis verified the feasibility of the optimal scheduling model proposed in this paper.
Hydrogen Generation in Europe: Overview of Costs and Key Benefits
May 2021
Publication
The European Commission published its hydrogen strategy for a climate-neutral Europe on the 8th July 2020. This strategy brings different strands of policy action together covering the entire value chain as well as the industrial market and infrastructure angles together with the research and innovation perspective and the international dimension in order to create an enabling environment to scale up hydrogen supply and demand for a climate-neutral economy. The strategy also highlights clean hydrogen and its value chain as one of the essential areas to unlock investment to foster sustainable growth and jobs which will be critical in the context of recovery from the COVID-19 crisis. It sets strategic objectives to install at least 6 GW of renewable hydrogen electrolysers by 2024 and at least 40 GW of renewable hydrogen electrolysers by 2030 and foresees industrial applications and mobility as the two main lead markets. This report provides the evidence base established on the latest publicly available data for identifying investment opportunities in the hydrogen value chain over the period from 2020 to 2050 and the associated benefits in terms of jobs. Considering the dynamics and significant scale-up expected over a very short period of time multiple sources have been used to estimate the different values consistently and transparently. The report covers the full value chain from the production of renewable electricity as the energy source for renewable hydrogen production to the investment needs in industrial applications and hydrogen trucks and buses. Although the values range significantly across the different sources the overall trend is clear. Driving hydrogen development past the tipping point needs critical mass in investment an enabling regulatory framework new lead markets sustained research and innovation into breakthrough technologies and for bringing new solutions to the market a large-scale infrastructure network that only the EU and the single market can offer and cooperation with our third country partners. All actors public and private at European national and regional level must work together across the entire value chain to build a dynamic hydrogen ecosystem in Europe.
Refurbishment of Natural Gas Pipelines towards 100% Hydrogen—A Thermodynamic-Based Analysis
Dec 2022
Publication
Hydrogen is a key enabler of a sustainable society. Refurbishment of the existing natural gas infrastructure for up to 100% H2 is considered one of the most energy- and resource-efficient energy transportation methods. The question remains whether the transportation of 100% H2 with reasonable adaptions of the infrastructure and comparable energy amounts to natural gas is possible. The well-known critical components for refurbishment such as increased compressor power reduced linepack as well as pipeline transport efficiencies and their influencing factors were considered based on thermodynamic calculations with a step-by-step overview. A H2 content of 20–30% results in comparable operation parameters to pure natural gas. In addition to transport in pipelines decentralized H2 production will also play an important role in addressing future demands.
Anion Exchange Membrane Water Electrolysis from Catalyst Design to the Membrane Electrode Assembly
Jul 2022
Publication
Anion exchange membrane (AEM) electrolysis aims to combine the benefits of alkaline electrolysis such as stability of the cheap catalyst and advantages of proton-exchange membrane systems like the ability to operate at differential pressure fast dynamic response low energy losses and higher current density. However as of today AEM electrolysis is limited by AEMs exhibiting insufficient ionic conductivity as well as lower catalyst activity and stability. Herein recent developments and outlook of AEM electrolysis such as cost-efficient transition metal catalysts for hydrogen evolution reaction and oxygen evolution reaction AEMs ionomer electrolytes ionomer catalyst–electrolyte interaction and membrane-electrode assembly performance and stability are described.
Urban Hydrogen Production Model Using Environmental Infrastructures to Achieve the Net Zero Goal
Dec 2022
Publication
Land available for energy production is limited in cities owing to high population density. To reach the net zero goal cities contributing 70% of overall greenhouse gas emissions need to dramatically reduce emissions and increase self-sufficiency in energy production. Environmental infrastructures such as sewage treatment and incineration plants can be used as energy production facilities in cities. This study attempted to examine the effect of using environmental infrastructure such as energy production facilities to contribute toward the carbon neutrality goal through urban energy systems. In particular since the facilities are suitable for hydrogen supply in cities the analysis was conducted focusing on the possibility of hydrogen production. First the current status of energy supply and demand and additional energy production potential in sewage treatment and incineration plants in Seoul were analyzed. Then the role of these environmental infrastructures toward energy self-sufficiency in the urban system was examined. This study confirmed that the facilities can contribute to the city’s energy self-sufficiency and the achievement of its net-zero goal.
How Hydrogen (H2) Can Support Food Security: From Farm to Fork
Mar 2024
Publication
Molecular hydrogen (H2 ) is a low-molecular-weight non-polar and electrochemically neutral substance that acts as an effective antioxidant and cytoprotective agent with research into the effects of H2 incorporation into the food chain at various stages rapidly gaining momentum. H2 can be delivered throughout the food growth production delivery and storage systems in numerous ways including as a gas as hydrogen-rich water (HRW) or with hydrogen-donating food supplements such as calcium (Ca) or magnesium (Mg). In plants H2 can be exploited as a seedpriming agent during seed germination and planting during the latter stages of plant development and reproduction as a post-harvest treatment and as a food additive. Adding H2 during plant growth and developmental stages is noted to improve the yield and quality of plant produce through modulating antioxidant pathways and stimulating tolerance to such environmental stress factors as drought stress enhanced tolerance to herbicides (paraquat) and increased salinity and metal toxicity. The benefits of pre- and post-harvest application of H2 include reductions in natural senescence and microbial spoilage which contribute to extending the shelf-life of animal products fruits grains and vegetables. This review collates empirical findings pertaining to the use of H2 in the agri-food industry and evaluates the potential impact of this emerging technology.
The Role of Hydrogen in the Optimal Design of Off-grid Hybrid Renewable Energy Systems
Jan 2022
Publication
The optimal design of off-grid hybrid renewable energy systems (HRESs) is a challenging task which often involves conflicting goals to be faced. In this work levelized cost of energy (LCOE) and CO2 emissions have been addressed simultaneously by using the ε-constraint method together with the particle swarm optimization (PSO) algorithm. Cost-emissions Pareto fronts of different HRES configurations were developed to gain greater awareness about the potential of renewable-based energy systems in off-grid applications. Various combinations of the following components were investigated: photovoltaic panels wind turbines batteries hydrogen and diesel generators. The hydrogen-based system comprises an electrolyzer to convert the excess renewable energy into hydrogen a pressurized tank for H2 storage and a fuel cell for the reconversion of hydrogen into electricity during renewable energy deficits. Electrolyzer and fuel cell devices were modelled by means of part-load performance curves. Size-dependent costs and component lifetimes as a function of the cumulative operational duty were also considered for a more accurate techno-economic assessment. The proposed methodology was applied to the Froan islands (Norway) which were chosen as a reference case study since they are well representative of many other insular microgrid environments in Northern Europe. Results from the sizing simulations revealed that energy storage devices are key components to reduce the dependency on fossil fuels. In particular the hydrogen storage system is crucial in off-grid areas to enhance the RES penetration and avoid a sharp increase in the cost of energy. Hydrogen in fact allows the battery and RES technologies not to be oversized thanks to its cost-effective long-term storage capability. Concerning the extreme case with no diesel the cheapest configuration which includes both batteries and hydrogen has an LCOE of 0.41 €/kWh. This value is around 35% lower than the LCOE of a system with only batteries as energy storage.
Fast Sizing Methodology and Assessment of Energy Storage Configuration on the Flight Time of a Multirotor Aerial Vehicle
Apr 2023
Publication
Urban air mobility (UAM) defined as safe and efficient air traffic operations in a metropolitan area for manned aircraft and unmanned aircraft systems is being researched and developed by industry academia and government. This kind of mobility offers an opportunity to construct a green and sustainable sub-sector building upon the lessons learned over decades by aviation. Thanks to their non-polluting operation and simple air traffic management electric vertical take-off and landing (eVTOL) aircraft technologies are currently being developed and experimented with for this purpose. However to successfully complete the certification and commercialization stage several challenges need to be overcome particularly in terms of performance such as flight time and endurance and reliability. In this paper a fast methodology for sizing and selecting the propulsion chain components of an eVTOL multirotor aerial vehicle was developed and validated on a reduced-scale prototype of an electric multirotor vehicle with a GTOW of 15 kg. This methodology is associated with a comparative study of energy storage system configurations in order to assess their effect on the flight time of the aerial vehicle. First the optimal pair motor/propeller was selected using a global nonlinear optimization in order to maximize the specific efficiency of these components. Second five energy storage technologies were sized in order to evaluate their influence on the aerial vehicle flight time. Finally based on this sizing process the optimized propulsion chain gross take-off weight (GTOW) was evaluated for each energy storage configuration using regression-based methods based on propulsion chain supplier data.
Computational Investigation of Combustion, Performance, and Emissions of a Diesel-Hydrogen Dual-Fuel Engine
Feb 2023
Publication
This paper aims to expose the effect of hydrogen on the combustion performance and emissions of a high-speed diesel engine. For this purpose a three-dimensional dynamic simulation model was developed using a reasonable turbulence model and a simplified reaction kinetic mechanism was chosen based on experimental data. The results show that in the hydrogen enrichment conditions hydrogen causes complete combustion of diesel fuel and results in a 17.7% increase in work capacity. However the increase in combustion temperature resulted in higher NOx emissions. In the hydrogen substitution condition the combustion phases are significantly earlier with the increased hydrogen substitution ratio () which is not conducive to power output. However when the is 30% the CO soot and THC reach near-zero emissions. The effect of the injection timing is also studied at an HSR of 90%. When delayed by 10° IMEP improves by 3.4% compared with diesel mode and 2.4% compared with dual-fuel mode. The NOx is reduced by 53% compared with the original dual-fuel mode. This study provides theoretical guidance for the application of hydrogen in rail transportation.
Hydrogenerally - Episode 10: Green Hydrogen Production
Feb 2023
Publication
Debra Jones Chemistry Knowledge Transfer Manager and Simon Buckley Zero Emission Mobility Knowledge Transfer Manager from Innovate UK KTN talk about green hydrogen production with their special guest Chris Jackson CEO & Founder at Protium.
This podcast discussion centres around methods of producing clean hydrogen from renewable energy sources the innovative projects Protium is working on and how much green hydrogen will the UK produce by 2030 and beyond.
The podcast can be found on their website.
This podcast discussion centres around methods of producing clean hydrogen from renewable energy sources the innovative projects Protium is working on and how much green hydrogen will the UK produce by 2030 and beyond.
The podcast can be found on their website.
Challenges of Industrial-Scale Testing Infrastructure for Green Hydrogen Technologies
Apr 2023
Publication
Green hydrogen is set to become the energy carrier of the future provided that production technologies such as electrolysis and solar water splitting can be scaled to global dimensions. Testing these hydrogen technologies on the MW scale requires the development of dedicated new test facilities for which there is no precedent. This perspective highlights the challenges to be met on the path to implementing a test facility for large-scale water electrolysis photoelectrochemical and photocatalytic water splitting and aims to serve as a much-needed blueprint for future test facilities based on the authors’ own experience in establishing the Hydrogen Lab Leuna. Key aspects to be considered are the electricity and utility requirements of the devices under testing the analysis of the produced H2 and O2 and the safety regulations for handling large quantities of H2 . Choosing the right location is crucial not only for meeting these device requirements but also for improving financial viability through supplying affordable electricity and providing a remunerated H2 sink to offset the testing costs. Due to their lower TRL and requirement for a light source large-scale photocatalysis and photoelectrochemistry testing are less developed and the requirements are currently less predictable.
Multi-criteria Optimisation of Fermentative and Solar-driven Electrolytic Hydrogen and Electricity Supply-demand Network with Hybrid Storage System
May 2023
Publication
Harnessing renewable resources such as solar energy and biogenic waste for hydrogen production offers a path toward a carbon-neutral industrial economy. This study suggests the development of a renewable-based hydrogen and power supply facility (HPSF) that relies on fermentation and solar-driven electrolysis technologies to achieve penetration of renewable hydrogen and electricity in the industrial symbiosis. Literature studies reported that the hybrid battery-hydrogen storage system could effectively improve the sustainability and reliability of renewable energy supplies yet its application under diurnal and seasonal renewable resource variations has not been well studied. Hence this work develops a multi-criteria optimisation framework for the configuration design of the proposed HPSF that concurrently targets industrial hydrogen and electrical loads with the consideration of diurnal and seasonal renewable resource variations. Case scenarios with different storage applications are presented to evaluate the role of storage in improving economic and environmental sustainability. The results show that the application of hybrid storage with molten carbonate fuel cell (MCFC) systems is preferred from a comprehensive sustainability standpoint which improves the sustainability-weighted return-on investment metric (SWROIM) score by 4%/yr compared to HPSF without storage application. On the other hand the application of a single-battery system is the most economical solution with a return on investment (ROI) of 0.7%/yr higher than the hybrid storage approach. The research outcome could provide insights into the integration of fermentative and solar-driven electrolytic hydrogen production technologies into the industrial symbiosis to further enhance a sustainable economy.
Everything About Hydrogen Podcast: A Green Future for Oman
Feb 2023
Publication
On this episode of Everything About Hydrogen we are speaking with Nashwa Al Rawahy Director of HMR Environmental Consultants based in Muscat Oman with regional offices in the United Arab Emirates.
We are excited to have an expert like Nashwa join us to discuss environmental and social impact studies their value to the communities and projects and the importance of building long term In Country Value (ICV).
The podcast can be found on their website.
We are excited to have an expert like Nashwa join us to discuss environmental and social impact studies their value to the communities and projects and the importance of building long term In Country Value (ICV).
The podcast can be found on their website.
2021 Technology & Markets Report
Jul 2021
Publication
Purpose: The technology and market module of the FCHO presents a range of statistical data as an indicator of the health of the sector and the progress in market development over time. https://www.fchobservatory.eu/observatory/technology-and-market Scope: Fuel cell shipment data is presented on a global basis. Other sections of the technology and market chapter (HRS data and FCEV data) are presented on a European basis. The report spans January 2020 – December 2020. Key Findings: COVID-19 has without doubt impacted the deployment of fuel cells and hydrogen in 2020 compared to industry expectations: Global Fuel Cell shipments > 1.3 GW Europe Fuel Cell shipments up to 148.6 MW Europe HRS in operation or under construction 162 FCEVs up 41% to 2774
Progress in Energy Storage Technologies and Methods for Renewable Energy Systems Application
May 2023
Publication
This paper provides a comprehensive review of the research progress current state-ofthe-art and future research directions of energy storage systems. With the widespread adoption of renewable energy sources such as wind and solar power the discourse around energy storage is primarily focused on three main aspects: battery storage technology electricity-to-gas technology for increasing renewable energy consumption and optimal configuration technology. The paper employs a visualization tool (CiteSpace) to analyze the existing works of literature and conducts an in-depth examination of the energy storage research hotspots in areas such as electrochemical energy storage hydrogen storage and optimal system configuration. It presents a detailed overview of common energy storage models and configuration methods. Based on the reviewed articles the future development of energy storage will be more oriented toward the study of power characteristics and frequency characteristics with more focus on the stability effects brought by transient shocks. This review article compiles and assesses various energy storage technologies for reference and future research.
Techno-Economic Analysis of Grid-Connected Hydrogen Production via Water Electrolysis
Mar 2024
Publication
As the global energy landscape transitions towards a more sustainable future hydrogen has emerged as a promising energy carrier due to its potential to decarbonize various sectors. However the economic competitiveness of hydrogen production by water electrolysis strongly depends on renewable energy source (RES) availability. Thus it is necessary to overcome the challenges related to the intermittent nature of RESs. This paper presents a comprehensive techno-economic analysis of complementing green hydrogen production with grid electricity. An evaluation model for the levelized cost of hydrogen (LCOH) is proposed considering both CO2 emissions and the influence of RES fluctuations on electrolyzers. A minimum load restriction is required to avoid crossover gas. Moreover a new operation strategy is developed for hydrogen production plants to determine optimal bidding in the grid electricity market to minimize the LCOH. We evaluate the feasibility of the proposed approach with a case study based on data from the Kyushu area in Japan. The results show that the proposed method can reduce the LCOH by 11% to 33% and increase hydrogen productivity by 86% to 140% without significantly increasing CO2 emission levels.
Economic Analysis of P2G Green Hydrogen Generated by Existing Wind Turbines on Jeju Island
Dec 2022
Publication
Every wind turbine is subject to fluctuations in power generation depending on climatic conditions. When electricity supply exceeds demand wind turbines are forced to implement curtailment causing a reduction in generation efficiency and commercial loss to turbine owners. Since the frequency and amount of curtailment of wind turbines increases as the amount of renewable energy become higher on Jeju Island in South Korea Jeju is configuring a Power to Gas (P2G) water electrolysis system that will be connected to an existing wind farm to use the “wasted energy”. In this study economic analysis was performed by calculating the production cost of green hydrogen and sensitivity analysis evaluated the variance in hydrogen cost depending on several influential factors. Approaches to lower hydrogen costs are necessary for the following reasons. The operating company needs a periodical update of hydrogen sale prices by reflecting a change in the system margin price (SMP) with the highest sensitivity to hydrogen cost. Technical development to reduce hydrogen costs in order to reduce power consumption for producing hydrogen and a decrease in annual reduction rate for the efficiency of water electrolysis is recommended. Discussions and research regarding government policy can be followed to lower the hydrogen cost.
A Hydrogen-fuelled Compressed Air Energy Storage System for Flexibility Reinforcement and Variable Renewable Energy Integration in Grids with High Generation Curtailment
Mar 2024
Publication
Globally the increasing share of renewables prominently driven by intermittent sources such as solar and wind power poses significant challenges to the reliability of current electrical infrastructures leading to the adoption of extreme measures such as generation curtailment to preserve grid security. Within this framework it is essential to develop energy storage systems that contribute to reinforce the flexibility and security of power grids while simultaneously reducing the share of generation curtailment. Therefore this study investigates the performance of an integrated photovoltaic-hydrogen fuelled-compressed air energy storage system whose configuration is specifically conceived to enable the connection of additional intermittent sources in already saturated grids. The yearly and seasonal performance of the integrated energy storage system specifically designed to supply flexibility services are evaluated for a scenario represented by a real grid with high-variable renewables penetration and frequent dispatchability issues. Results show that the integrated system with performanceoptimized components and a new energy management strategy minimizes photovoltaic energy curtailment otherwise around 50% to as low as 4% per year achieving system efficiencies of up to 62% and reinforces the grid by supplying inertial power for up to 20% of nighttime hours. In conclusion the integrated plant operating with zero emissions on-site hydrogen production and optimized for non-dispatchable photovoltaic energy utilization proves to be effective in integrating new variable renewable sources and reinforcing saturated grids particularly during spring and summer.
Green Hydrogen Supply Chain Risk Analysis: A European Hard-to-abate Sectors Perspective
May 2023
Publication
Green hydrogen is a tentative solution for the decarbonisation of hard-to-abate sectors such as steel chemical cement and refinery industries. Green hydrogen is a form of hydrogen gas that is produced using renewable energy sources such as wind or solar power through a process called electrolysis. The green hydrogen supply chain includes several interconnected entities such as renewable energy providers electrolysers distribution facilities and consumers. Although there have been many studies about green hydrogen little attention has been devoted to green hydrogen supply chain risk identification and analysis especially for hard-to-abate sectors in Europe. This research contributes to existing knowledge by identifying and analysing the European region’s green hydrogen supply chain risk factors. Using a Delphi method 7 categories and 43 risk factors are identified based on the green hydrogen supply chain experts’ opinions. The best-worst method is utilised to determine the importance weights of the risk categories and risk factors. High investment of capital for hydrogen production and delivery technology was the highest-ranked risk factor followed by the lack of enough capacity for electrolyser and policy & regulation development. Several mitigation strategies and policy recommendations are proposed for high-importance risk factors. This study provides novelty in the form of an integrated approach resulting in a scientific ranking of the risk factors for the green hydrogen supply chain. The results of this study provide empirical evidence which corroborates with previous studies that European countries should endeavour to create comprehensive and supportive standards and regulations for green hydrogen supply chain implementation.
Numerical Simulation on the Thermal Dynamic Behavior of Liquid Hydrogen in a Storage Tank for Trailers
Oct 2022
Publication
In the present study a numerical model was established to investigate the thermal dynamic behavior of liquid hydrogen in a 40-foot ISO tank. The volume of fluids (VOF) method was applied to capture the liquid surface and a phase change model was used to describe the evaporation phenomenon of hydrogen. The mesh independence analysis and the experimental validation have been made. Under different filling levels motion statuses and heat leakage conditions the variations in pressure and temperature of the tank were investigated. The pressure of 90% filling level case was reduced by 12.09% compared to the 50% case. Besides the pressure of the sloshing condition has increased twofold contrasted with the stationary one and thermal stratification disappeared. Additionally 16.67 minutes were taken for the ullage pressure to reach around 1MPa in emergencies of being extremely heated. Some valuable conclusions and suggestions for the transportation of liquid hydrogen arrived. Those could be the references to predict the release time of boil-off hydrogen and primarily support for gas-releasing control strategies.
Preliminary Design and Simulation of a Thermal Management System with Integrated Secondary Power Generation Capability for a Mach 8 Aircraft Concept Exploiting Liquid Hydrogen
Feb 2023
Publication
This paper introduces the concept of a thermal management system (TMS) with integrated on-board power generation capabilities for a Mach 8 hypersonic aircraft powered by liquid hydrogen (LH2). This work developed within the EU-funded STRATOFLY Project aims to demonstrate an opportunity for facing the challenges of hypersonic flight for civil applications mainly dealing with thermal and environmental control as well as propellant distribution and on-board power generation adopting a highly integrated plant characterized by a multi-functional architecture. The TMS concept described in this paper makes benefit of the connection between the propellant storage and distribution subsystems of the aircraft to exploit hydrogen vapors and liquid flow as the means to drive a thermodynamic cycle able on one hand to ensure engine feed and thermal control of the cabin environment while providing on the other hand the necessary power for other on-board systems and utilities especially during the operation of high-speed propulsion plants which cannot host traditional generators. The system layout inspired by concepts studied within precursor EU-funded projects is detailed and modified in order to suggest an operable solution that can be installed on-board the reference aircraft with focus on those interfaces impacting its performance requirements and integration features as part of the overall systems architecture of the plane. Analysis and modeling of the system is performed and the main results in terms of performance along the reference mission profile are discussed.
Fuelling the Transition Podcast: Using Hydrogen to Achieve Net-zero
Jan 2021
Publication
In order to achieve the EU’s target of 55% carbon reduction by 2030 hydrogen will have to make a key contribution to the energy mix. With many applications in industrial heat mobility power and chemical refineries hydrogen can be used to decarbonise where electrification is not possible. Equinor is a broad energy company with 21000 employees developing oil gas wind and solar energy in more than 30 countries worldwide. Equinor have been at the forefront of promoting hydrogen projects in Europe and developing low-carbon hydrogen solutions. In this episode Johan Leuraers Chief Consultant - Policy and Regulatory Affairs at Equinor and John Williams Head of Hydrogen Expertise Cluster at AFRY Management Consulting join us to discuss the main barriers to the uptake of hydrogen and the next steps to kick-start the hydrogen economy.
The podcast can be found on their website.
The podcast can be found on their website.
Influence of Renewable Energy Power Fluctuations on Water Electrolysis for Green Hydrogen Production
Nov 2022
Publication
The development of renewable energy technologies is essential to achieve carbon neutrality. Hydrogen can be stably stored and transported in large quantities to maximize power utilization. Detailed understanding of the characteristics and operating methods of water electrolysis technologies in which naturally intermittent fluctuating power is used directly is required for green hydrogen production because fluctuating power-driven water electrolysis processes significantly differ from industrial water electrolysis processes driven by steady grid power. Thus it is necessary to overcome several issues related to the direct use of fluctuating power. This article reviews the characteristics of fluctuating power and its generation as well as the current status and issues related to the operation conditions water electrolyzer configuration system requirements stack/catalyst durability and degradation mechanisms under the direct use of fluctuating power sources. It also provides an accelerated degradation test protocol method for fair catalyst performance comparison and share of effective design directions. Finally it discusses potential challenges and recommendations for further improvements in water electrolyzer components and systems suitable for practical use suggesting that a breakthrough could be realized toward the achievement of a sustainable hydrogen-based society.
New Control Strategy for Heating Portable Fuel Cell Power Systems for Energy-Efficient and Reliable Operation
Dec 2022
Publication
Using hydrogen fuel cells for power systems temperature conditions are important for efficient and reliable operations especially in low-temperature environments. A heating system with an electrical energy buffer is therefore required for reliable operation. There is a research gap in finding an appropriate control strategy regarding energy efficiency and reliable operations for different environmental conditions. This paper investigates heating strategies for the subfreezing start of a fuel cell for portable applications at an early development stage to enable frontloading in product engineering. The strategies were investigated by simulation and experiment. A prototype for such a system was built and tested for subfreezing start-ups and non-subfreezing start-ups. This was done by heating the fuel cell system with different control strategies to test their efficiency. It was found that operating strategies to heat up the fuel cell system can ensure a more reliable and energy efficient operation. The heating strategy needs to be adjusted according to the ambient conditions as this influences the required heating energy efficiency and reliable operation of the system. A differentiation in the control strategy between subfreezing and non-subfreezing temperatures is recommended due to reliability reasons.
Study of Heat Loss Mechanism in Argon-circulated Hydrogen Engine Combustion Chamber Wall Surface Conditions
Jul 2022
Publication
Hydrogen fuel in internal combustion engine gives a very big advantage to the transportation sector especially in solving the greenhouse emission problem. However there are only few research discovered the ability of argon as a working gas in hydrogen combustion in internal combustion engine. The high temperature rises from the argon compression tend to result in heat loss problem. This research aims to study the heat loss mechanism on wall surface condition in the combustion chamber. Experiments were conducted to study the effects of different heat flux sensor locations and the effect of ignition delay on heat flux. Local heat flux measurement was collected and images were observed using high speed shadowgraph images. The ignition delay that occurred near the combustion wall will result in larger heat loss throughout the combustion process. Higher ambient pressure results in a bigger amount of heat flux value. Other fundamental characteristics were obtained and discussed which may help in contributing the local heat loss data of an argon-circulated hydrogen engine in future engine operation.
2050 No-regret Options and Technology Lock-ins
Jan 2023
Publication
The present study (in the following referred to as study S4) takes a deeper look at the 2050 EU energy system. It builds upon a decarbonisation scenario developed in an earlier study of the METIS 2 project (study S61) which focusses on the EU electricity sector and its interlinkage with the hydrogen and the heat sectors. While study S6 aimed for a cost-optimal dimensioning of the EU power system the present study goes a step further and aims to derive more general conclusions. It sheds light on no-regret options towards the decarbonisation of the 2050 EU energy system potential technology lock-in risks and major drivers of uncertainty like system sensitivity to climate change and commodity prices. The analysis is complemented by an evaluation of the impact of an enhanced representation of hydrogen infrastructures and the associated constraints as these may impact the entire interlinked EU energy system.
Hydrogen from Offshore Wind: Investor Perspective on the Profitability of a Hybrid System Including for Curtailment
Mar 2020
Publication
Accommodating renewables on the electricity grid may hinder development opportunities for offshore wind farms (OWFs) as they begin to experience significant curtailment or constraint. However there is potential to combine investment in OWFs with Power-to-Gas (PtG) converting electricity to hydrogen via electrolysis for an alternative/complementary revenue. Using historic wind speed and simulated system marginal costs data this work models the electricity generated and potential revenues of a 504 MW OWF. Three configurations are analysed; (1) all electricity is sold to the grid (2) all electricity is converted to hydrogen and sold and (3) a hybrid system where power is converted to hydrogen when curtailment occurs and/or when the system marginal cost is low with the effect of curtailment analysed in each scenario. These represent the status quo a potential future configuration and an innovative business model respectively. The willingness of an investor to build PtG are determined by changes to the net present value (NPV) of a project. Results suggest that configuration (1) is most profitable and that curtailment mitigation alone is not sufficient to secure investment in PtG. By acting as an artificial floor in the electricity price a hybrid configuration (3) is promising and increases NPV for all hydrogen values greater than €4.2/kgH2. Hybrid system attractiveness increases with curtailment only if the hydrogen value is significantly above the levelised cost of €3.77/kgH2. In order for an investor to choose to pursue configuration (2) the offshore wind farm would have to anticipate 8.5% curtailment and be able to receive €4.5/kgH2 or 25% curtailment and receive €4/kgH2. The capital costs and discount rates are the most sensitive parameters and ambitious combinations of technology improvements could produce a levelised cost of €3/kgH2.
Everything About Hydrogen Podcast: Policy Simplicity & Certainty
Mar 2023
Publication
On this episode of Everything About Hydrogen we have Daria Nochevnik the Director of Policy and Partnerships for Hydrogen Council.
The podcast can be found on their website.
The podcast can be found on their website.
Life Cycle Costing Approaches of Fuel Cell and Hydrogen Systems: A Literature Review
Apr 2023
Publication
Hydrogen is a versatile energy carrier which can be produced from variety of feedstocks stored and transported in various forms for multi-functional end-uses in transportation energy and manufacturing sectors. Several regional national and supra-national climate policy frameworks emphasize the need value and importance of Fuel cell and Hydrogen (FCH) technologies for deep and sector-wide decarbonization. Despite these multi-faceted advantages familiar and proven FCH technologies such as alkaline electrolysis and proton-exchange membrane fuel cell (PEMFC) often face economic technical and societal barriers to mass-market adoption. There is no single unified standardized and globally harmonized normative definition of costs. Nevertheless the discussion and debates surrounding plausible candidates and/or constituents integral for assessing the economics and value proposition of status-quo as well as developmental FCH technologies are steadily increasing—Life Cycle Costing (LCC) being one of them if not the most important outcome of such exercises.<br/>To that end this review article seeks to improve our collective understanding of LCC of FCH technologies by scrutinizing close to a few hundred publications drawn from representative databases—SCOPUS and Web of Science encompassing several tens of technologies for production and select transportation storage and end-user utilization cases. This comprehensive review forms part of and serves as the basis for the Clean Hydrogen Partnership funded SH2E project whose ultimate goal is the methodical development a formal set of principles and guardrails for evaluating the economic environmental and social impacts of FCH technologies. Additionally the SH2E projects will also facilitate the proper comparison of different FCH technologies whilst reconciling range of technologies methodologies modelling assumptions and parameterization found in existing literature.
No more items...