- Home
- A-Z Publications
- Publications
Publications
Artificial Neural Network Based Optimization of a Six-step Two-bed Pressure Swing Adsorption System for Hydrogen Purification
Apr 2021
Publication
The pressure swing adsorption (PSA) system is widely applied to separate and purify hydrogen from gaseous mixtures. The extended Langmuir equation fitted from the extended Langmuir-Freundlich isotherm has been used to predict the adsorption isothermal of hydrogen and methane on the zeolite 5A adsorbent bed. A six-step two-bed PSA model for hydrogen purification is developed and validated by comparing its simulation results with other works. The effects of the adsorption pressure the P/F ratio the adsorption step time and the pressure equalization time on the performance of the hydrogen purification system are studied. A four-step two-bed PSA model is taken into consideration and the six-step PSA system shows higher about 13% hydrogen recovery than the four-step PSA system. The performance of the vacuum pressure swing adsorption (VPSA) system is compared with that of the PSA system the VPSA system shows higher hydrogen purity than the PSA system. Based on the validated PSA model a dataset has been produced to train the artificial neural network (ANN) model. The effects of the number of neurons in the hidden layer and the number of samples used for training ANN model on the predicted performance of ANN model are investigated. Then the well-trained ANN model with 6 neurons in the hidden layer is applied to predict the performance of the PSA system for hydrogen purification. Multi-objective optimization of hydrogen purification system is performed based on the trained ANN model. The artificial neural network can be considered as a very effective method for predicting and optimizing the performance of the PSA system for hydrogen purification.
Impact of Hydrogen/Natural Gas Blends on Partially Premixed Combustion Equipment: NOx Emission and Operational Performance
Feb 2022
Publication
Several North American utilities are planning to blend hydrogen into gas grids as a short‐ term way of addressing the scalable demand for hydrogen and as a long‐term decarbonization strat‐ egy for ‘difficult‐to‐electrify’ end uses. This study documents the impact of 0–30% hydrogen blends by volume on the performance emissions and safety of unadjusted equipment in a simulated use environment focusing on prevalent partially premixed combustion designs. Following a thorough literature review the authors describe three sets of results: operating standard and “ultra‐low NOx” burners from common heating equipment in “simulators” with hydrogen/methane blends up to 30% by volume in situ testing of the same heating equipment and field sampling of a wider range of equipment with 0–10% hydrogen/natural gas blends at a utility‐owned training facility. The equipment was successfully operated with up to 30% hydrogen‐blended fuels with limited visual changes to flames and key trends emerged: (a) a decrease in the input rate from 0 to 30% H2 up to 11% often in excess of the Wobbe Index‐based predictions; (b) NOx and CO emissions are flat or decline (air‐free or energy‐adjusted basis) with increasing hydrogen blending; and (c) a minor de‐ crease (1.2%) or increase (0.9%) in efficiency from 0 to 30% hydrogen blends for standard versus ultra‐low NOx‐type water heaters respectively.
From Post-Combustion Carbon Capture to Sorption-Enhanced Hydrogen Production: A State-of-the-Art Review of Carbonate Looping Process Feasibility
Oct 2018
Publication
Carbon capture and storage is expected to play a pivotal role in achieving the emission reduction targets established by the Paris Agreement. However the most mature technologies have been shown to reduce the net efficiency of fossil fuel-fired power plants by at least 7% points increasing the electricity cost. Carbonate looping is a technology that may reduce these efficiency and economic penalties. Its maturity has increased significantly over the past twenty years mostly due to development of novel process configurations and sorbents for improved process performance. This review provides a comprehensive overview of the calcium looping concepts and statistically evaluates their techno-economic feasibility. It has been shown that the most commonly reported figures for the efficiency penalty associated with calcium looping retrofits were between 6 and 8% points. Furthermore the calcium-looping-based coal-fired power plants and sorption-enhanced hydrogen production systems integrated with combined cycles and/or fuel cells have been shown to achieve net efficiencies as high as 40% and 50–60% respectively. Importantly the performance of both retrofit and greenfield scenarios can be further improved by increasing the degree of heat integration as well as using advanced power cycles and enhanced sorbents. The assessment of the economic feasibility of calcium looping concepts has indicated that the cost of carbon dioxide avoided will be between 10 and 30 € per tonne of carbon dioxide and 10–50 € per tonne of carbon dioxide in the retrofit and greenfield scenarios respectively. However limited economic data have been presented in the current literature for the thermodynamic performance of calcium looping concepts.
Reliable Off-grid Power Supply Utilizing Green Hydrogen
Jun 2021
Publication
Green hydrogen produced from wind solar or hydro power is a suitable electricity storage medium. Hydrogen is typically employed as mid- to long-term energy storage whereas batteries cover short-term energy storage. Green hydrogen can be produced by any available electrolyser technology [alkaline electrolysis cell (AEC) polymer electrolyte membrane (PEM) anion exchange membrane (AEM) solid oxide electrolysis cell (SOEC)] if the electrolysis is fed by renewable electricity. If the electrolysis operates under elevated pressure the simplest way to store the gaseous hydrogen is to feed it directly into an ordinary pressure vessel without any external compression. The most efficient way to generate electricity from hydrogen is by utilizing a fuel cell. PEM fuel cells seem to be the most favourable way to do so. To increase the capacity factor of fuel cells and electrolysers both functionalities can be integrated into one device by using the same stack. Within this article different reversible technologies as well as their advantages and readiness levels are presented and their potential limitations are also discussed.
Decarbonization of Cement Production in a Hydrogen Economy
Apr 2022
Publication
The transition to net-zero emission energy systems creates synergistic opportunities across sectors. For example fuel hydrogen production from water electrolysis generates by-product oxygen that could be used to reduce the cost of carbon capture and storage (CCS) essential in the decarbonization of clinker production in cement making. To assess this opportunity a techno-economic assessment was carried out for the production of clinker using oxy-combustion in a natural gas-fueled plant coupled to CCS. Material and energy flows were assessed in a reference case for clinker production (oxygen from air no CCS) and compared to oxy-combustion clinker production from either an air separation unit (ASU 95% O2) or water electrolysis (100% O2) both coupled to CCS. Compared to the reference air-combusted clinker plant oxy-combustion increases thermal energy demand by 7% and electricity demand by 137% for ASU and 67% for electrolytic oxygen. The levelized cost of oxygen supply ranges from $49/tO2 for an on-site ASU to pipelined electrolytic O2 at $35/tO2 (200 km) or $13/t O2 (20 km). The cost of clinker for the reference plant without CCS increases linearly from $84/t clinker to $193/t clinker at a carbon price of $0/tCO2 to $150/tCO2 respectively. With oxy-combustion and CCS the clinker production cost ranges from $119 to $122/t clinker reflecting a breakeven carbon price of $39 to $53/tCO2 compared to the reference case. The lower cost for the electrolytic supply of by-product oxygen compared to ASU oxygen must be balanced against the reliability of supply the pipeline transport distance and the charges that may be added by the hydrogen producer.
At What Cost Can Renewable Hydrogen Offset Fossil Fuel Use in Ireland’s Gas Network?
Apr 2020
Publication
The results of a techno-economic model of distributed wind-hydrogen systems (WHS) located at each existing wind farm on the island of Ireland are presented in this paper. Hydrogen is produced by water electrolysis from wind energy and backed up by grid electricity compressed before temporarily stored then transported to the nearest injection location on the natural gas network. The model employs a novel correlation-based approach to select an optimum electrolyser capacity that generates a minimum levelised cost of hydrogen production (LCOH) for each WHS. Three scenarios of electrolyser operation are studied: (1) curtailed wind (2) available wind and (3) full capacity operations. Additionally two sets of input parameters are used: (1) current and (2) future techno-economic parameters. Additionally two electricity prices are considered: (1) low and (2) high prices. A closest facility algorithm in a geographic information system (GIS) package identifies the shortest routes from each WHS to its nearest injection point. By using current parameters results show that small wind farms are not suitable to run electrolysers under available wind operation. They must be run at full capacity to achieve sufficiently low LCOH. At full capacity the future average LCOH is 6–8 €/kg with total hydrogen production capacity of 49 kilotonnes per year or equivalent to nearly 3% of Irish natural gas consumption. This potential will increase significantly due to the projected expansion of installed wind capacity in Ireland from 5 GW in 2020 to 10 GW in 2030
Testing Programme for Hydrogen Tolerance Tests of Domestic and Commercial Natural Gas Appliances
Jan 2021
Publication
The THyGA project (‘Testing Hydrogen admixture for Gas Applications’) focusses on technical aspects and the regulatory framework concerning the potential operation of domestic and commercial end-user appliances with hydrogen / natural gas blends.<br/>The core of the project is a broad experimental campaign with the aim to conduct up to 100 hydrogen tolerance tests. In addition the technical status quo and present knowledge about hydrogen impact on domestic and commercial appliances are assessed and potential future developments of rules and standards are discussed. Also mitigation strategies for coping with high levels of hydrogen admixture will be developed. By this broad approach the project aims at investigating which levels of hydrogen blending impact the various appliance technologies and to which extent in order to identify the regime in which a safe efficient and low-polluting operation is possible.<br/>The series of public reports by the THyGA project starts with several publications from work package 2 which sets the basis for the upcoming results and discussion of the experimental campaign as well as mitigation and standardisation topics.<br/>This report D2.5 completes the series of public reports from work package 2. It explains the steps of development of the test programme for gas-fired appliance tests with hydrogen admixture and especially describes the exchange between the THyGA partners and the external stakeholders.<br/>The report also explains the process of acquisition of appliances to test and method of selecting appliances.
Moving Gas Turbine Package from Conventional Gas to Hydrogen Blend
Sep 2021
Publication
The current greatest challenge that all gas turbine manufactures and users have in front of them for the years to come is the energy transition while reducing CO2 footprint and to contrast climate change. To this aim the introduction of hydrogen as fuel gas (or its blend) is playing a very important role. The benefit from an environmental point of view is undisputed but the presence of hydrogen introduces a series of safety related aspects to be considered for the design of all systems of a gas turbine package. Most of the design standards developed and adopted in the past are based on conventional natural gas however physical properties of hydrogen require to analyze additional aspects or revise the current ones. In this context the design for safety is paramount as it is strongly impacted by the low energy ignition of hydrogen blend fuels. Baker Hughes has built its experience on several sites different Customers and applications currently installed. These gas turbines run with a variety of hydrogen blends with concentration as high as 100% hydrogen. Baker Hughes has achieved several milestones moving from design to experimental set up leveraging the internal infrastructures consolidating design assumptions. In this work the critical aspects such as material selection instrumentation electrical devices and components are discussed in the framework of package safety with the aim to evolve conventional design minimizing the impacts on package configurations.
Different Scenarios of Electric Mobility: Current Situation and Possible Future Developments of Fuel Cell Vehicles in Italy
Jan 2020
Publication
The diffusion of electric vehicles in Italy has started but some complications weight its spread. At present hybrid technology is the most followed by users due particularly to socioeconomic factors such as cost of investment and range anxiety. After a deep discussion of the Italian scenario the aim of the paper is to recognize whether fuel cell technology may be an enabling solution to overcome pollution problems and respect for the environment. The opportunity to use fuel cells to store electric energy is quite fascinating—the charging times will be shortened and heavy passenger transport should be effortless challenged. On the basis of the present history and by investigating the available information this work reports the current e-mobility state in Italy and forecasts the cities in which a fuel cell charging infrastructure should be more profitable with the intention of granting a measured outlook on the plausible development of this actual niche market.
Polymer–Ceramic Composite Membranes for Water Removal in Membrane Reactors
Jun 2021
Publication
Methanol can be obtained through CO2 hydrogenation in a membrane reactor with higher yield or lower pressure than in a conventional packed bed reactor. In this study we explore a new kind of membrane with the potential suitability for such membrane reactors. Silicone–ceramic composite membranes are synthetized and characterized for their capability to selectively remove water from a mixture containing hydrogen CO2 and water at temperatures typical for methanol synthesis. We show that this membrane can achieve selective permeation of water under such harsh conditions and thus is an alternative candidate for use in membrane reactors for processes where water is one of the products and the yield is limited by thermodynamic equilibrium.
Optimal Sizing of Storage Elements for a Vehicle Based on Fuel Cells, Supercapacitors, and Batteries
Mar 2019
Publication
To achieve a vehicle-efficient energy management system an architecture composed of a PEM fuel cell as the main energy source and a hybrid storage system based on battery banks and supercapacitors is proposed. This paper introduces a methodology for the optimal component sizing aiming at minimizing the total cost achieving a cheaper system that can achieve the requirements of the speed profiles. The chosen vehicle is an urban transport bus which must meet the Buenos Aires Driving Cycle and the Manhattan Driving Cycle. The combination of batteries and supercapacitors allows a better response to the vehicle’s power demand since it combines the high energy density of the batteries with the high power density of the supercapacitors allowing the best absorption of energy coming from braking. In this way we address the rapid changes in power without reducing the global efficiency of the system. Optimum use of storage systems and fuel cell is analyzed through dynamic programming.
Simulation of Coupled Power and Gas Systems with Hydrogen-Enriched Natural Gas
Nov 2021
Publication
Due to the increasing share of renewable energy sources in the electrical network the focus on decarbonization has extended into other energy sectors. The gas sector is of special interest because it can offer seasonal storage capacity and additional flexibility to the electricity sector. In this paper we present a new simulation method designed for hydrogen-enriched natural gas network simulation. It can handle different gas compositions and is thus able to accurately analyze the impact of hydrogen injections into natural gas pipelines. After describing the newly defined simulation method we demonstrate how the simulation tool can be used to analyze a hydrogen-enriched gas pipeline network. An exemplary co-simulation of coupled power and gas networks shows that hydrogen injections are severely constrained by the gas pipeline network highlighting the importance and necessity of considering different gas compositions in the simulation.
Safety Standard for Hydrogen and Hydrogen Systems Guidelines for Hydrogen System Design, Materials Selection, Operations, Storage and Transportation
Jan 1997
Publication
The NASA Safety Standard which establishes a uniform process for hydrogen system design materials selection operation storage and transportation is presented. The guidelines include suggestions for safely storing handling and using hydrogen in gaseous (GH2) liquid (LH2) or slush (SLH2) form whether used as a propellant or non-propellant. The handbook contains 9 chapters detailing properties and hazards facility design design of components materials compatibility detection and transportation. Chapter 10 serves as a reference and the appendices contained therein include: assessment examples; scaling laws explosions blast effects and fragmentation; codes standards and NASA directives; and relief devices along with a list of tables and figures abbreviations a glossary and an index for ease of use. The intent of the handbook is to provide enough information that it can be used alone but at the same time reference data sources that can provide much more detail if required.
Enhancing Energy Recovery in Form of Biogas, from Vegetable and Fruit Wholesale Markets By-Products and Wastes, with Pretreatments
Jun 2021
Publication
Residues and by-products from vegetables and fruit wholesale markets are suitable for recovery in the form of energy through anaerobic digestion allowing waste recovery and introducing them into the circular economy. This suitability is due to their composition structural characteristics and to the biogas generation process which is stable and without inhibition. However it has been observed that the proportion of methane and the level of degradation of the substrate is low. It is decided to study whether the effect of pretreatments on the substrate is beneficial. Freezing ultrafreezing and lyophilization pretreatments are studied. A characterization of the substrates has been performed the route of action of pretreatment determined and the digestion process studied to calculate the generation of biogas methane hydrogen and the proportions among these. Also a complete analysis of the process has been performed by processing the data with mathematical and statistical methods to obtain disintegration constants and levels of degradation. It has been observed that the three pretreatments have positive effects when increasing the solubility of the substrate increasing porosity and improving the accessibility of microorganisms to the substrate. Generation of gases are greatly increased reaching a methane enrichment of 59.751%. Freezing seems to be the best pretreatment as it increases the biodegradation level the speed of the process and the disintegration constant by 306%.
Enhanced Hydrogen Generation Efficiency of Methanol using Dielectric Barrier Discharge Plasma Methodology and Conducting Sea Water as an Electrode
Aug 2020
Publication
In this work methanol decomposition method has been discussed for the production of hydrogen gas with the application of plasma. A simple dielectric barrier discharge (DBD) plasma reactor was designed for this purpose with two types of electrode. The DBD plasma reactor was experimented by substituting one of the metal electrodes with feebly conducting sea water which yielded better efficiency in producing hydrogen gas. Experimental parameters such as; discharge voltage and time were varied by maintaining a discharge gap of 1.5 mm and the plasma discharge characteristics were studied. Filamentary type micro-discharges were found to be formed which was observed as numerous streamer clusters in the current waveform. Gas chromatographic study confirmed the production of hydrogen gas with residence time around 3.6 min. Although the concentration (%) of H2 was high (98.1 %) and consistent with copper electrode assembly the rate of formation and concentration was found to be the highest (98.7 %) for water electrode for specific discharge voltage. The energy efficiency was found to be 0.5 mol H2/kWh and 1.2 mol H2/kWh for metal (Cu) and water electrodes respectively. The electrode material significantly affects the plasma condition and hence the rate of hydrogen production. Compositional analysis of the water used as electrode showed a minimal change in the composition even after the completion of the experiment as compared to the untreated water. Methanol degradation study shows the presence of untreated methanol in the residue of the plasma reactor which has been confirmed from the absorption spectra.
The Role of the Argon and Helium Bath Gases on the Detonation Structure of H2/)2 Mixture
Sep 2021
Publication
Recent modeling efforts of non-equilibrium effects in detonations have suggested that hydrogen-based detonations may be affected by vibrational non-equilibrium of the hydrogen and oxygen molecules effects which could explain discrepancies of cell sizes measured experimentally and calculated without relaxation effects. The present study addresses the role of vibrational relaxation in 2H2/O2 detonations by considering two-bath gases argon and helium. These two gases have the same thermodynamic and kinetic effects when relaxation is neglected. However due to the bath gases differences in molecular weight and reduced mass differences which affect the molecular collisions relaxation rates can be changed by approximately 50-70%. Experiments were performed in a narrow channel in mixtures of 2H2/O2/7Ar and 2H2/O2/7He to evaluate the role of the bath gas on detonation cellular structures. The experiments showed differences in velocity deficits and cell sizes for experimental conditions keeping the induction zone length constant in each of the mixtures. These differences were negligible in sensitive mixtures but increased with the increase in velocity deficits while the cell sizes approaching the channel dimensions. Near the limits differences of cell size in two mixtures approached a factor of 2. These differences were however reconciled by accounting for the viscous losses to the tube walls evaluated using a modified version of Mirels' laminar boundary layer theory and generalized Chapman-Jouguet theory for eigenvalue detonations. The experiments suggest that there is an influence of relaxation effects on the cellular structure of detonations which is more sensitive to wall boundary conditions. However the previous works showed that the impact of vibrational non-equilibrium in a mixture of H2/Air is more visible due to the effects of N2 in the air slowest to relax. Previous discrepancies suggested to be indicative of relaxation effects should be reevaluated by the inclusion of wall loss effects.
Optimization of Geothermal- and Solar-driven Clean Electricity and Hydrogen Production Multi-generation Systems to Address the Energy Nexus
Jan 2022
Publication
Given the limited sources of fossil fuels mankind should find new ways to meet its energy demands. In this regard geothermal and solar energy are acknowledged as reliable safe promising and clean means for this purpose. In this research study a comparative analysis is applied on geothermal and solar-driven multi-generation systems for clean electricity and hydrogen production through energy and exergy assessments. The system consists of an organic Rankine cycle a proton electrolyte membrane electrolyzer and a thermoelectric generator subsystem. The Engineering Equation Solver software has been utilized in order to model the system and obtain the output contours sensitivity analysis and exergy destruction. The results were calculated considering the ambient temperature of Bandar Abbas city as a case study considering the geothermal system due to better performance in comparison to the solar system. According to the sensitivity analysis the turbine efficiency evaporator inlet temperature thermoelectric generator suitability criterion pump efficiency and evaporator inlet mass flow rate are the most influential parameters. Also the exergy analysis showed that the utmost system's exergy destruction is pertinent to the evaporator and the least is related to the pump. In addition the system produces 352816 kWh and 174.913 kg of electrical power and hydrogen during one year.
Scenario-Based Techno-Economic Analysis of Steam Methane Reforming Process for Hydrogen Production
Jun 2021
Publication
Steam methane reforming (SMR) process is regarded as a viable option to satisfy the growing demand for hydrogen mainly because of its capability for the mass production of hydrogen and the maturity of the technology. In this study an economically optimal process configuration of SMR is proposed by investigating six scenarios with different design and operating conditions including CO2 emission permits and CO2 capture and sale. Of the six scenarios the process configuration involving CO2 capture and sale is the most economical with an H2 production cost of $1.80/kg-H2. A wide range of economic analyses is performed to identify the tradeoffs and cost drivers of the SMR process in the economically optimal scenario. Depending on the CO2 selling price and the CO2 capture cost the economic feasibility of the SMR-based H2 production process can be further improved.
Metal‐Supported Biochar Catalysts for Sustainable Biorefinery, Electrocatalysis and Energy Storage Applications: A Review
Feb 2022
Publication
Biochar (BCH) is a carbon‐based bio‐material produced from thermochemical conversion of biomass. Several activation or functionalization methods are usually used to improve physicochemical and functional properties of BCHs. In the context of green and sustainable future development activated and functionalized biochars with abundant surface functional groups and large surface area can act as effective catalysts or catalyst supports for chemical transformation of a range of bioproducts in biorefineries. Above the well‐known BCH applications their use as adsorbents to remove pollutants are the mostly discussed although their potential as catalysts or catalyst supports for advanced (electro)catalytic processes has not been comprehensively explored. In this review the production/activation/functionalization of metal‐supported biochar (M‐BCH) are scrutinized giving special emphasis to the metal‐functionalized biochar‐based (electro)catalysts as promising catalysts for bioenergy and bioproducts production. Their performance in the fields of biorefinery processes and energy storage and conversion as electrode materials for oxygen and hydrogen evolutions oxygen reduction and supercapacitors are also reviewed and discussed.
Hollow CdS-Based Photocatalysts
Oct 2020
Publication
In recent years photocatalytic technology driven by solar energy has been extensively investigated to ease energy crisis and environmental pollution. Nevertheless efficiency and stability of photocatalysts are still unsatisfactory. To address these issues design of advanced photocatalysts is important. Cadmium sulphide (CdS) nanomaterials are one of the promising photocatalysts. Among them hollow-structured CdS featured with enhanced light absorption ability large surface area abundant active sites for redox reactions and reduced diffusion distance of photogenerated carriers reveals a broad application prospect. Herein main synthetic strategies and formation mechanism of hollow CdS photocatalysts are summarized. Besides we comprehensively discuss the current development of hollow-structured CdS nanomaterials in photocatalytic applications including H2 production CO2 reduction and pollutant degradation. Finally brief conclusions and perspectives on the challenges and future directions for hollow CdS photocatalysts are proposed.
No more items...