- Home
- A-Z Publications
- Publications
Publications
Characterising Hydrogen Induced Cracking of Alloy 625+ Using Correlative SEM - EDX and NanoSIMS
Dec 2020
Publication
Hydrogen induced cracking behaviour of O&G nickel alloy 625+ (UNS N07716) was investigated. Deuterium was introduced electrochemically into samples by cathodic polarisation (3.5 wt.% NaCl.D2O) under different mechanical conditions. Subsequently deuterium distributions were mapped using NanoSIMS. Deuterium was used as an isotopic tracer instead of hydrogen to avoid the detection of hydrogen artefacts. Complimentary image analysis using scanning electron microscopy (SEM) and low voltage energy dispersive X-ray (EDX) allowed the identification of microstructural features corresponding to deuterium enrichments. The results provided experimental evidence of enrichments at dislocation slip bands (DSB) twin boundary and grain boundary features that include σ precipitates.
The Synergistic Effects of Alloying on the Performance and Stability of Co3Mo and Co7Mo6 for the Electrocatalytic Hydrogen Evolution Reaction
Oct 2020
Publication
Metal alloys have become a ubiquitous choice as catalysts for electrochemical hydrogen evolution in alkaline media. However scarce and expensive Pt remains the key electrocatalyst in acidic electrolytes making the search for earth-abundant and cheaper alternatives important. Herein we present a facile and efficient synthetic route towards polycrystalline Co3Mo and Co7Mo6 alloys. The single-phased nature of the alloys is confirmed by X-ray diffraction and electron microscopy. When electrochemically tested they achieve competitively low overpotentials of 115 mV (Co3Mo ) and 160 mV (Co7Mo6 ) at 10 mA cm−2 in 0.5 M H2SO4 and 120 mV (Co3Mo ) and 160 mV (Co7Mo6 ) at 10 mA cm−2 in 1 M KOH. Both alloys outperform Co and Mo metals which showed significantly higher overpotentials and lower current densities when tested under identical conditions confirming the synergistic effect of the alloying. However the low overpotential in Co3Mo comes at the price of stability. It rapidly becomes inactive when tested under applied potential bias. On the other hand Co7Mo6 retains the current density over time without evidence of current decay. The findings demonstrate that even in free-standing form and without nanostructuring polycrystalline bimetallic electrocatalysts could challenge the dominance of Pt in acidic media if ways for improving their stability were found.
A Review of Fuel Cell Powertrains for Long-Haul Heavy-Duty Vehicles: Technology, Hydrogen, Energy and Thermal Management Solutions
Dec 2022
Publication
Long-haul heavy-duty vehicles including trucks and coaches contribute to a substantial portion of the modern-day European carbon footprint and pose a major challenge in emissions reduction due to their energy-intensive usage. Depending on the hydrogen fuel source the use of fuel cell electric vehicles (FCEV) for long-haul applications has shown significant potential in reducing road freight CO2 emissions until the possible maturity of future long-distance battery-electric mobility. Fuel cell heavy-duty (HD) propulsion presents some specific characteristics advantages and operating constraints along with the notable possibility of gains in powertrain efficiency and usability through improved system design and intelligent onboard energy and thermal management. This paper provides an overview of the FCEV powertrain topology suited for long-haul HD applications their operating limitations cooling requirements waste heat recovery techniques state-of-the-art in powertrain control energy and thermal management strategies and over-the-air route data based predictive powertrain management including V2X connectivity. A case study simulation analysis of an HD 40-tonne FCEV truck is also presented focusing on the comparison of powertrain losses and energy expenditures in different subsystems while running on VECTO Regional delivery and Long-haul cycles. The importance of hydrogen fuel production pathways onboard storage approaches refuelling and safety standards and fleet management is also discussed. Through a comprehensive review of the H2 fuel cell powertrain technology intelligent energy management thermal management requirements and strategies and challenges in hydrogen production storage and refuelling this article aims at helping stakeholders in the promotion and integration of H2 FCEV technology towards road freight decarbonisation.
Challenges to the Future of LNG: Decarbonisation, Affordability, and Profitability
Oct 2019
Publication
Decarbonisation should be very much on the radar of new LNG projects currently taking FID commissioning around 2024-25 and planning to operate up to 2050. The LNG community needs to replace an `advocacy’ message – based on the generality of emissions from combustion of natural gas being lower than from other fossil fuels – with certified data on carbon and methane emissions from specific elements of the value chain for individual projects. As carbon reduction targets tighten over the coming decade LNG cargoes which do not have value chain emissions certified by accredited authorities or which fail to meet defined emission levels run the risk of progressively being deemed to have a lower commercial value and eventually being excluded from jurisdictions with the strictest standards. There will be no place in this process for confidentiality; nothing less than complete transparency of data and methodologies will be acceptable.<br/>In relation to affordability prospects for new projects look much better than they did three years ago. Cost estimates for most new projects suggest that they will be able to deliver profitably to most established and anticipated import markets at or below the wholesale prices prevailing in those markets over the past decade although affordability in south Asian countries may be challenging. But new projects need to factor in costs related to future decarbonisation requirements in both exporting and importing countries. To the extent that LNG suppliers can meet standards through relatively low-cost offsets – forest projects low-cost biogas and biomethane – this may not greatly impact their commercial viability. However any requirement to transform methane into hydrogen with CCS in either the exporting or importing country would substantially impact project economics and the affordability of LNG relative to other energy choices.
Role of the Sulphur Source in the Solvothermal Synthesis of Ag-CdS Photocatalysts: Effects on the Structure and Photoactivity for Hydrogen Production
Dec 2020
Publication
The aim of this work is to study the influence of the sulphur source (elemental sulphur thiourea and L-cysteine) in the solvothermal synthesis of Ag-CdS over its growth structuration and state of Ag and how these changes influence on its photoactivity. The differences in the generation rate of the S2− from the sulphur sources during the solvothermal synthesis determine the nucleation and growth pathways of CdS affecting to the silver state and its incorporation into the CdS lattice. The hydrogen production on Ag-CdS photocatalysts decreases according the sequence: thiourea > elemental sulphur >> L-cysteine. The changes in the photoactivity of Ag-CdS samples are analysed in terms of the differences in the insertion of Ag+ into the CdS lattice the formation of composites between CdS and Ag2S and the formation of CdS crystalline domains with strong confinement effect derived from the different sulphur source used in the solvothermal synthesis
Microalgal Hydrogen Production in Relation to Other Biomass‐Based Technologies—A Review
Sep 2021
Publication
Hydrogen is an environmentally friendly biofuel which if widely used could reduce atmospheric carbon dioxide emissions. The main barrier to the widespread use of hydrogen for power generation is the lack of technologically feasible and—more importantly—cost‐effective methods of production and storage. So far hydrogen has been produced using thermochemical methods (such as gasification pyrolysis or water electrolysis) and biological methods (most of which involve anaerobic digestion and photofermentation) with conventional fuels waste or dedicated crop biomass used as a feedstock. Microalgae possess very high photosynthetic efficiency can rapidly build biomass and possess other beneficial properties which is why they are considered to be one of the strongest contenders among biohydrogen production technologies. This review gives an account of present knowledge on microalgal hydrogen production and compares it with the other available biofuel production technologies.
The Potential of Hydrogen Hydrate as a Future Hydrogen Storage Medium
Dec 2020
Publication
Hydrogen is recognized as the “future fuel” and the most promising alternative of fossil fuels due to its remarkable properties including exceptionally high energy content per unit mass (142 MJ/kg) low mass density and massive environmental and economical upsides. A wide spectrum of methods in H2 production especially carbon-free approaches H2purification and H2storage have been investigated to bring this energy source closer to the technological deployment. Hydrogen hydrates are among the most intriguing material paradigms for H2storage due to their appealing properties such as low energy consumption for charge and discharge safety cost-effectiveness and favorable environmental features. Here we comprehensively discuss the progress in understanding of hydrogen clathrate hydrates with an emphasis on charging/discharging rate of H2 (i.e. hydrate formation and dissociation rates) and the storage capacity. A thorough understanding on phase equilibrium of the hydrates and its variation through different materials is provided. The path toward ambient temperature and pressure hydrogen batteries with high storage capacity is elucidated. We suggest that the charging rate of H2 in this storage medium and long cyclic performance are more immediate challenges than storage capacity for technological translation of this storage medium. This review and provided outlook establish a groundwork for further innovation on hydrogen hydrate systems for promising future of hydrogen fuel.
The NederDrone: A Hybrid Lift, Hybrid Energy Hydrogen UAV
Mar 2021
Publication
Many Unmanned Air Vehicle (UAV) applications require vertical take-off and landing and very long-range capabilities. Fixed-wing aircraft need long runways to land and electric energy is still a bottleneck for helicopters which are not range efficient. In this paper we introduce the NederDrone a hybrid lift hybrid energy hydrogen-powered UAV that can perform vertical take-off and landings using its 12 propellers while flying efficiently in forward flight thanks to its fixed wings. The energy is supplied from a combination of hydrogen-driven Polymer Electrolyte Membrane fuel-cells for endurance and lithium batteries for high-power situations. The hydrogen is stored in a pressurized cylinder around which the UAV is optimized. This work analyses the selection of the concept the implemented safety elements the electronics and flight control and shows flight data including a 3h38 flight at sea while starting and landing from a small moving ship.
Hydrogen Supply Chains for Mobility—Environmental and Economic Assessment
May 2018
Publication
Hydrogen mobility is one option for reducing local emissions avoiding greenhouse gas (GHG) emissions and moving away from a mainly oil-based transport system towards a diversification of energy sources. As hydrogen production can be based on a broad variety of technologies already existing or under development a comprehensive assessment of the different supply chains is necessary regarding not only costs but also diverse environmental impacts. Therefore in this paper a broad variety of hydrogen production technologies using different energy sources renewable and fossil are exemplarily assessed with the help of a Life Cycle Assessment and a cost assessment for Germany. As environmental impacts along with the impact category Climate change five more advanced impact categories are assessed. The results show that from an environmental point of view PEM and alkaline electrolysis are characterized by the lowest results in five out of six impact categories. Supply chains using fossil fuels in contrast have the lowest supply costs; this is true e.g. for steam methane reforming. Solar powered hydrogen production shows low impacts during hydrogen production but high impacts for transport and distribution to Germany. There is no single supply chain that is the most promising for every aspect assessed here. Either costs have to be lowered further or supply chains with selected environmental impacts have to be modified.
Improvement in Hydrogen Production with Plasma Reformer System
Jun 2016
Publication
In our previous studies of a plasma reformer system the effects of temperature of the reactants and input voltage have not been considered. In the present investigation the plasma reformer system has been modified to study the influence of the reactants’ temperature and input voltage on hydrogen production experimentally. The plasma reformer system includes a supersonic atomizer a plasma generator and a controlling device. In the experiment the operating parameters include the temperature of the reactants and the input voltage. The temperature of the reactants varies from 25 °C to 50 °C and the input voltage ranges from 12.5 V to 14.5 V. Results show that the increase in temperature of the reactants and input voltage will improve the production of hydrogen. In addition the improvement of heating on the reactants shows significant influence on hydrogen production.
Assessment of Operational Degradation of Pipeline Steels
Jun 2021
Publication
This paper summarizes a series of the authors’ research in the field of assessing the operational degradation of oil and gas transit pipeline steels. Both mechanical and electrochemical properties of steels are deteriorated after operation as is their resistance to environmentally-assisted cracking. The characteristics of resistance to brittle fracture and stress corrosion cracking decrease most intensively which is associated with a development of in-bulk dissipated microdamages of the material. The most sensitive indicators of changes in the material’s state caused by degradation are impact toughness and fracture toughness by the J-integral method. The degradation degree of pipeline steels can also be evaluated nondestructively based on in-service changes in their polarization resistance and potential of the fracture surface. Attention is drawn to hydrogenation of a pipe wall from inside as a result of the electrochemical interaction of pipe metal with condensed moisture which facilitates operational degradation of steel due to the combined action of operating stresses and hydrogen. The development of microdamages along steel texture was evidenced metallographically as a trend to the selective etching of boundaries between adjacent bands of ferrite and pearlite and fractographically by revealing brittle fracture elements on the fracture surfaces namely delamination and cleavage indicating the sites of cohesion weakening between ferrite and pearlite bands. The state of the X52 steel in its initial state and after use for 30 years was assessed based on the numerical simulation method.
Intermetallic Compounds Synthesized by Mechanical Alloying for Solid-State Hydrogen Storage: A Review
Sep 2021
Publication
Hydrogen energy is a very attractive option in dealing with the existing energy crisis. For the development of a hydrogen energy economy hydrogen storage technology must be improved to over the storage limitations. Compared with traditional hydrogen storage technology the prospect of hydrogen storage materials is broader. Among all types of hydrogen storage materials solid hydrogen storage materials are most promising and have the most safety security. Solid hydrogen storage materials include high surface area physical adsorption materials and interstitial and non-interstitial hydrides. Among them interstitial hydrides also called intermetallic hydrides are hydrides formed by transition metals or their alloys. The main alloy types are A2B AB AB2 AB3 A2B7 AB5 and BCC. A is a hydride that easily forms metal (such as Ti V Zr and Y) while B is a non-hydride forming metal (such as Cr Mn and Fe). The development of intermetallic compounds as hydrogen storage materials is very attractive because their volumetric capacity is much higher (80–160 kgH2m−3 ) than the gaseous storage method and the liquid storage method in a cryogenic tank (40 and 71 kgH2m−3 ). Additionally for hydrogen absorption and desorption reactions the environmental requirements are lower than that of physical adsorption materials (ultra-low temperature) and the simplicity of the procedure is higher than that of non-interstitial hydrogen storage materials (multiple steps and a complex catalyst). In addition there are abundant raw materials and diverse ingredients. For the synthesis and optimization of intermetallic compounds in addition to traditional melting methods mechanical alloying is a very important synthesis method which has a unique synthesis mechanism and advantages. This review focuses on the application of mechanical alloying methods in the field of solid hydrogen storage materials.
Analysis of Hydrogen in Inorganic Materials and Coatings: A Critical Review
Jun 2021
Publication
The currently used bulk analysis and depth profiling methods for hydrogen in inorganic materials and inorganic coatings are reviewed. Bulk analysis of hydrogen is based on fusion of macroscopic samples in an inert gas and the detection of the thereby released gaseous H2 using inert gas fusion (IGF) and thermal desorption spectroscopy (TDS). They offer excellent accuracy and sensitivity. Depth profiling methods involve glow discharge optical emission spectroscopy and mass spectrometry (GDOES and GDMS) laser-induced breakdown spectroscopy (LIBS) secondary ion mass spectrometry (SIMS) nuclear reaction analysis (NRA) and elastic recoil detection analysis (ERDA). The principles of all these methods are explained in terms of the methodology calibration procedures analytical performance and major application areas. The synergies and the complementarity of various methods of hydrogen analysis are described. The existing literature about these methods is critically evaluated and major papers concerning each method are listed.
Experimental Study of the Explosion Severity of Vented Methane/Hydrogen Deflagrations
Sep 2021
Publication
Adding hydrogen to mains natural gas has been identified as one of the main strategies to reduce CO2 emissions in the United Kingdom. This work aims to characterise the explosion severity of 80:20 v./v. methane/hydrogen blends (‘a blend’) and methane vented deflagrations. The explosion severity of homogenous mixtures was measured in a 15 m3 cubic steel chamber in which the relief area was provided by four windows and a door covered with polypropylene sheet. The pressure increase over time was characterised using piezo-resistive pressure transducers and the flame speed was estimated using ionisation probes installed in the walls of the enclosure. The explosion severity of both mixtures was determined for different equivalence ratios from lean to rich mixtures. The pressure over time presented very similar behaviour for both mixtures comprising multiple peaks divided into three main stages: a first stage related to a spherical confined explosion until the opening of the vent a second stage generated by increased combustion during venting and an oscillatory peak generated by acoustic disturbances with the enclosure. A slight increase in the first stage overpressure was observed for the blend in comparison with methane regardless of the equivalence ratio but no general trend in pressure was observed for other stages of the propagation. The effect of the blockage ratio on explosion severity was studied by adding metallic elements representing furniture in a room.
Studies of the Impact of Hydrogen on the Stability of Gaseous Mixtures of THT
Dec 2020
Publication
One of the most important requirements concerning the quality of natural gases guaranteeing their safe use involves providing the proper level of their odorization. This allows for the detection of uncontrolled leakages of gases from gas networks installations and devices. The concentration of an odorant should be adjusted in such a manner that the gas odor in a mixture with air would be noticeable by users (gas receivers). A permanent odor of gas is guaranteed by the stability of the odorant molecule and its resistance to changes in the composition of odorized gases. The article presents the results of experimental research on the impact of a hydrogen additive on the stability of tetrahydrothiophene (THT) mixtures in methane and in natural gas with a hydrogen additive. The objective of the work was to determine the readiness of measurement infrastructures routinely used in monitoring the process of odorizing natural gas for potential changes in its composition. One of the elements of this infrastructure includes the reference mixtures of THT used to verify the correctness of the readings of measurement devices. The performed experimental tests address possible changes in the composition of gases supplied via a distribution network resulting from the introduction of hydrogen. The lack of interaction between hydrogen and THT has been verified indirectly by assessing the stability of its mixtures with methane and natural gas containing hydrogen. The results of the presented tests permitted the identification of potential hazards for the safe use of gas from a distribution network resulting from changes in its composition caused by the addition of hydrogen.
Electrochemical Hydrogen Production Powered by PVCSP Hybrid Power Plants A Modelling Approach for Cost Optimal System Design
Jun 2021
Publication
Global trade of green hydrogen will probably become a vital factor in reaching climate neutrality. The sunbelt of the Earth has a great potential for large-scale hydrogen production. One promising pathway to solar hydrogen is to use economically priced electricity from photovoltaics (PV) for electrochemical water splitting. However storing electricity with batteries is still expensive and without storage only a small operating capacity of electrolyser systems can be reached. Combining PV with concentrated solar power (CSP) and thermal energy storage (TES) seems a good pathway to reach more electrolyser full load hours and thereby lower levelized costs of hydrogen (LCOH). This work introduces an energy system model for finding cost-optimal designs of such PV/CSP hybrid hydrogen production plants based on a global optimization algorithm. The model includes an operational strategy which improves the interplay between PV and CSP part allowing also to store PV surplus electricity as heat. An exemplary study for stand-alone hydrogen production with an alkaline electrolyser (AEL) system is carried out. Three different locations with different solar resources are considered regarding the total installed costs (TIC) to obtain realistic LCOH values. The study shows that a combination of PV and CSP is an auspicious concept for large-scale solar hydrogen production leading to lower costs than using one of the technologies on its own. For today’s PV and CSP costs minimum levelized costs of hydrogen of 4.04 USD/kg were determined for a plant located in Ouarzazate (Morocco). Considering the foreseen decrease in PV and CSP costs until 2030 cuts the LCOH to 3.09 USD/kg while still a combination of PV and CSP is the most economic system.
Powering a climate-neutral economy: An EU Strategy for Energy System Integration
Jul 2020
Publication
To become climate-neutral by 2050 Europe needs to transform its energy system which accounts for 75% of the EU's greenhouse gas emissions. The EU strategies for energy system integration and hydrogen adopted today will pave the way towards a more efficient and interconnected energy sector driven by the twin goals of a cleaner planet and a stronger economy.<br/><br/>The two strategies present a new clean energy investment agenda in line with the Commission's Next Generation EU recovery package and the European Green Deal. The planned investments have the potential to stimulate the economic recovery from the coronavirus crisis. They create European jobs and boost our leadership and competitiveness in strategic industries which are crucial to Europe's resilience.
Towards Computer-Aided Graphene Covered TiO2-Cu(CuxOy) Composite Design for the Purpose of Photoinduced Hydrogen Evolution
May 2021
Publication
In search a hydrogen source we synthesized TiO2-Cu-graphene composite photocatalyst for hydrogen evolution. The catalyst is a new and unique material as it consists of copper-decorated TiO2 particles covered tightly in graphene and obtained in a fluidized bed reactor. Both reduction of copper from Cu(CH3COO) at the surface of TiO2 particles and covering of TiO2-Cu in graphene thin layer by Chemical Vapour Deposition (CVD) were performed subsequently in the flow reactor by manipulating the gas composition. Obtained photocatalysts were tested in regard to hydrogen generation from photo-induced water conversion with methanol as sacrificial agent. The hydrogen generation rate for the most active sample reached 2296.27 µmol H2 h−1 gcat−1. Combining experimental and computational approaches enabled to define the optimum combination of the synthesis parameters resulting in the highest photocatalytic activity for water splitting for green hydrogen production. The results indicate that the major factor affecting hydrogen production is temperature of the TiO2-Cu-graphene composite synthesis which in turn is inversely correlated to photoactivity.
Innovating Transport Across Australia: Inquiry into Automated Mass Transit
Mar 2019
Publication
Automated and electric mass transit will play a significant role in the connectivity of our cities and regions. But automated mass transit must be placed within the wider context of the optimum transport needs of those cities and regions— transport networks based on shared and multi-modal mobility. Realising the full potential of these networks will require sustained policy development and investment.<br/>This report examines current and future developments in the use of automation and new energy sources in land-based mass transit including rail and road mass transit point-to-point transport using automated vehicles and the role and responsibilities of the Commonwealth in the development of these technologies. It will analyse the opportunities and challenges presented by automation and new energy sources and the role the Australian Government has to play in managing this transport revolution.
Research Requirements to Move the Bar Forward Using Aqueous Formate Salts as H2 Carriers for Energy Storage Applications
Nov 2020
Publication
In this perspective on hydrogen carriers we focus on the needs for the development of robust active catalysts for the release of H2 from aqueous formate solutions which are non-flammable non-toxic thermally stable and readily available at large scales at reasonable cost. Formate salts can be stockpiled in the solid state or dissolved in water for long term storage and transport using existing infrastructure. Furthermore formate salts are readily regenerated at moderate pressures using the same catalyst as for the H2 release. There have been several studies focused on increasing the activity of catalysts to release H2 at moderate temperatures i.e. < 80 °C below the operating temperature of a proton exchange membrane (PEM) fuel cell. One significant challenge to enable the use of aqueous formate salts as hydrogen carriers is the deactivation of the catalyst under operating conditions. In this work we provide a review of the most efficient heterogeneous catalysts that have been described in the literature their proposed modes of deactivation and the strategies reported to reactivate them. We discuss potential pathways that may lead to deactivation and strategies to mitigate it in a variety of H2 carrier applications. We also provide an example of a potential use case employing formate salts solutions using a fixed bed reactor for seasonal storage of energy for a microgrid application.
Effect of Copper Cobalt Oxide Composition on Oxygen Evolution Electrocatalysts for Anion Exchange Membrane Water Electrolysis
Nov 2020
Publication
Copper cobalt oxide nanoparticles (CCO NPs) were synthesized as an oxygen evolution electrocatalyst via a simple co-precipitation method with the composition being controlled by altering the precursor ratio to 1:1 1:2 and 1:3 (Cu:Co) to investigate the effects of composition changes. The effect of the ratio of Cu2+/Co3+ and the degree of oxidation during the co-precipitation and annealing steps on the crystal structure morphology and electrocatalytic properties of the produced CCO NPs were studied. The CCO1:2 electrode exhibited an outstanding performance and high stability owing to the suitable electrochemical kinetics which was provided by the presence of sufficient Co3+ as active sites for oxygen evolution and the uniform sizes of the NPs in the half cell. Furthermore single cell tests were performed to confirm the possibility of using the synthesized electrocatalyst in a practical water splitting system. The CCO1:2 electrocatalyst was used as an anode to develop an anion exchange membrane water electrolyzer (AEMWE) cell. The full cell showed stable hydrogen production for 100 h with an energetic efficiency of >71%. In addition it was possible tomass produce the uniform highly active electrocatalyst for such applications through the co-precipitation method.
Catalyst Engineering for Electrochemical Energy Conversion from Water to Water: Water Electrolysis and the Hydrogen Fuel Cell
May 2020
Publication
In the context of the current serious problems related to energy demand and climate change substantial progress has been made in developing a sustainable energy system. Electrochemical hydrogen–water conversion is an ideal energy system that can produce fuels via sustainable fossil-free pathways. However the energy conversion efficiency of two functioning technologies in this energy system—namely water electrolysis and the fuel cell—still has great scope for improvement. This review analyzes the energy dissipation of water electrolysis and the fuel cell in the hydrogen–water energy system and discusses the key barriers in the hydrogen- and oxygen-involving reactions that occur on the catalyst surface. By means of the scaling relations between reactive intermediates and their apparent catalytic performance this article summarizes the frameworks of the catalytic activity trends providing insights into the design of highly active electrocatalysts for the involved reactions. A series of structural engineering methodologies (including nanoarchitecture facet engineering polymorph engineering amorphization defect engineering element doping interface engineering and alloying) and their applications based on catalytic performance are then introduced with an emphasis on the rational guidance from previous theoretical and experimental studies. The key scientific problems in the electrochemical hydrogen–water conversion system are outlined and future directions are proposed for developing advanced catalysts for technologies with high energy-conversion efficiency.
Towards the Hydrogen Economy—A Review of the Parameters That Influence the Efficiency of Alkaline Water Electrolyzers
May 2021
Publication
Environmental issues make the quest for better and cleaner energy sources a priority. Worldwide researchers and companies are continuously working on this matter taking one of two approaches: either finding new energy sources or improving the efficiency of existing ones. Hydrogen is a well-known energy carrier due to its high energy content but a somewhat elusive one for being a gas with low molecular weight. This review examines the current electrolysis processes for obtaining hydrogen with an emphasis on alkaline water electrolysis. This process is far from being new but research shows that there is still plenty of room for improvement. The efficiency of an electrolyzer mainly relates to the overpotential and resistances in the cell. This work shows that the path to better electrolyzer efficiency is through the optimization of the cell components and operating conditions. Following a brief introduction to the thermodynamics and kinetics of water electrolysis the most recent developments on several parameters (e.g. electrocatalysts electrolyte composition separator interelectrode distance) are highlighted.
Cotton Stalk Activated Carbon-supported Co–Ce–B Nanoparticles as Efficient Catalysts for Hydrogen Generation Through Hydrolysis of Sodium Borohydride
Nov 2019
Publication
Porous cotton stalk activated carbons (CSAC) were prepared by phosphoric acid activation of cotton stalks in a fluidized bed. The CSAC-supported Co–B and Co–Ce–B catalysts were prepared by the impregnation-chemical reduction method. The samples were characterized by the nitrogen adsorption XRD FTIR and TEM measurements. The effects of the sodium borohydride (NaBH4) and sodium hydroxide (NaOH) concentrations reaction temperature and recyclability on the rate of NaBH4 hydrolysis over the CSAC-supported Co–Ce–B catalysts were systematically investigated. The results showed that the agglomeration of the Co–Ce–B nanoclusters on the CSAC support surface was significantly reduced with the introduction of cerium. The CSAC-supported Co–Ce–B catalyst exhibited superior catalytic activity and the average hydrogen generation rate was 16.42 L min−1 g−1 Co at 25°C which is higher than the most reported cobalt-based catalysts. The catalytic hydrolysis of NaBH4 was zero order with respect to the NaBH4 concentration and the hydrogen generation rate decreased with the increase in the NaOH concentration. The activation energy of the hydrogen generation reaction on the prepared catalyst was estimated to be 48.22 kJ mol−1. A kinetic rate equation was also proposed.
A Step towards the Hydrogen Economy—A Life Cycle Cost Analysis of A Hydrogen Refueling Station
May 2017
Publication
This study was aimed to define a methodology based on existing literature and evaluate the levelized cost of hydrogen (LCOH) for a decentralized hydrogen refueling station (HRS) in Halle Belgium. The results are based on a comprehensive data collection along with real cost information. The main results indicated that a LCOH of 10.3 €/kg at the HRS can be reached over a lifetime of 20 years if an average electricity cost of 0.04 €/kWh could be achieved and if the operating hours are maximized. Furthermore if the initial capital costs can be reduced by 80% in the case of direct subsidy the LCOH could even fall to 6.7 €/k
Intelligent Hydrogen Fuel Cell Range Extender for Battery Electric Vehicles
May 2019
Publication
Road transport is recognized as having a negative impact on the environment. Policy has focused on replacement of the internal combustion engine (ICE) with less polluting forms of technology including battery electric and fuel cell electric powertrains. However progress is slow and both battery and fuel cell based vehicles face considerable commercialization challenges. To understand these challenges a review of current electric battery and fuel cell electric technologies is presented. Based on this review this paper proposes a battery electric vehicle (BEV) where components are sized to take into account the majority of user requirements with the remainder catered for by a trailer-based demountable intelligent fuel cell range extender. The proposed design can extend the range by more than 50% for small BEVs and 25% for large BEVs (the extended range of vehicles over 250 miles) reducing cost and increasing efficiency for the BEV. It enables BEV manufacturers to design their vehicle battery for the most common journeys decreases charging time to provide convenience and flexibility to the drivers. Adopting a rent and drop business model reduces the demand on the raw materials bridging the gap in the amount of charging (refueling) stations and extending the lifespan for the battery pack.
Modifications in the Composition of CuO/ZnO/Al2O3 Catalyst for the Synthesis of Methanol by CO2 Hydrogenation
Jun 2021
Publication
Renewable methanol obtained from CO2 and hydrogen provided from renewable energy was proposed to close the CO2 loop. In industry methanol synthesis using the catalyst CuO/ZnO/Al2O3 occurs at a high pressure. We intend to make certain modification on the traditional catalyst to work at lower pressure maintaining high selectivity. Therefore three heterogeneous catalysts were synthesized by coprecipitation to improve the activity and the selectivity to methanol under mild conditions of temperature and pressure. Certain modifications on the traditional catalyst Cu/Zn/Al2O3 were employed such as the modification of the synthesis time and the addition of Pd as a dopant agent. The most efficient catalyst among those tested was a palladium-doped catalyst 5% Pd/Cu/Zn/Al2O3. This had a selectivity of 64% at 210 °C and 5 bar.
Economic Conditions for Developing Hydrogen Production Based on Coal Gasification with Carbon Capture and Storage in Poland
Sep 2020
Publication
This study documents the results of economic assessment concerning four variants of coal gasification to hydrogen in a shell reactor. That assessment has been made using discounting methods (NPV: net present value IRR: internal rate of return) as well as indicators based on a free cash flow to firm (FCFF) approach. Additionally sensitivity analysis has been carried out along with scenario analysis in current market conditions concerning prices of hard coal lignite hydrogen and CO2 allowances as well as capital expenditures and costs related to carbon capture and storage (CCS) systems. Based on NPV results a negative economic assessment has been obtained for all the analyzed variants varying within the range of EUR −903 to −142 million although the variants based on hard coal achieved a positive IRR (5.1–5.7%) but lower than the assumed discount rates. In Polish conditions the gasification of lignite seems to be unprofitable in the assumed scale of total investment outlays and the current price of coal feedstock. The sensitivity analyses indicate that at least a 20% increase of hydrogen price would be required or a similar reduction of capital expenditures (CAPEX) and costs of operation for the best variant to make NPV positive. Analyses have also indicated that on the economic basis only the prices of CO2 allowances exceeding EUR 40/Mg (EUR 52/Mg for lignite) would generate savings due to the availability of CCS systems.
Novel Fuzzy Control Energy Management Strategy for Fuel Cell Hybrid Electric Vehicles Considering State of Health
Oct 2021
Publication
Due to the low efficiency and high pollution of conventional internal combustion engine vehicles the fuel cell hybrid electric vehicles are expected to play a key role in the future of clean energy transportation attributed to the long driving range short hydrogen refueling time and environmental advantages. The development of energy management strategies has an important impact on the economy and durability but most strategies ignore the aging of fuel cells and the corresponding impact on hydrogen consumption. In this paper a rule-based fuzzy control strategy is proposed based on the constructed data-driven online estimation model of fuel cell health. Then a genetic algorithm is used to optimize this fuzzy controller where the objective function is designed to consider both the economy and durability by combining the hydrogen consumption cost and the degradation cost characterized by the fuel cell health status. Considering that the rule-based strategy is more sensitive to operating conditions this paper uses an artificial neural network for predictive control. The results are compared with those obtained from the genetic algorithm optimized fuzzy controller and are found to be very similar where the prediction accuracy is assessed using MAPE RMSE and 10-fold cross-validation. Experiments show that the developed strategy has a good generalization capability for variable driving cycles.
Hydrogen-based Integrated Energy and Mobility System for a Real-life Office Environment
Mar 2020
Publication
The current focus on the massive CO2 reduction highlights the need for the rapid development of technology for the production storage transportation and distribution of renewable energy. In addition to electricity we need other forms of energy carriers that are more suitable for energy storage and transportation. Hydrogen is one of the main candidates for this purpose since it can be produced from solar or wind energy and then stored; once needed it can be converted back to electricity using fuel cells. Another important aspect of future energy systems is sector coupling where different sectors e.g. mobility and energy work together to provide better services. In such an integrated system electric vehicles – both battery and hydrogen-based fuel cell – can provide when parked electricity services such as backup power and balancing; when driving they produce no emissions. In this paper we present the concept design and energy management of such an integrated energy and mobility system in a real-life environment at the Shell Technology Centre in Amsterdam. Our results show that storage using hydrogen and salt caverns is much cheaper than using large battery storage systems. We also show that the integration of electric vehicles into the electricity network is technically and economically feasible and that they can provide a flexible energy buffer. Ultimately the results of this study show that using both electricity and hydrogen as energy carriers can create a more flexible reliable and cheaper energy system at an office building.
Thermodynamic Analysis of the Effect of Green Hydrogen Addition to a Fuel Mixture on the Steam Methane Reforming Process
Oct 2021
Publication
Steam methane (CH4–H2O) reforming in the presence of a catalyst usually nickel is the most common technology for generating synthesis gas as a feedstock in chemical synthesis and a source of pure H2 and CO. What is essential from the perspective of further gas use is the parameter describing a ratio of equilibrium concentration of hydrogen to carbon monoxide (/ = 2/). The parameter is determined by operating temperature and the initial ratio of steam concentration to methane = 2 0 /4 0 . In this paper the author presents a thermodynamic analysis of the effect of green hydrogen addition to a fuel mixture on the steam methane reforming process of gaseous phase (CH4/H2)–H2O. The thermodynamic analysis of conversion of hydrogen-enriched methane (CH4/H2)–H2O has been performed using parametric equation formalism allowing for determining the equilibrium composition of the process in progress. A thermodynamic condition of carbon precipitation in methane reforming (CH4/H2) with the gaseous phase of H2O has been interpreted. The ranges of substrate concentrations creating carbon deposition for temperature T = 1000 K have been determined based on the technologies used. The results obtained can serve as a model basis for describing the properties of steam reforming of methane and hydrogen mixture (CH4/H2)– H2O.
Sorption-enhanced Steam Methane Reforming for Combined CO2 Capture and Hydrogen Production: A State-of-the-Art Review
Oct 2021
Publication
The European Commission have just stated that hydrogen would play a major role in the economic recovery of post-COVID-19 EU countries. Hydrogen is recognised as one of the key players in a fossil fuel-free world in decades to come. However commercially practiced pathways to hydrogen production todays are associated with a considerable amount of carbon emissions. The Paris Climate Change Agreement has set out plans for an international commitment to reduce carbon emissions within the forthcoming decades. A sustainable hydrogen future would only be achievable if hydrogen production is “designed” to capture such emissions. Today nearly 98% of global hydrogen production relies on the utilisation of fossil fuels. Among these steam methane reforming (SMR) boasts the biggest share of nearly 3 50% of the global generation. SMR processes correspond to a significant amount of carbon emissions at various points throughout the process. Despite the dark side of the SMR processes they are projected to play a major role in hydrogen production by the first half of this century. This that a sustainable yet clean short/medium-term hydrogen production is only possible by devising a plan to efficiently capture this co-produced carbon as stated in the latest International Energy Agency (IEA) reports. Here we have carried out an in-depth technical review of the processes employed in sorption-enhanced steam methane reforming (SE-SMR) an emerging technology in low-carbon SMR for combined carbon capture and hydrogen production. This paper aims to provide an in-depth review on two key challenging elements of SE-SMR i.e. the advancements in catalysts/adsorbents preparation and current approaches in process synthesis and optimisation including the employment of artificial intelligence in SE-SMR processes. To the best of the authors‟ knowledge there is a clear gap in the literature where the above areas have been scrutinised in a systematic and coherent fashion. The gap is even more pronounced in the application of AI in SE-SMR technologies. As a result this work aims to fill this gap within the scientific literature.
Three-dimensional Structures of N2-Diluted Stoichiometric H2-O2 Flames in Narrow Channels
Sep 2021
Publication
Flame propagation and acceleration in unobstructed channels/tubes is usually assumed as symmetric. A fully optically accessible narrow channel that allows to perform simultaneous high-speed schlieren visualization from two mutually perpendicular directions was built to asses the validity of the aforementioned assumption. Here we provide experimental evidence of the interesting three-dimensional structures and asymmetries that develop during the acceleration phase and show how these may control detonation onset in N2-diluted stoichiometric H2-O2 mixtures.
Assessment of an Innovative Way to Store Hydrogen in Vehicles
May 2019
Publication
The use of hydrogen as an alternative to fossil fuels for vehicle propulsion is already a reality. However due to its physical characteristics storage is still a challenge. There is an innovative way presented in this study to store hydrogen in conventional vehicles propelled by spark-ignition reciprocating engines and fuel cells using hydrogen as fuel; the storage of hydrogen will be at high pressure within small spheres randomly packed in a tank like the conventional tank of fuel used nowadays in current vehicles. Therefore the main purpose of the present study is to assess the performance of this storage system and compare it to others already applied by car manufacturers in their cars. In order to evaluate the performance of this storage system some parameters were taken into account: The energy stored by volume and stored by weight hydrogen leakage and compliance with current standards. This system is safer than conventional storage systems since hydrogen is stored inside small spheres containing small amounts of hydrogen. Besides its gravimetric energy density (GED) is threefold and the volumetric energy density (VED) is about half when compared with homologous values for conventional systems and both exceed the targets set by the U.S. Department of Energy. Regarding the leakage of hydrogen it complies with the European Standards provided a suitable choice of materials and dimensions is made.
Ammonia as Effective Hydrogen Storage: A Review on Production, Storage and Utilization
Jun 2020
Publication
Ammonia is considered to be a potential medium for hydrogen storage facilitating CO2-free energy systems in the future. Its high volumetric hydrogen density low storage pressure and stability for long-term storage are among the beneficial characteristics of ammonia for hydrogen storage. Furthermore ammonia is also considered safe due to its high auto ignition temperature low condensation pressure and lower gas density than air. Ammonia can be produced from many different types of primary energy sources including renewables fossil fuels and surplus energy (especially surplus electricity from the grid). In the utilization site the energy from ammonia can be harvested directly as fuel or initially decomposed to hydrogen for many options of hydrogen utilization. This review describes several potential technologies in current conditions and in the future for ammonia production storage and utilization. Ammonia production includes the currently adopted Haber–Bosch electrochemical and thermochemical cycle processes. Furthermore in this study the utilization of ammonia is focused mainly on the possible direct utilization of ammonia due to its higher total energy efficiency covering the internal combustion engine combustion for gas turbines and the direct ammonia fuel cell. Ammonia decomposition is also described in order to give a glance at its progress and problems. Finally challenges and recommendations are also given toward the further development of the utilization of ammonia for hydrogen storage.
Standalone Renewable Energy and Hydrogen in an Agricultural Context: A Demonstrative Case
Feb 2019
Publication
Standalone renewable energy is widely used to power irrigation systems. However in agricultural facilities electricity from the grid and diesel are also consumed. The design and sizing of renewable generation involves difficulties derived from the different seasonal profiles of production and demand. If the generation is 100% renewable a considerable energy surplus is usually included. This paper is focused on a renewable energy system which has been installed in a vineyard located in the northeast of Spain. With energy from the photovoltaic fields the wastewater treatment plant of the winery a drip irrigation system and other ancillary consumptions are fed. The favourable effect of combining consumptions with different seasonal profiles is shown. The existence of some deferrable loads and the energy management strategy result in an aggregate consumption curve that is well suited to production. Besides the required energy storage is relatively small. The surplus energy is used for the on-site production of hydrogen by the electrolysis of water. The hydrogen refuels a hybrid fuel cell electric vehicle used for the mobility of workers in the vineyard. In summary electricity and hydrogen are produced on-site (to meet the energy needs) from 100% renewable sources and without operating emissions.
Life Cycle Assessment of Hydrogen from Proton Exchange Membrane Water Electrolysis in Future Energy Systems
Jan 2019
Publication
This study discusses the potential of H2 production by proton exchange membrane water electrolysis as an effective option to reduce greenhouse gas emissions in the hydrogen sector. To address this topic a life cycle assessment is conducted to compare proton exchange membrane water electrolysis versus the reference process - steam methane reforming. As a relevant result we show that hydrogen production via proton exchange membrane water electrolysis is a promising technology to reduce CO2 emissions of the hydrogen sector by up to 75% if the electrolysis system runs exclusively on electricity generated from renewable energy sources. In a future (2050) base-load operation mode emissions are comparable to the reference system.
The results for the global warming potential show a strong reduction of greenhouse gas emissions by 2050. The thoroughly and in-depth modelled components of the electrolyser have negligible influence on impact categories; thus emissions are mainly determined by the electricity mix. With 2017 electricity mix of Germany the global warming potential corresponds to 29.5 kg CO2 eq. for each kg of produced hydrogen. Referring to the electricity mix we received from an energy model emissions can be reduced to 11.5 kg CO2 eq. in base-load operation by the year 2050. Using only the 3000 h of excess power from renewables in a year will allow for the reduction of the global warming potential to 3.3 kg CO2 eq. From this result we see that an environmentally friendly electricity mix is crucial for reducing the global warming impact of electrolytic hydrogen.
The results for the global warming potential show a strong reduction of greenhouse gas emissions by 2050. The thoroughly and in-depth modelled components of the electrolyser have negligible influence on impact categories; thus emissions are mainly determined by the electricity mix. With 2017 electricity mix of Germany the global warming potential corresponds to 29.5 kg CO2 eq. for each kg of produced hydrogen. Referring to the electricity mix we received from an energy model emissions can be reduced to 11.5 kg CO2 eq. in base-load operation by the year 2050. Using only the 3000 h of excess power from renewables in a year will allow for the reduction of the global warming potential to 3.3 kg CO2 eq. From this result we see that an environmentally friendly electricity mix is crucial for reducing the global warming impact of electrolytic hydrogen.
Current Status of Automotive Fuel Cells for Sustainable Transport
May 2019
Publication
Automotive proton-exchange membrane fuel cells (PEMFCs) have finally reached a state of technological readiness where several major automotive companies are commercially leasing and selling fuel cell electric vehicles including Toyota Honda and Hyundai. These now claim vehicle speed and acceleration refueling time driving range and durability that rival conventional internal combustion engines and in most cases outperform battery electric vehicles. The residual challenges and areas of improvement which remain for PEMFCs are performance at high current density durability and cost. These are expected to be resolved over the coming decade while hydrogen infrastructure needs to become widely available. Here we briefly discuss the status of automotive PEMFCs misconceptions about the barriers that platinum usage creates and the remaining hurdles for the technology to become broadly accepted and implemented.
Global Status of CCS 2021: CCS Accelerating to Net Zero
Oct 2021
Publication
Carbon capture and storage (CCS) continues to make significant progress around the world against a backdrop of greater climate action from countries and private companies. The Global Status of CCS 2021 demonstrates the critical role of CCS as nations and industry accelerate to net-zero.<br/>The report provides detailed analyses of the global project pipeline international policy finance and emerging trends. In addition four regional overviews highlight the rapid development of CCS across North America Asia Pacific Europe and nearby regions and the Gulf Cooperation Council states.
Which way to Net Zero? A Comparative Analysis of Seven UK 2050 Decarbonisation Pathways
Dec 2021
Publication
Since the UK’s Net Zero greenhouse gas emissions target was set in 2019 organisations across the energy systems community have released pathways on how we might get there – which end-use technologies are deployed across each sector of demand how our fossil fuel-based energy supply would be transferred to low carbon vectors and to what extent society must change the way it demands energy services. This paper presents a comparative analysis between seven published Net Zero pathways for the UK energy system collected from Energy Systems Catapult National Grid ESO Centre for Alternative Technology and the Climate Change Committee. The key findings reported are that (i) pathways that rely on less stringent behavioural changes require more ambitious technology development (and vice versa); (ii) electricity generation will increase by 51-160% to facilitate large-scale fuel-switching in heating and transport the vast majority of which is likely to be generated from variable renewable sources; (iii) hydrogen is an important energy vector in meeting Net Zero for all pathways providing 100-591 TWh annually by 2050 though the growth in demand is heavily dependent on the extent to which it is used in supplying heating and transport demand. This paper also presents a re-visited analysis of the potential renewable electricity generation resource in the UK. It was found that the resource for renewable electricity generation outstrips the UK’s projected 2050 electricity demand by a factor 12-20 depending on the pathway. As made clear in all seven pathways large-scale deployment of flexibility and storage is required to match this abundant resource to our energy demand.
In-Situ Hollow Sample Setup Design for Mechanical Characterisation of Gaseous Hydrogen Embrittlement of Pipeline Steels and Welds
Aug 2021
Publication
This work discusses the design and demonstration of an in-situ test setup for testing pipeline steels in a high pressure gaseous hydrogen (H2 ) environment. A miniature hollow pipe-like tensile specimen was designed that acts as the gas containment volume during the test. Specific areas of the specimen can be forced to fracture by selective notching as performed on the weldment. The volume of H2 used was minimised so the test can be performed safely without the need of specialised equipment. The setup is shown to be capable of characterising Hydrogen Embrittlement (HE) in steels through testing an X60 pipeline steel and its weldment. The percentage elongation (%El) of the base metal was found to be reduced by 40% when tested in 100 barg H2 . Reduction of cross-sectional area (%RA) was found to decrease by 28% and 11% in the base metal and weld metal respectively when tested in 100 barg H2 . Benchmark test were performed at 100 barg N2 pressure. SEM fractography further indicated a shift from normal ductile fracture mechanisms to a brittle transgranular (TG) quasi-cleavage (QC) type fracture that is characteristic of HE.
Expectations as a Key to Understanding Actor Strategies in the Field of Fuel Cell and Hydrogen Vehicles
Feb 2012
Publication
Due to its environmental impact the mobility system is increasingly under pressure. The challenges to cope with climate change air quality depleting fossil resources imply the need for a transition of the current mobility system towards a more sustainable one. Expectations and visions have been identified as crucial in the guidance of such transitions and more specifically of actor strategies. Still it remained unclear why the actors involved in transition activities appear to change their strategies frequently and suddenly. The empirical analysis of the expectations and strategies of three actors in the field of hydrogen and fuel cell technology indicates that changing actor strategies can be explained by rather volatile expectations related to different levels. Our case studies of the strategies of two large car manufacturers and the German government demonstrate that the car manufacturers refer strongly to expectations about the future regime while expectations related to the socio-technical landscape level appear to be crucial for the strategy of the German government.
Layered Transition Metal Selenophosphites for Visible Light Photoelectrochemical Production of Hydrogen
Jun 2021
Publication
The growing consumption of global energy has posed serious challenges to environmental protection and energy supplies. A promising solution is via introducing clean and sustainable energy sources including photoelectrochemical hydrogen fuel production. 2D materials such as transition metal trichalcogenphosphites (MPCh3) are gaining more and more interest for their potential as photocatalysts. Crystals of transition metal selenophosphites namely MnPSe3 FePSe3 and ZnPSe3 were tested as photocatalysts for the hydrogen evolution reaction (HER). ZnPSe3 is the one that exhibited the lowest overpotential and the higher response to the light during photocurrent experiments in acidic media. For this reason among the crystals in this work it is the most promising for the photocatalyzed production of hydrogen.
Potential Liquid-Organic Hydrogen Carrier (LOHC) Systems: A Review on Recent Progress
Nov 2020
Publication
The depletion of fossil fuels and rising global warming challenges encourage to find safe and viable energy storage and delivery technologies. Hydrogen is a clean efficient energy carrier in various mobile fuel-cell applications and owned no adverse effects on the environment and human health. However hydrogen storage is considered a bottleneck problem for the progress of the hydrogen economy. Liquid-organic hydrogen carriers (LOHCs) are organic substances in liquid or semi-solid states that store hydrogen by catalytic hydrogenation and dehydrogenation processes over multiple cycles and may support a future hydrogen economy. Remarkably hydrogen storage in LOHC systems has attracted dramatically more attention than conventional storage systems such as high-pressure compression liquefaction and absorption/adsorption techniques. Potential LOHC media must provide fully reversible hydrogen storage via catalytic processes thermal stability low melting points favorable hydrogenation thermodynamics and kinetics large-scale availability and compatibility with current fuel energy infrastructure to practically employ these molecules in various applications. In this review we present various considerable aspects for the development of ideal LOHC systems. We highlight the recent progress of LOHC candidates and their catalytic approach as well as briefly discuss the theoretical insights for understanding the reaction mechanism.
A Review of the MSCA ITN ECOSTORE—Novel Complex Metal Hydrides for Efficient and Compact Storage of Renewable Energy as Hydrogen and Electricity
Mar 2020
Publication
Hydrogen as an energy carrier is very versatile in energy storage applications. Developments in novel sustainable technologies towards a CO2-free society are needed and the exploration of all-solid-state batteries (ASSBs) as well as solid-state hydrogen storage applications based on metal hydrides can provide solutions for such technologies. However there are still many technical challenges for both hydrogen storage material and ASSBs related to designing low-cost materials with low-environmental impact. The current materials considered for all-solid-state batteries should have high conductivities for Na+ Mg2+ and Ca2+ while Al3+-based compounds are often marginalised due to the lack of suitable electrode and electrolyte materials. In hydrogen storage materials the sluggish kinetic behaviour of solid-state hydride materials is one of the key constraints that limit their practical uses. Therefore it is necessary to overcome the kinetic issues of hydride materials before discussing and considering them on the system level. This review summarizes the achievements of the Marie Skłodowska-Curie Actions (MSCA) innovative training network (ITN) ECOSTORE the aim of which was the investigation of different aspects of (complex) metal hydride materials. Advances in battery and hydrogen storage materials for the efficient and compact storage of renewable energy production are discussed.
Magnesium-Based Materials for Hydrogen Storage—A Scope Review
Sep 2020
Publication
Magnesium hydride and selected magnesium-based ternary hydride (Mg2FeH6 Mg2NiH4 and Mg2CoH5) syntheses and modification methods as well as the properties of the obtained materials which are modified mostly by mechanical synthesis or milling are reviewed in this work. The roles of selected additives (oxides halides and intermetallics) nanostructurization polymorphic transformations and cyclic stability are described. Despite the many years of investigations related to these hydrides and the significant number of different additives used there are still many unknown factors that affect their hydrogen storage properties reaction yield and stability. The described compounds seem to be extremely interesting from a theoretical point of view. However their practical application still remains debatable.
Modeling of Fixed Bed Reactor for Coal Tar Hydrogenation via the Kinetic Lumping Approach
Nov 2018
Publication
Hydrogenation technology is an indispensable chemical upgrading process for converting the heavy feedstock into favorable lighter products. In this work a new kinetic model containing four hydrocarbon lumps (feedstock diesel gasoline cracking gas) was developed to describe the coal tar hydrogenation process the Levenberg–Marquardt’s optimization algorithm was used to determine the kinetic parameters by minimizing the sum of square errors between experimental and calculated data the predictions from model validation showed a good agreement with experimental values. Subsequently an adiabatic reactor model based on proposed lumped kinetic model was constructed to further investigate the performance of hydrogenation fixed-bed units the mass balance and energy balance within the phases in the reactor were taken into accounts in the form of ordinary differential equation. An application of the reactor model was performed for simulating the actual bench-scale plant of coal tar hydrogenation the simulated results on the products yields and temperatures distribution along with the reactor are shown to be good consistent with the experimental data.
Flexible Electricity Use for Heating in Markets with Renewable Energy
Mar 2020
Publication
Using electricity for heating can contribute to decarbonization and provide flexibility to integrate variable renewable energy. We analyze the case of electric storage heaters in German 2030 scenarios with an open-source electricity sector model. We find that flexible electric heaters generally increase the use of generation technologies with low variable costs which are not necessarily renewables. Yet making customary night-time storage heaters temporally more flexible offers only moderate benefits because renewable availability during daytime is limited in the heating season. Respective investment costs accordingly have to be very low in order to realize total system cost benefits. As storage heaters feature only short-term heat storage they also cannot reconcile the seasonal mismatch of heat demand in winter and high renewable availability in summer. Future research should evaluate the benefits of longer-term heat storage.
Healthy Power: Reimagining Hospitals as Sustainable Energy Hubs
Oct 2020
Publication
Human health is a key pillar of modern conceptions of sustainability. Humanity pays a considerable price for its dependence on fossil-fueled energy systems which must be addressed for sustainable urban development. Public hospitals are focal points for communities and have an opportunity to lead the transition to renewable energy. We have reimagined the healthcare energy ecosystem with sustainable technologies to transform hospitals into networked clean energy hubs. In this concept design hydrogen is used to couple energy with other on-site medical resource demands and vanadium flow battery technology is used to engage the public with energy systems. This multi-generation system would reduce harmful emissions while providing reliable services tackling the linked issues of human and environmental health.
Modelling and Analyzing the Impact of Hydrogen Enriched Natural Gas on Domestic Gas Boilers in a Decarbonization Perspective
Aug 2020
Publication
Decarbonization of energy economy is nowadays a topical theme and several pathways are under discussion. Gaseous fuels have a fundamental role for this transition and the production of low carbon-impact fuels is necessary to deal with this challenge. The generation of renewable hydrogen is a trusted solution since this energy vector can be promptly produced from electricity and injected into the existing natural gas infrastructure granting storage capacity and easy transportation. This scenario will lead in the near future to hydrogen enrichment of natural gas whose impact on the infrastructures is being actively studied. The effect on end-user devices such as domestic gas boilers instead is still little analyzed and tested but is fundamental to be assessed. The aim of this research is to generate knowledge on the effect of hydrogen enrichment on the widely used premixed boilers: the investigations include pollutant emissions efficiency flashback and explosion hazard control system and materials selection. A model for calculating several parameters related to combustion of hydrogen enriched natural gas is presented. Guidelines for the design of new components are provided and an insight is given on the maximum hydrogen blending bearable by the current boilers.
No more items...