- Home
- A-Z Publications
- Publications
Publications
Autonomous Hydrogen Production for Proton Exchange Membrane Fuel Cells PEMFC
Apr 2020
Publication
This paper focuses on hydrogen production for green mobility applications (other applications are currently under investigation). Firstly a brief state of the art of hydrogen generation by hydrolysis with magnesium is shown. The hydrolysis performance of Magnesium powder ball–milled along with different additives (graphite and transition metals TM = Ni Fe and Al) is taken for comparison. The best performance was observed with Mg–10 wt.% g mixtures (95% of theoretical hydrogen generation yield in about 3 min). An efficient solution to control this hydrolysis reaction is proposed to produce hydrogen on demand and to feed a PEM fuel cell. Tests on a bench fitted with a 100 W Proton Exchange Membrane (PEM) fuel cell have demonstrated the technological potential of this solution for electric assistance applications in the field of light mobility.
Calibration of Hydrogen Coriolis Flow Meters Using Nitrogen and Air and Investigation of the Influence of Temperature on Measurement Accuracy
Feb 2021
Publication
The performance of four Coriolis flow meters designed for use in hydrogen refuelling stations was evaluated with air and nitrogen by three members of the MetroHyVe JRP consortium; NEL METAS and CESAME EXADEBIT.<br/>A wide range of conditions were tested overall with gas flow rates ranging from (0.05–2) kg/min and pressures ranging from (20–86) bar. The majority of tests were conducted at nominal pressures of either 20 bar or 40 bar in order to match the density of hydrogen at 350 bar and 20 °C or 700 bar and −40 °C. For the conditions tested pressure did not have a noticeable influence on meter performance.<br/>When the flow meters were operated at ambient temperatures and within the manufacturer's recommended flow rate ranges errors were generally within ±1%. Errors within ±0.5% were achievable for the medium to high flow rates.<br/>The influence of temperature on meter performance was also studied with testing under both stable and transient conditions and temperatures as low as −40 °C.<br/>When the tested flow meters were allowed sufficient time to reach thermal equilibrium with the incoming gas temperature effects were limited. The magnitude and spread of errors increased but errors within ±2% were achievable at moderate to high flow rates. Conversely errors as high as 15% were observed in tests where logging began before temperatures stabilised and there was a large difference in temperature between the flow meter and the incoming gas.<br/>One of the flow meters tested with nitrogen was later installed in a hydrogen refuelling station and tested against the METAS Hydrogen Field Test Standard (HFTS). Under these conditions errors ranged from 0.47% to 0.91%. Testing with nitrogen at the same flow rates yielded errors of −0.61% to −0.82%.
Numerical Analysis of the Effects of Ship Motion on Hydrogen Release and Dispersion in an Enclosed Area
Jan 2022
Publication
Hydrogen is an alternative to conventional heavy marine fuel oil following the initial strategy of the International Maritime Organization (IMO) for reducing greenhouse gas emissions. Although hydrogen energy has many advantages (zero-emission high efficiency and low noise) it has considerable fire and explosion risks due to its thermal and chemical characteristics (wide flammable concentration range and low ignition energy). Thus safety is a key concern related to the use of hydrogen. Whereas most previous studies focused on the terrestrial environment we aim to analyze the effects of the ship’s motion on hydrogen dispersion (using commercial FLUENT code) in an enclosed area. When compared to the steady state our results revealed that hydrogen reached specific sensors in 63% and 52% less time depending on vessel motion type and direction. Since ships carry and use a large amount of hydrogen as a power source the risk of hydrogen leakage from collision or damage necessitates studying the correspondence between leakage diffusion and motion characteristics of the ship to position the sensor correctly.
Hydrogen vs. Battery-Based Propulsion Systems in Unipersonal Vehicles—Developing Solutions to Improve the Sustainability of Urban Mobility
May 2021
Publication
The percentage of the population in urban areas has increased by ten points from 2000 (46%) to 2020 (56%); it is expected to reach up to 70% by 2050. This undoubtedly will encourage society to use alternative transports. On the other hand the widespread fear of pandemics seems to be here to stay and it is causing most people to leave public transport to use private cars and a few have chosen unipersonal electric vehicles. As a consequence the decision of using private cars negatively affects the air quality and consequently urban population health. This paper aims to demonstrate a sustainable solution for urban mobility based on a hydrogen powered unipersonal electric vehicle which as shown provides great advantages over the conventional battery powered unipersonal electric vehicle. To show this the authors have developed both vehicles in comparable versions using the same platform and ensuring that the total weight of the unipersonal electric vehicle was the same in both cases. They have been subjected to experimental tests that support the features of the hydrogen-based configuration versus the battery-based one including higher specific energy more autonomy and shorter recharge time.
Hydrogen and Decarbonisation of Gas- False Dawn or Silver Bullet?
Mar 2020
Publication
This Insight continues the OIES series considering the future of gas. The clear message from previous papers is that on the (increasingly certain) assumption that governments in major European gas markets remain committed to decarbonisation targets the existing natural gas industry is under threat. It is therefore important to develop a decarbonisation narrative leading to a low- or zero-carbon gas implementation plan.
Previous papers have considered potential pathways for gas to decarbonise specifically considering biogas and biomethane and power-to-gas (electrolysis) . This paper goes on to consider the potential for production transport and use of hydrogen in the decarbonising energy system. Previous papers predominately focused on Europe which has been leading the way in decarbonisation. Hydrogen is now being considered more widely in various countries around the world so this paper reflects that wider geographical coverage.
Since the term ‘hydrogen economy’ was first used in 1970 there have been a number of ‘false dawns’ with bold claims for the speed of transition to hydrogen. This Insight argues that this time for some applications at least there are grounds for optimism about a future role for decarbonised hydrogen but the lesson from history is that bold claims need to be examined carefully and treated with some caution. There are no easy or low-cost solutions to decarbonisation of the energy system and this is certainly the case for possible deployment of low-carbon hydrogen. A key challenge is to demonstrate the technical commercial economic and social acceptability of various possibilities at scale. Hydrogen will certainly play a role in decarbonisation of the energy system although the size of the role may be more limited than envisaged in some more optimistic projections.
Open document on OIES website
Previous papers have considered potential pathways for gas to decarbonise specifically considering biogas and biomethane and power-to-gas (electrolysis) . This paper goes on to consider the potential for production transport and use of hydrogen in the decarbonising energy system. Previous papers predominately focused on Europe which has been leading the way in decarbonisation. Hydrogen is now being considered more widely in various countries around the world so this paper reflects that wider geographical coverage.
Since the term ‘hydrogen economy’ was first used in 1970 there have been a number of ‘false dawns’ with bold claims for the speed of transition to hydrogen. This Insight argues that this time for some applications at least there are grounds for optimism about a future role for decarbonised hydrogen but the lesson from history is that bold claims need to be examined carefully and treated with some caution. There are no easy or low-cost solutions to decarbonisation of the energy system and this is certainly the case for possible deployment of low-carbon hydrogen. A key challenge is to demonstrate the technical commercial economic and social acceptability of various possibilities at scale. Hydrogen will certainly play a role in decarbonisation of the energy system although the size of the role may be more limited than envisaged in some more optimistic projections.
Open document on OIES website
Assessing the Environmental Impacts of Wind-based Hydrogen Production in the Netherlands Using Ex-ante LCA and Scenarios Analysis
Mar 2021
Publication
Two electrolysis technologies fed with renewable energy sources are promising for the production of CO2-free hydrogen and enabling the transition to a hydrogen society: Alkaline Electrolyte (AE) and Polymer Electrolyte Membrane (PEM). However limited information exists on the potential environmental impacts of these promising sustainable innovations when operating on a large-scale. To fill this gap the performance of AE and PEM systems is compared using ex-ante Life Cycle Assessment (LCA) technology analysis and exploratory scenarios for which a refined methodology has been developed to study the effects of implementing large-scale sustainable hydrogen production systems. Ex-ante LCA allows modelling the environmental impacts of hydrogen production exploratory scenario analysis allows modelling possible upscaling effects at potential future states of hydrogen production and use in vehicles in the Netherlands in 2050. A bridging tool for mapping the technological field has been created enabling the combination of quantitative LCAs with qualitative scenarios. This tool also enables diversity for exploring multiple sets of visions. The main results from the paper show with an exception for the “ozone depletion” impact category (1) that large-scale AE and PEM systems have similar environmental impacts with variations lower than 7% in all impact categories (2) that the contribution of the electrolyser is limited to 10% of all impact categories results and (3) that the origin of the electricity is the largest contributor to the environmental impact contributing to more than 90% in all impact categories even when renewable energy sources are used. It is concluded that the methodology was applied successfully and provides a solid basis for an ex-ante assessment framework that can be applied to emerging technological systems.
HyDeploy Report: Gas Characteristics (Leakage, Dispersion and Flammability)
Sep 2018
Publication
The Health and Safety Laboratory (HSL) has carried out an investigation into the gas characteristics that may influence the leakage dispersion and flammability hazards associated with blended natural gas-hydrogen mixtures containing up to 20 % mol/mol hydrogen. The work was carried out under contract to Cadent & Northern Gas Networks as part of the HyDeploy project which was commissioned to investigate the feasibility of using blended hydrogen-natural gas mixtures in UK mains gas distribution networks.
Under the HyDeploy project a demonstration scheme is being carried out at Keele University in which it is planned to inject up to 20 % mol/mol hydrogen. Keele is Britain’s largest campus university and an ideal test site for a demonstration scheme as its gas distribution network is largely independent of the national gas network but still subject to UK gas industry procedural controls. It is anticipated that a successful demonstration scheme will facilitate the use of blended natural gas-hydrogen mixtures throughout the UK leading to significant reductions in carbon dioxide emissions. The project is being led by Cadent & Northern Gas Networks and also involves ITM Power Progressive Energy Keele University and HSL in consortium.
Click the supplements tab to view the other documents in this report
Under the HyDeploy project a demonstration scheme is being carried out at Keele University in which it is planned to inject up to 20 % mol/mol hydrogen. Keele is Britain’s largest campus university and an ideal test site for a demonstration scheme as its gas distribution network is largely independent of the national gas network but still subject to UK gas industry procedural controls. It is anticipated that a successful demonstration scheme will facilitate the use of blended natural gas-hydrogen mixtures throughout the UK leading to significant reductions in carbon dioxide emissions. The project is being led by Cadent & Northern Gas Networks and also involves ITM Power Progressive Energy Keele University and HSL in consortium.
Click the supplements tab to view the other documents in this report
Assessment of a Fuel Cell Based-hybrid Energy System to Generate and Store Electrical Energy
Jan 2022
Publication
Solid oxide fuel cells (SOFC) have significant applications and performance and their integration into coupled and cascading energy systems can improve the overall performance of the process. Furthermore due to the constant time performance of the fuel cell the problem of fuel starvation may arise by changing the amount of load which can adversely affect the overall performance of the process. In the present study the excess heat of the SOFC is converted into electrical energy in two stages using different heat generators. The coupled energy system in the present article has a new configuration in which the relationship of its components is different from the systems reported in the literature. Furthermore since the use of an energy storage system can improve the overall reliability the energy produced by the coupled energy cycle is stored by a storage technology for peak consumption times. The introduced system can generate approximately 580 W of electrical power with an efficiency of 80%. The highest and lowest share in power generation is related to fuel cell with 82% and thermoelectric generator with 5%. The rest of the system power (i.e. 13%) is produced by thermionic generator. In addition the system requires 0.025 kg per hour of hydrogen fuel. It was also found that to operate the system for 5 h a day requires a storage system with a size of 3.3 m3 . Moreover two key issues to enhance the storage system performance are: adjusting the initial pressure of the system to values close to the peak (optimal) value and using turbines and/or pumps with higher efficiencies. With the aim of supplying 5 kWh of electrical energy five different scenarios based on the design of various effective parameters have been presented.
Stress Corrosion Cracking of Gas Pipeline Steels of Different Strength
Jul 2016
Publication
With the development of the natural gas industry gas transmission pipelines have been developed rapidly in terms of safety economy and efficiency. Our recent studies have shown that an important factor of main pipelines serviceability loss under their long-term service is the in-bulk metal degradation of the pipe wall. This leads to the loss of the initial mechanical properties primarily resistance to brittle fracture which were set in engineering calculations at the pipeline design stage. At the same time stress corrosion cracking has been identified as one of the predominant failures in pipeline steels in humid environments which causes rupture of high-pressure gas transmission pipes as well as serious economic losses and disasters.
In the present work the low-carbon pipeline steels with different strength levels from the point of view of their susceptibility to stress corrosion cracking in the as-received state and after in-laboratory accelerated degradation under environmental conditions similar to those of an acidic soil were investigated. The main objectives of this study were to determine whether the development of higher strength materials led to greater susceptibility to stress corrosion cracking and whether degraded pipeline steels became more susceptible to stress corrosion cracking than in the as-received state. The procedure of accelerated degradation of pipeline steels was developed and introduced in laboratory under the combined action of axial loading and hydrogen charging. It proved to be reliable and useful to performed laboratory simulation of in-service degradation of pipeline steels with different strength. The in-laboratory degraded 17H1S and X60 pipeline steels tested in the NS4 solution saturated with CO2 under open circuit potential revealed the susceptibility to stress corrosion cracking reflected in the degradation of mechanical properties and at the same time the degraded X60 steel showed higher resistance to stress corrosion cracking than the degraded 17H1S steel. Fractographic observation confirmed the pipeline steels hydrogen embrittlement caused by the permeated hydrogen.
In the present work the low-carbon pipeline steels with different strength levels from the point of view of their susceptibility to stress corrosion cracking in the as-received state and after in-laboratory accelerated degradation under environmental conditions similar to those of an acidic soil were investigated. The main objectives of this study were to determine whether the development of higher strength materials led to greater susceptibility to stress corrosion cracking and whether degraded pipeline steels became more susceptible to stress corrosion cracking than in the as-received state. The procedure of accelerated degradation of pipeline steels was developed and introduced in laboratory under the combined action of axial loading and hydrogen charging. It proved to be reliable and useful to performed laboratory simulation of in-service degradation of pipeline steels with different strength. The in-laboratory degraded 17H1S and X60 pipeline steels tested in the NS4 solution saturated with CO2 under open circuit potential revealed the susceptibility to stress corrosion cracking reflected in the degradation of mechanical properties and at the same time the degraded X60 steel showed higher resistance to stress corrosion cracking than the degraded 17H1S steel. Fractographic observation confirmed the pipeline steels hydrogen embrittlement caused by the permeated hydrogen.
HyDeploy Report: Quantitative Risk Assessment of the Field Trial of Hydrogen Injection into the Keele University Gas Distribution System
Oct 2018
Publication
A consortium comprising Cadent Northern Gas Networks Keele University Health and Safety Laboratory ITM Power and Progressive Energy is undertaking the research project HyDeploy. The project funded under the UK Network Innovation Competition scheme aims to demonstrate that natural gas containing levels of hydrogen beyond the upper limit set out in Schedule 3 of in the Gas Safety (Management) Regulations (GSMR) can be distributed and utilised safely and efficiently in a section of the UK distribution network. It will conclude with a field trial in which hydrogen will be injected into part of a private gas distribution system owned and operated by Keele University. Dave Lander Consulting Limited and Kiwa Ltd are providing technical support to the HyDeploy project and this report presents the results of Quantified Risk Assessment (QRA) for the proposed field trial. The QRA is intended to support an application by Keele University for exemption from the legal requirement to only convey gas that is compliant with the requirements of Schedule 3 of the GSMR. The QRA is aimed at demonstrating that the field trial will not result in a material increase in risk to persons within Keele University affected by the proposed field trial.<br/>Check the supplements tab for the other documents from this report
Volumetric Analysis Technique for Analyzing the Transport Properties of Hydrogen Gas in Cylindrical-shaped Rubbery Polymers
Mar 2021
Publication
We report volumetric analysis techniques to analyze the transport properties of hydrogen dissolved in cylindrical-shaped polymers. The techniques utilize the volume measurement of the released hydrogen from rubber by gas collection in a graduated cylinder after charging sample with high-pressure hydrogen and subsequent decompression. We further improve the graduated cylinder with some modifications such as reading the electrical capacitance of the water level using electrodes and changing the sample loading position. From the measurement results the uptake (C∞) diffusion coefficient (D) and solubility (S) of hydrogen are quantified with an upgraded diffusion analysis program. These methods are applied to three cylindrical rubbers. Dual adsorption behaviors with increasing pressure are observed for all the samples. C∞ follows Henry’s law up to ~15 MPa whereas Langmuir model applies up to 90 MPa. D shows Knudsen and bulk diffusion behavior below and above pressure respectively. A COMSOL simulation is compared with experimental observations.
Replacing Fossil Fuels with Bioenergy in District Heating – Comparison of Technology Options
May 2021
Publication
We combine previously separate models of Northern European power markets local district heating and cooling (DHC2) systems and biomass supply in a single modelling framework to study local and system level impacts of bioenergy technologies in phasing out fossil fuels from a DHC system of the Finnish capital. We model multiple future scenarios and assess the impacts on energy security flexibility provision economic performance and emissions. In the case of Helsinki heat only boiler is a robust solution from economic and climate perspective but reduces local electricity self-sufficiency. Combined heat and power solution is more valuable investment for the system than for the city indicating a conflict of interest and biased results in system level models. Bringing a biorefinery near the city to utilize excess heat would reduce emissions and increase investment's profitability but biomass availability might be a bigger limiting factor. Our results show that the availability of domestic biomass resources constrains bio-based technologies in Southern Finland and further highlights the importance of considering both local and system level impacts. Novel option to boost biorefinery's production with hydrogen from excess electricity is beneficial with increasing shares of wind power.
Analysis of the Existing Barriers for the Market Development of Power to Hydrogen (P2H) in Italy
Sep 2020
Publication
New technological solutions are required to control the impact of the increasing presence of renewable energy sources connected to the electric grid that are characterized by unpredictable production (i.e. wind and solar energy). Energy storage is becoming essential to stabilize the grid when a mismatch between production and demand occurs. Among the available solutions Power to Hydrogen (P2H) is one of the most attractive options. However despite the potential many barriers currently hinder P2H market development. The literature reports general barriers and strategies to overcome them but a specific analysis is fundamental to identifying how these barriers concretely arise in national and regional frameworks since tailored solutions are needed to foster the development of P2H local market. The paper aims to identify and to analyze the existing barriers for P2H market uptake in Italy. The paper shows how several technical regulatory and economic issues are still unsolved resulting in a source of uncertainty for P2H investment. The paper also suggests possible approaches and solutions to address the Italian barriers and to support politics and decision-makers in the definition and implementation of the national hydrogen strategy.
The Potential of Gas Switching Partial Oxidation Using Advanced Oxygen Carriers for Efficient H2 Production with Inherent CO2 Capture
May 2021
Publication
The hydrogen economy has received resurging interest in recent years as more countries commit to net-zero CO2 emissions around the mid-century. “Blue” hydrogen from natural gas with CO2 capture and storage (CCS) is one promising sustainable hydrogen supply option. Although conventional CO2 capture imposes a large energy penalty advanced process concepts using the chemical looping principle can produce blue hydrogen at efficiencies even exceeding the conventional steam methane reforming (SMR) process without CCS. One such configuration is gas switching reforming (GSR) which uses a Ni-based oxygen carrier material to catalyze the SMR reaction and efficiently supply the required process heat by combusting an off-gas fuel with integrated CO2 capture. The present study investigates the potential of advanced La-Fe-based oxygen carrier materials to further increase this advantage using a gas switching partial oxidation (GSPOX) process. These materials can overcome the equilibrium limitations facing conventional catalytic SMR and achieve direct hydrogen production using a water-splitting reaction. Results showed that the GSPOX process can achieve mild efficiency improvements relative to GSR in the range of 0.6–4.1%-points with the upper bound only achievable by large power and H2 co-production plants employing a highly efficient power cycle. These performance gains and the avoidance of toxicity challenges posed by Ni-based oxygen carriers create a solid case for the further development of these advanced materials. If successful results from this work indicate that GSPOX blue hydrogen plants can outperform an SMR benchmark with conventional CO2 capture by more than 10%-points both in terms of efficiency and CO2 avoidance.
Evaluation of the Performance Degradation of a Metal Hydride Tank in a Real Fuel Cell Electric Vehicle
May 2022
Publication
In a fuel cell electric vehicle (FCEV) powered by a metal hydride tank the performance of the tank is an indicator of the overall health status which is used to predict its behaviour and make appropriate energy management decisions. The aim of this paper is to investigate how to evaluate the effects of charge/discharge cycles on the performance of a commercial automotive metal hydride hydrogen storage system applied to a real FCEV. For this purpose a mathematical model is proposed based on uncertain physical parameters that are identified using the stochastic particle swarm optimisation (PSO) algorithm combined with experimental measurements. The variation of these parameters allows an assessment of the degradation level of the tank’s performance on both the quantitative and qualitative aspects. Simulated results derived from the proposed model and experimental measurements were in good agreement with a maximum relative error of less than 2%. The validated model was used to establish the correlations between the observed degradations in a hydride tank recovered from a real FCEV. The results obtained show that it is possible to predict tank degradations by developing laws of variation of these parameters as a function of the real conditions of the use of the FCEV (number of charging/discharging cycles pressures mass flow rates temperatures).
Green Hydrogen in Europe – A Regional Assessment: Substituting Existing Production with Electrolysis Powered by Renewables
Nov 2020
Publication
The increasing ambition of climate targets creates a major role for hydrogen especially in achieving carbon-neutrality in sectors presently difficult to decarbonise. This work examines to what extent the currently carbon-intensive hydrogen production in Europe could be replaced by water electrolysis using electricity from renewable energy resources (RES) such as solar photovoltaic onshore/offshore wind and hydropower (green hydrogen). The study assesses the technical potential of RES at regional and national levels considering environmental constraints land use limitations and various techno-economic parameters. It estimates localised clean hydrogen production and examines the capacity to replace carbon-intensive hydrogen hubs with ones that use RES-based water electrolysis. Findings reveal that -at national level- the available RES electricity potential exceeds the total electricity demand and the part for hydrogen production from electrolysis in all analysed countries. At regional level from the 109 regions associated with hydrogen production (EU27 and UK) 88 regions (81%) show an excess of potential RES generation after covering the annual electricity demand across all sectors and hydrogen production. Notably 84 regions have over 50% excess RES electricity potential after covering the total electricity demand and that for water electrolysis. The study provides evidence on the option to decarbonize hydrogen production at regional level. It shows that such transformation is possible and compatible with the ongoing transition towards carbon–neutral power systems in the EU. Overall this work aims to serve as a tool for designing hydrogen strategies in harmony with renewable energy policies.
Investigation of an Intensified Thermo-Chemical Experimental Set-Up for Hydrogen Production from Biomass: Gasification Process Performance—Part I
Jun 2021
Publication
Biomass gasification for energy purposes has several advantages such as the mitigation of global warming and national energy independency. In the present work the data from an innovative and intensified steam/oxygen biomass gasification process integrating a gas filtration step directly inside the reactor are presented. The produced gas at the outlet of the 1 MWth gasification pilot plant was analysed in terms of its main gaseous products (hydrogen carbon monoxide carbon dioxide and methane) and contaminants. Experimental test sets were carried out at 0.25–0.28 Equivalence Ratio (ER) 0.4–0.5 Steam/Biomass (S/B) and 780–850 °C gasification temperature. Almond shells were selected as biomass feedstock and supplied to the reactor at approximately 120 and 150 kgdry/h. Based on the collected data the in-vessel filtration system showed a dust removal efficiency higher than 99%-wt. A gas yield of 1.2 Nm3dry/kgdaf and a producer gas with a dry composition of 27–33%v H2 23–29%v CO 31–36%v CO2 9–11%v CH4 and light hydrocarbons lower than 1%v were also observed. Correspondingly a Low Heating Value (LHV) of 10.3–10.9 MJ/Nm3dry and a cold gas efficiency (CGE) up to 75% were estimated. Overall the collected data allowed for the assessment of the preliminary performances of the intensified gasification process and provided the data to validate a simulative model developed through Aspen Plus software.
Review on the Influence of Temperature upon Hydrogen Effects in Structural Alloys
Mar 2021
Publication
It is well-documented experimentally that the influence of hydrogen on the mechanical properties of structural alloys like austenitic stainless steels nickel superalloys and carbon steels strongly depends on temperature. A typical curve plotting any hydrogen-affected mechanical property as a function of temperature gives a temperature THEmax where the degradation of this mechanical property reaches a maximum. Above and below this temperature the degradation is less. Unfortunately the underlying physico-mechanical mechanisms are not currently understood to the level of detail required to explain such temperature effects. Though this temperature effect is important to understand in the context of engineering applications studies to explain or even predict the effect of temperature upon the mechanical properties of structural alloys could not be identified. The available experimental data are scattered significantly and clear trends as a function of chemistry or microstructure are difficult to see. Reported values for THEmax are in the range of about 200–340 K which covers the typical temperature range for the design of structural components of about 230–310 K (from −40 to +40 °C). That is the value of THEmax itself as well as the slope of the gradient might affect the materials selection for a dedicated application. Given the current lack of scientific understanding a statistical approach appears to be a suitable way to account for the temperature effect in engineering applications. This study reviews the effect of temperature upon hydrogen effects in structural alloys and proposes recommendations for test temperatures for gaseous hydrogen applications
Zero-In on NI-Heat Exploring Pathways Towards Heat Decarbonisation in Northern Ireland
Jul 2020
Publication
Northern Ireland has achieved its 2020 targets in the electricity sector ahead of time with 46.8% of its electricity demand supplied by renewable generators. When it comes to heat the progress is less impressive – 68% of domestic heating is provided by oil and only around 2500 customers use low carbon heat generators in their homes. In addition 22% of consumers live in fuel poverty. Fuel poverty support programmes still propose the replacement of old oil boilers with new models or with gas boilers where a connection to the grid is possible.<br/>Failure of the commercial RHI scheme and the knock-on effect of the closure of the domestic RHI scheme caused significant damage to the industry and to the reputation of low carbon heat technologies leaving NI consumers without any explicit supporting mechanisms for low carbon heat supply. Decreases in carbon emissions from the heat sector are mainly achieved through switching from oil to gas heating. Gas infrastructure is under development in NI and promises to reach 60% of customers by 2022.
Hydrogen-Assisted Cracking in GMA Welding of High-Strength Structural Steel—A New Look into This Issue at Narrow Groove
Jun 2021
Publication
Modern arc processes such as the modified spray arc (Mod. SA) have been developed for gas metal arc welding of high-strength structural steels with which even narrow weld seams can be welded. High-strength joints are subjected to increasingly stringent requirements in terms of welding processing and the resulting component performance. In the present work this challenge is to be met by clarifying the influences on hydrogen-assisted cracking (HAC) in a high-strength structural steel S960QL. Adapted samples analogous to the self-restraint TEKKEN test are used and analyzed with respect to crack formation microstructure diffusible hydrogen concentration and residual stresses. The variation of the seam opening angle of the test seams is between 30° and 60°. To prevent HAC the effectiveness of a dehydrogenation heat treatment (DHT) from the welding heat is investigated. As a result the weld metals produced at reduced weld opening angle show slightly higher hydrogen concentrations on average. In addition increased micro- as well as macro-crack formation can be observed on these weld metal samples. On all samples without DHT cracks in the root notch occur due to HAC which can be prevented by DHT immediately after welding.
H21- Consumer and Gas Network Metering Phase 1: A Review of the Worldwide Hydrogen Meter Technologies and Applications
Feb 2018
Publication
There is no inherent property of hydrogen that makes it unsuitable for metering at distribution or transmission pressures. Towns gas containing large percentages of hydrogen was used for many years in the UK and continues to be in use in Hong Kong and Singapore. Many manufacturers sell their ordinary mechanical gas meters as suitable for hydrogen in a laboratory or industrial situation; unfortunately lack of demand has meant that none of these meters seem to have certified under appropriate metering regulations for gaseous hydrogen (e.g. the Measuring Instruments Directive)<br/>Some of the more sophisticated modern inferential meters (e.g. thermal or ultrasonic) currently designed specifically for natural gas (or LPG if suitably calibrated) are likely to unsuitable for repurposing directly to hydrogen but none of the problems appear fundamental or insuperable. The largest potential hurdle probably surrounds the physical size of current meters. A hydrogen appliance will consume about 3.3 more hydrogen than natural gas (on a volumetric basis) and using traditional designs this would have been measured through a meter probably too large to fit within an existing meter box. Unless unsolved such an increase in size would add materially to any hydrogen re-purposing programme.<br/>The meter trade thus need to be challenged to come up with a hydrogen meter that is the same physical size as a natural gas meter on a power rating basis (i.e. in kW). Ultrasonic and thermal mass meters should be included in the necessary Research and Development programme.<br/>A meter test programme is suggested that will provide evidence to meter manufacturers that the metering of hydrogen is not inherently difficult and thus convince them to make the necessary investments and/or approach the GDNO’s for assistance with such a programme.
Brittle Fracture Manifestation in Gas Pipeline Steels after Long-term Operation
Dec 2020
Publication
Gas pipelines are exposed to operational loads combined with corrosive environment action during their long-term service. Complicated service conditions lead to a worsening of steel properties a reduction of serviceability of the whole object therefore a risk of its premature failure rises. Aware of the importance of the existing problem the aim of this study is the analysis of various mechanical properties of steels after their long-term operation on gas pipelines and detecting and evaluating fractographic signs of this degradation.<br/>Mechanical properties of operated pipe steels characterizing their brittle fracture resistance were significantly decreased. Delamination areas as one of a feature of brittle fracture were identified on the fracture surfaces of specimens after SSRT of the operated steels in corrosive environment. Fracture was initiated from the outer surface of the specimens along the boundaries of ferrite and pearlite grains with significant secondary cracking.<br/>The obvious texture in the steels affects noticeably the results of the impact tests. Higher KCV values for the specimens cut in the longitudinal direction relative to the pipe axis comparing with the specimens of transversal orientation were obtained. This was explained by different length of narrow pearlite strips alternated by wide ferrite bands and interrupted by individual ferrite grains depending on the orientation of the specimen fracture surface relative to the pipe axis. Thus a proper direction of specimen cutting to achieve the maximum sensitivity of KCV parameter to operational degradation of steels is discussed. The effect of specimen orientation on the results of the Charpy testing becomes much more pronounced with steel operation. Defects accumulated in steels during their service are preferentially oriented in the pipe axial direction along the boundaries between ferrite and pearlite strips. Analyzing the fracture surfaces of the Charpy specimens after their impact testing certain signs of embrittlement were found for long term operated steels in the form of delaminations varying in size and shape and some cleavage fragments. Furthermore their percentage of total fracture surface (generally formed by dimples) correlates well with a drop in the impact toughness. The established relationship could be the basis for the introduction of fractographic criteria of the steel serviceability.
Hydrogen is Essential for Sustainability
Nov 2018
Publication
Sustainable energy conversion requires zero emissions of greenhouse gases and criteria pollutants using primary energy sources that the earth naturally replenishes quickly like renewable resources. Solar and wind power conversion technologies have become cost effective recently but challenges remain to manage electrical grid dynamics and to meet end-use requirements for energy dense fuels and chemicals. Renewable hydrogen provides the best opportunity for a zero emissions fuel and is the best feedstock for production of zero emission liquid fuels and some chemical and heat end-uses. Renewable hydrogen can be made at very high efficiency using electrolysis systems that are dynamically operated to complement renewable wind and solar power dynamics. Hydrogen can be stored within the existing natural gas system to provide low cost massive storage capacity that (1) could be sufficient to enable a 100% zero emissions grid; (2) has sufficient energy density for end-uses including heavy duty transport; (3) is a building block for zero emissions fertilizer and chemicals; and (4) enables sustainable primary energy in all sectors of the economy.
Failure Analysis of Cooling Duct of Top Engine Cowl Panel of Fighter Aircraft
Jun 2019
Publication
Present work describes the failure analysis of cooling duct of a fighter aircraft. The analyzed chemical composition of cooling duct indicates that it is manufactured from Al-based alloy (AA 3003 or its equivalent). Microstructure of cooling duct displays the presence of two phases namely matrix and insoluble particles. The hardness values at different locations within damaged area of cooling duct reflect nearly same and consistent. The fracture surface of the cooling duct exhibits transgranular features and cracks with little branching. The analyzed hydrogen content in cooling duct is significantly higher (∼ 12 ppm) than the specified one (< 1 ppm). However the alloy used to fabricate cooling duct is not susceptible to typical hydrogen embrittlement. This shows hydrogen pick up during operation. The presence of cracks with branching does reflect features of hydrogen embrittlement. In addition striations indicative of fatigue features are also observed. It thus appears that the cooling duct has failed due to pick up of large amount of hydrogen as well as vibrational fatigue.
The Benefit of Collaboration in the North European Electricity System Transition—System and Sector Perspectives
Dec 2019
Publication
This work investigates the connection between electrification of the industry transport and heat sector and the integration of wind and solar power in the electricity system. The impact of combining electrification of the steel industry passenger vehicles and residential heat supply with flexibility provision is evaluated from a systems and sector perspective. Deploying a parallel computing approach to the capacity expansion problem the impact of flexibility provision throughout the north European electricity system transition is investigated. It is found that a strategic collaboration between the electricity system an electrified steel industry an electrified transport sector in the form of passenger electric vehicles (EVs) and residential heat supply can reduce total system cost by 8% in the north European electricity system compared to if no collaboration is achieved. The flexibility provision by new electricity consumers enables a faster transition from fossil fuels in the European electricity system and reduces thermal generation. From a sector perspective strategic consumption of electricity for hydrogen production and EV charging and discharging to the grid reduces the number of hours with very high electricity prices resulting in a reduction in annual electricity prices by up to 20%.
Alkaline Fuel cell Technology - A review
Apr 2021
Publication
The realm of alkaline-based fuel cells has with the arrival of anionic exchange membrane fuel cells (AEMFCs) taken a great step to replace traditional liquid electrolyte alkaline fuel cells (AFCs). The following review summarises progress bottleneck issues and highlights the most recent research trends within the field. The activity of alkaline catalyst materials has greatly advanced however achieving long-term stability remains a challenge. Great AEMFC performances are reported though these are generally obtained through the employment of platinum group metals (PGMs) thus emphasising the importance of R&D related to non-PGM materials. Thorough design strategies must be utilised for all components to avoid a mismatch of electrochemical properties between electrode components. Lastly AEMFC optimisation challenges on the system-level will also have to be assessed as few application-size AEMFCs have been built and tested.
Non-alloy Mg Anode for Ni-MH Batteries: Multiple Approaches Towards a Stable Cycling Performance
Apr 2021
Publication
Mg attracts much research interest as anode material for Ni-MH batteries thanks to its lightweight cost-effectiveness and high theoretical capacity (2200 mA h g−1). However its practical application is tremendously challenged by the poor hydrogen sorption kinetics passivation from aggressive aqueous electrolytes and insulating nature of MgH2. Mg-based alloys exhibit enhanced hydrogen sorption kinetics and electrical conductivity but significant amount of costly transition metal elements are required. In this work we have for the first time utilized non-alloyed but catalyzed Mg as anode for Ni-MH batteries. 5 mol.% TiF3 was added to nanosized Mg for accelerating the hydrogen sorption kinetics. Several strategies for preventing the problematic passivation of Mg have been studied including protective encapsulation of the electrode and utilizing room-temperature/high-temperature ionic liquids and an alkaline polymer membrane as working electrolyte. Promising electrochemical performance has been achieved in this Mg–TiF3 composite anode based Ni-MH batteries with room for further improvements.
HyDeploy Report: Keele Information
Jun 2018
Publication
Keele University was chosen as the site for the HyDeploy project as it was seen as the site offered a high degree of control regarding safety functions high availability of operational data and minimal supply chain interfaces given that Keele University is the supplier transporter and distributer of natural gas at the site. The site was offered to the project as a living laboratory in line with the university's ambition to be at the forefront of energy innovation through the Smart Energy Network Demonstrator (SEND). Evidenced within this report is the supporting data that confirms the rationale for selecting Keele University and the necessary data to profile the section of the gas network which hydrogen will be injected into. The gas network at Keele University is segregated via the governor stations which regulate pressure within the network. The section of network which has been chosen for the HyDeploy project is the G3 network which is regulated by the G3 governor.
Durability of Anion Exchange Membrane Water Electrolyzers
Apr 2021
Publication
Interest in the low-cost production of clean hydrogen is growing. Anion exchange membrane water electrolyzers (AEMWEs) are considered one of the most promising sustainable hydrogen production technologies because of their ability to split water using platinum group metal-free catalysts less expensive anode flow fields and bipolar plates. Critical to the realization of AEMWEs is understanding the durability-limiting factors that restrict the long-term use of these devices. This article presents both durability-limiting factors and mitigation strategies for AEMWEs under three operation modes i.e. pure water-fed (no liquid electrolyte) concentrated KOH-fed and 1 wt% K2CO3-fed operating at a differential pressure of 100 psi. We examine extended-term behaviors of AEMWEs at the single-cell level and connect their behavior with the electrochemical chemical and mechanical instability of single-cell components. Finally we discuss the pros and cons of AEMWEs under these operation modes and provide direction for long-lasting AEMWEs with highly efficient hydrogen production capabilities.
Hydrogen Gas Quality for Gas Network Injection: State of the Art of Three Hydrogen Production Methods
Jun 2021
Publication
The widescale distribution of hydrogen through gas networks is promoted as a viable and cost-efficient option for optimising its application in heat industry and transport. It is a key step towards achieving decarbonisation targets in the UK. A key consideration before the injection of hydrogen into the UK gas networks is an assessment of the difference in hydrogen contaminants presence from different production methods. This information is essential for gas regulation and for further purification requirements. This study investigates the level of ISO 14687 Grade D contaminants in hydrogen from steam methane reforming proton exchange membrane water electrolysis and alkaline electrolysis. Sampling and analysis of hydrogen were carried out by the National Physical Laboratory following ISO 21087 guidance. The results of analysis indicated the presence of nitrogen in hydrogen from electrolysis and water carbon dioxide and particles in all samples analysed. The contaminants were at levels below or at the threshold limits set by ISO 14687 Grade D. This indicates that the investigated production methods are not a source of contaminants for the eventual utilisation of hydrogen in different applications including fuel cell electric vehicles (FCEV’s). The gas network infrastructure will require a similar analysis to determine the likelihood of contamination to hydrogen gas.
Fractographic Features of Long Term Operated Gas Pipeline Steels Fracture Under Impact Loading
Jan 2020
Publication
Pipelines during their service life subjected to operational degradation i.e. their mechanical characteristics worsened with time. Pronounced texture of pipe steels associated with their manufacturing process revealed itself in an essential difference in impact toughness determined for specimens cut in mutually perpendicular directions with respect to the pipe axis. Higher KCV values for longitudinal specimens as compared with transverse ones were explained by the difference in a length of perlite grain strips separated by ferrite grains in specimens of different orientation. A role of hydrogen absorbed my metal during its operation in steel degradation was discussed.<br/>The main fractographic peculiarity for the operated steels comparing to the steels in the initial state is the appearance of delamination on the fracture surfaces which are oriented in the rolling direction. Correlation was found for the tested steels between fractographic sings of their embrittlement due to operational degradation and their loss of brittle fracture resistance. It is concluded that a decrease of impact toughness caused by long term operation of pipeline steels is definitely concerned with the amount of delamination on the fracture surfaces.
Graphene Oxide/metal Nanocrystal Multilaminates as the Atomic Limit for Safe and Selective Hydrogen Storage
Mar 2016
Publication
Interest in hydrogen fuel is growing for automotive applications; however safe dense solid-state hydrogen storage remains a formidable scientific challenge. Metal hydrides offer ample storage capacity and do not require cryogens or exceedingly high pressures for operation. However hydrides have largely been abandoned because of oxidative instability and sluggish kinetics. We report a new environmentally stable hydrogen storage material constructed of Mg nanocrystals encapsulated by atomically thin and gas-selective reduced graphene oxide (rGO) sheets. This material protected from oxygen and moisture by the rGO layers exhibits exceptionally dense hydrogen storage (6.5 wt% and 0.105 kg H2 per litre in the total composite). As rGO is atomically thin this approach minimizes inactive mass in the composite while also providing a kinetic enhancement to hydrogen sorption performance. These multilaminates of rGO-Mg are able to deliver exceptionally dense hydrogen storage and provide a material platform for harnessing the attributes of sensitive nanomaterials in demanding environments.
Is Direct Seawater Splitting Economically Meaningful?
Jun 2021
Publication
Electrocatalytic water splitting is the key process for the formation of green fuels for energy transport and storage in a sustainable energy economy. Besides electricity it requires water an aspect that seldomly has been considered until recently. As freshwater is a limited resource (<1% of earth's water) lately plentiful reports were published on direct seawater (around 96.5% of earth's water) splitting without or with additives (buffers or bases). Alternatively the seawater can be split in two steps where it is first purified by reverse osmosis and then split in a conventional water electrolyser. This quantitative analysis discusses the challenges of the direct usage of non-purified seawater. Further herein we compare the energy requirements and costs of seawater purification with those of conventional water splitting. We find that direct seawater splitting has substantial drawbacks compared to conventional water splitting and bears almost no advantage. In short it is less promising than the two-step scenario as the capital and operating costs of water purification are insignificant compared to those of electrolysis of pure water.
Proposal and Verification of Novel Fatigue Crack Propagation Simulation Method by Finite Element Method.
Dec 2018
Publication
In this paper we propose and verify a novel method to simulate crack propagation without propagating a crack by finite element method. We propose this method for elastoplastic analysis coupled with convection-diffusion. In the previous study we succeeded in performing elastoplastic analysis coupled with convection-diffusion of hydrogen for a material with a crack under tensile loading. This research extends the successful method to fatigue crack propagation. In convection-diffusion analysis in order to simulate the invasion and release of elements through the free surface the crack tip is expressed by using a notch with a sufficiently small radius. Therefore the node release method conventionally used to simulate crack propagation cannot be applied. Hence instead of crack propagation based on an analytical model we propose a novel method that can reproduce the influence of the vicinity of the crack tip on a crack. We moved the stress field near the crack tip in the direction opposite to that of crack propagation by an amount corresponding to the crack propagation length. When we extend the previous method to fatigue crack propagation simulation we must consider the difference in strain due to loading and unloading. This problem was solved by considering the strain due to loading as a displacement. Instead of moving the strain due to loading we moved the displacement. First we performed a simple tensile load analysis on the model and output the displacement of all the nodes of the model at maximum load. Then the displacement was moved in the direction opposite to that of crack propagation. Finally the stress field was reproduced by forcibly moving all the nodes by the displacement amount. The strain due to unloading was reproduced by removing the displacement. Furthermore we verified the equivalence of the crack propagation simulation and the proposed method.
Transportation in a 100% Renewable Energy System
Jan 2018
Publication
A 100% renewable economy would give a lasting solution to the challenges raised by climate change energy security sustainability and pollution. The conversion of the present transport system appears to be one of the most difficult aspects of such renewable transition. This study reviews the technologies and systems that are being proposed or proven as alternative to fossil-fuel based transportation and their prospects for their entry into the post-carbon era from both technological and energetic viewpoints. The energetic cost of the transition from the current transportation system into global 100% renewable transportation is estimated as well as the electrical energy required for the operation of the new renewable transportation sector. A 100% renewable transport providing the same service as global transport in 2014 would demand about 18% less energy. The main reduction is expected in road transport (69%) but the shipping and air sectors would notably increase their consumptions: 163% and 149% respectively. The analysis concludes that a 100% renewable transportation is feasible but not necessarily compatible with indefinite increase of resources consumption. The major material and energy limitations and obstacles of each transport sector for this transition are shown.
Fuel Cell Industry Review 2019 - The Year of the Gigawatt
Jan 2020
Publication
E4tech’s 6th annual review of the global fuel cell industry is now available here. Using primary data straight from the main players and free to download it quantifies shipments by fuel cell type by application and by region of deployment and summarises industry developments over the year.
2019 saw shipments globally grow significantly to 1.1 GW. Numbers grew slightly to around 70000 units. The growth in capacity came mainly from cars Hyundai with its NEXO and Toyota with its Mirai together accounting for around two-thirds of shipments by capacity. Unit numbers are still dominated by Japan’s ene-Farm cogeneration appliances at around 45000 shipments. Large numbers of trucks and buses are now manufactured and shipped in China though numbers deployed are limited by the availability of refuelling infrastructure. But growth in China is uncertain as policy changes are under discussion.
2020 looks like it will be an even bigger year again dominated by Hyundai and Toyota. The Japanese fuel cell market is expected also to grow partly on the back of the Tokyo ‘Hydrogen Olympics’. Korea is another growth story buoyed by its latest roadmap which aims to shift large swathes of its economy to hydrogen energy by 2040. Elsewhere much of the supply chain development is in heavy duty vehicles and big supply chain players like Cummins Weichai and Michelin are making significant investments.
2019 saw shipments globally grow significantly to 1.1 GW. Numbers grew slightly to around 70000 units. The growth in capacity came mainly from cars Hyundai with its NEXO and Toyota with its Mirai together accounting for around two-thirds of shipments by capacity. Unit numbers are still dominated by Japan’s ene-Farm cogeneration appliances at around 45000 shipments. Large numbers of trucks and buses are now manufactured and shipped in China though numbers deployed are limited by the availability of refuelling infrastructure. But growth in China is uncertain as policy changes are under discussion.
2020 looks like it will be an even bigger year again dominated by Hyundai and Toyota. The Japanese fuel cell market is expected also to grow partly on the back of the Tokyo ‘Hydrogen Olympics’. Korea is another growth story buoyed by its latest roadmap which aims to shift large swathes of its economy to hydrogen energy by 2040. Elsewhere much of the supply chain development is in heavy duty vehicles and big supply chain players like Cummins Weichai and Michelin are making significant investments.
Toward a Non-destructive Diagnostic Analysis Tool of Exercises Pipelines: Models and Experiences
Dec 2018
Publication
Strategic networks of hydrocarbon pipelines in long time service are adversely affected by the action of aggressive chemicals transported with the fluids and dissolved in the environment. Material degradation phenomena are amplified in the presence of hydrogen and water elements that increase the material brittleness and reduce the safety margins. The risk of failure during operation of these infrastructures can be reduced if not prevented by the continuous monitoring of the integrity of the pipe surfaces and by the tracking of the relevant bulk properties. A fast and potentially non-destructive diagnostic tool of material degradation which may be exploited in this context is based on the instrumented indentation tests that can be performed on metals at different scales. Preliminary validation studies of the significance of this methodology for the assessment of pipeline integrity have been carried out with the aid of interpretation models of the experiments. The main results of this ongoing activity are illustrated in this contribution.
Implementing Maritime Battery-electric and Hydrogen Solutions: A Technological Innovation Systems Analysis
Sep 2020
Publication
Maritime transport faces increasing pressure to reduce its greenhouse gas emissions to be in accordance with the Paris Agreement. For this to happen low- and zero-carbon energy solutions need to be developed. In this paper we draw on sustainability transition literature and introduce the technological innovation system (TIS) framework to the field of maritime transportation research. The TIS approach analytically distinguishes between different innovation system functions that are important for new technologies to develop and diffuse beyond an early phase of experimentation. This provides a basis for technology-specific policy recommendations. We apply the TIS framework to the case of battery-electric and hydrogen energy solutions for coastal maritime transport in Norway. Whereas both battery-electric and hydrogen solutions have developed rapidly the former is more mature and has a strong momentum. Public procurement and other policy instruments have been crucial for developments to date and will be important for these technologies to become viable options for shipping more generally.
Current Research and Development Activities on Fission Products and Hydrogen Risk after the Accident at Fukushima Daiiichi Nuclear Power Station
Jan 2015
Publication
After the Fukushima Daiichi nuclear power plant (NPP) accident new regulatory requirements were enforced in July 2013 and a backfit was required for all existing nuclear power plants. It is required to take measures to prevent severe accidents and mitigate their radiological consequences. The Regulatory Standard and Research Department Secretariat of Nuclear Regulation Authority (S/NRA/R) has been conducting numerical studies and experimental studies on relevant severe accident phenomena and countermeasures. This article highlights fission product (FP) release and hydrogen risk as two major areas. Relevant activities in the S/NRA/R are briefly introduced as follows: 1. For FP release: Identifying the source terms and leak mechanisms is a key issue from the viewpoint of understanding the progression of accident phenomena and planning effective countermeasures that take into account vulnerabilities of containment under severe accident conditions. To resolve these issues the activities focus on wet well venting pool scrubbing iodine chemistry (in-vessel and ex-vessel) containment failure mode and treatment of radioactive liquid effluent. 2. For hydrogen risk: because of three incidents of hydrogen explosion in reactor buildings a comprehensive reinforcement of the hydrogen risk management has been a high priority topic. Therefore the activities in evaluation methods focus on hydrogen generation hydrogen distribution and hydrogen combustion.
Decarbonizing Copper Production by Power-to-Hydrogen A Techno-Economic Analysis
Apr 2021
Publication
Electrifying energy-intensive processes is currently intensively explored to cut greenhouse gas (GHG) emissions through renewable electricity. Electrification is particularly challenging if fossil resources are not only used for energy supply but also as feedstock. Copper production is such an energy-intensive process consuming large quantities of fossil fuels both as reducing agent and as energy supply.
Here we explore the techno-economic potential of Power-to-Hydrogen to decarbonize copper production. To determine the minimal cost of an on-site retrofit with Power-to-Hydrogen technology we formulate and solve a mixed-integer linear program for the integrated system. Under current techno-economic parameters for Germany the resulting direct CO2 abatement cost is 201 EUR/t CO2-eq for Power-to-Hydrogen in copper production. On-site utilization of the electrolysis by-product oxygen has a substantial economic benefit. While the abatement cost vastly exceeds current European emission certificate prices a sensitivity analysis shows that projected future developments in Power-to-Hydrogen technologies can greatly reduce the direct CO2 abatement cost to 54 EUR/t CO2-eq. An analysis of the total GHG emissions shows that decarbonization through Power-to-Hydrogen reduces the global GHG emissions only if the emission factor of the electricity supply lies below 160 g CO2-eq/kWhel.
The results suggest that decarbonization of copper production by Power-to-Hydrogen could become economically and environmentally beneficial over the next decades due to cheaper and more efficient Power-to-Hydrogen technology rising GHG emission certificate prices and further decarbonization of the electricity supply.
Here we explore the techno-economic potential of Power-to-Hydrogen to decarbonize copper production. To determine the minimal cost of an on-site retrofit with Power-to-Hydrogen technology we formulate and solve a mixed-integer linear program for the integrated system. Under current techno-economic parameters for Germany the resulting direct CO2 abatement cost is 201 EUR/t CO2-eq for Power-to-Hydrogen in copper production. On-site utilization of the electrolysis by-product oxygen has a substantial economic benefit. While the abatement cost vastly exceeds current European emission certificate prices a sensitivity analysis shows that projected future developments in Power-to-Hydrogen technologies can greatly reduce the direct CO2 abatement cost to 54 EUR/t CO2-eq. An analysis of the total GHG emissions shows that decarbonization through Power-to-Hydrogen reduces the global GHG emissions only if the emission factor of the electricity supply lies below 160 g CO2-eq/kWhel.
The results suggest that decarbonization of copper production by Power-to-Hydrogen could become economically and environmentally beneficial over the next decades due to cheaper and more efficient Power-to-Hydrogen technology rising GHG emission certificate prices and further decarbonization of the electricity supply.
Effect of Hydrogen Addition on the Energetic and Ecologic Parameters of an SI Engine Fueled by Biogas
Jan 2021
Publication
The global policy solution seeks to reduce the usage of fossil fuels and greenhouse gas (GHG) emissions and biogas (BG) represents a solutions to these problems. The use of biogas could help cope with increased amounts of waste and reduce usage of fossil fuels. Biogas could be used in compressed natural gas (CNG) engines but the engine electronic control unit (ECU) needs to be modified. In this research a spark ignition (SI) engine was tested for mixtures of biogas and hydrogen (volumetric hydrogen concentration of 0 14 24 33 and 43%). In all experiments two cases of spark timing (ST) were used: the first for an optimal mixture and the second for CNG. The results show that hydrogen increases combustion quality and reduces incomplete combustion products. Because of BG’s lower burning speed the advanced ST increased brake thermal efficiency (BTE) by 4.3% when the engine was running on biogas. Adding 14 vol% of hydrogen (H2 ) increases the burning speed of the mixture and enhances BTE by 2.6% at spark timing optimal for CNG (CNG ST) and 0.6% at the optimal mixture ST (mixture ST). Analyses of the rate of heat release (ROHR) temperature and pressure increase in the cylinder were carried out using utility BURN in AVL BOOST software.
Advanced Hydrogen Storage of the Mg–Na–Al System: A Review
May 2021
Publication
A solid-state storage system is the most practical option for hydrogen because it is more convenient and safer. Metal hydrides especially MgH2 are the most promising materials that offer high gravimetric capacity and good reversibility. However the practical application of MgH2 is restricted by slow sorption kinetics and high stability of thermodynamic properties. Hydrogen storage performance of MgH2 was enhanced by introducing the Mg–Na–Al system that destabilises MgH2 with NaAlH4. The Mg–Na–Al system has superior performance compared to that of unary MgH2 and NaAlH4. To boost the performance of the Mg–Na–Al system the ball milling method and the addition of a catalyst were introduced. The Mg–Na–Al system resulted in a low onset decomposition temperature superior cyclability and enhanced kinetics performances. The Al12Mg17 and NaMgH3 that formed in situ during the dehydrogenation process modify the reaction pathway of the Mg–Na–Al system and alter the thermodynamic properties. In this paper the overview of the recent progress in hydrogen storage of the Mg–Na–Al system is detailed. The remaining challenges and future development of Mg–Na–Al system are also discussed. This paper is the first review report on hydrogen storage properties of the Mg–Na–Al system.
Combined Cooling and Power Management Strategy for a Standalone House Using Hydrogen and Solar Energy
May 2021
Publication
Tropical climate is characterized by hot temperatures throughout the year. In areas subject to this climate air conditioning represents an important share of total energy consumption. In some tropical islands there is no electric grid; in these cases electricity is often provided by diesel generators. In this study in order to decarbonize electricity and cooling production and to improve autonomy in a standalone application a microgrid producing combined cooling and electrical power was proposed. The presented system was composed of photovoltaic panels a battery an electrolyzer a hydrogen tank a fuel cell power converters a heat pump electrical loads and an adsorption cooling system. Electricity production and storage were provided by photovoltaic panels and a hydrogen storage system respectively while cooling production and storage were achieved using a heat pump and an adsorption cooling system respectively. The standalone application presented was a single house located in Tahiti French Polynesia. In this paper the system as a whole is presented. Then the interaction between each element is described and a model of the system is presented. Thirdly the energy and power management required in order to meet electrical and thermal needs are presented. Then the results of the control strategy are presented. The results showed that the adsorption cooling system provided 53% of the cooling demand. The use of the adsorption cooling system reduced the needed photovoltaic panel area the use of the electrolyzer and the use of the fuel cell by more than 60% and reduced energy losses by 7% (compared to a classic heat pump) for air conditioning.
Evaluation of Blistered and Cold Deformed ULC Steel with Melt Extraction and Thermal Desorption Spectroscopy
Dec 2019
Publication
Hydrogen characterization techniques like melt extraction and thermal desorption spectroscopy (TDS) are useful tools in order to evaluate and understand the interaction between hydrogen and metals. These two techniques are used here on cold deformed ultra-low carbon (ULC) steel with and without hydrogen induced damage. The material is charged electrochemically in order to induce varying amounts of hydrogen and variable degrees of hydrogen induced damage. The aim of this work is to evaluate to which extent the hydrogen induced damage would manifest itself in melt extraction and TDS measurements.
Expected Impacts on Greenhouse Gas and Air Pollutant Emissions Due to a Possible Transition Towards a Hydrogen Economy in German Road Transport
Nov 2020
Publication
Transitioning German road transport partially to hydrogen energy is among the possibilities being discussed to help meet national climate targets. This study investigates impacts of a hypothetical complete transition from conventionally-fuelled to hydrogen-powered German transport through representative scenarios. Our results show that German emissions change between −179 and +95 MtCO2eq annually depending on the scenario with renewable-powered electrolysis leading to the greatest emissions reduction while electrolysis using the fossil-intense current electricity mix leads to the greatest increase. German energy emissions of regulated pollutants decrease significantly indicating the potential for simultaneous air quality improvements. Vehicular hydrogen demand is 1000 PJ annually requiring 446–525 TWh for electrolysis hydrogen transport and storage which could be supplied by future German renewable generation supporting the potential for CO2-free hydrogen traffic and increased energy security. Thus hydrogen-powered transport could contribute significantly to climate and air quality goals warranting further research and political discussion about this possibility.
Absence of Spillover of Hydrogen Adsorbed on Small Palladium Clusters Anchored to Graphene Vacancies
May 2021
Publication
Experimental evidence exists for the enhancement of the hydrogen storage capacity of porous carbons when these materials are doped with metal nanoparticles. One of the most studied dopants is palladium. Dissociation of the hydrogen molecules and spillover of the H atoms towards the carbon substrate has been advocated as the reason for the enhancement of the storage capacity. We have investigated this mechanism by performing ab initio density functional molecular dynamics (AIMD) simulations of the deposition of molecular hydrogen on Pd6 clusters anchored on graphene vacancies. The clusters are initially near-saturated with atomic and molecular hydrogen. This condition would facilitate the occurrence of spillover since our energy calculations based on density functional theory indicate that migration of preadsorbed H atoms towards the graphene substrate becomes exothermic on Pd clusters with high hydrogen coverages. However AIMD simulations show that the H atoms prefer to intercalate and absorb within the Pd cluster rather than migrate to the carbon substrate. These results reveal that high activation barriers exist preventing the spillover of hydrogen from the anchored Pd clusters to the carbon substrate.
Performance Analysis of Hydrogen Fuel Cell with Two-stage Turbo Compressor for Automotive Applications
May 2021
Publication
This paper discusses the numerical modeling of an automobile fuel cell system using a two-stage turbo-compressor for air supply. The numerical model incorporates essential input parameters for air and hydrogen flow. The model also performed mass and energy balances across different components such as pump fan heat-exchanger air compressor and keeps in consideration the pressure losses across flow pipes and various mechanical parts. The compressor design process initiates with numerical analysis of the preliminary design of a highly efficient two-stage turbo compressor with an expander as a single-stage compressor has several limitations in terms of efficiency and pressure ratio. The compressor’s design parameters were carefully studied and analyzed with respect to the highly efficient fuel cell stack (FCS) used in modern hydrogen vehicles. The model is solved to evaluate the overall performance of PEM FCS. The final compressor has a total pressure and temperature of 4.2 bar and 149.3°C whereas the required power is 20.08kW with 3.18kW power losses and having a combined efficiency of 70.8%. According to the FC model with and without expander the net-power outputs are 98.15kW and 88.27kW respectively and the maximum efficiencies are 65.1% and 59.1% respectively. Therefore it can be concluded that a two-stage turbo compressor with a turbo-expander can have significant effects on overall system power and efficiency. The model can be used to predict and optimize system performance for PEM FCS at different operating conditions.
A Review of Decarbonization Options for the Glass Industry
May 2021
Publication
The glass industry is part of the energy-intensive industry posing a major challenge to fulfill the CO2 reduction targets of the Paris Climate Agreement. The segments of the glass industry e.g. container or flat glass are quite diverse and attribute to different glass products with different requirements to product quality and various process options. To address the challenge of decarbonizing the glass industry firstly an inventory of current glass products processes and applied technologies in terms of energy efficiency and CO2 emissions is conducted. Secondly decarbonization options are identified and structured according to fuel substitution waste heat recovery and process intensification. Due to the high share of energy-related CO2 emissions electrical melting and hydrogen combustion or a combination of both are the most promising options to decarbonize the glass industry but further research design adjustments and process improvements are necessary. Furthermore electricity and hydrogen prices have to decrease or fossil fuels must become more expensive to be cost-competitive relative to fossil fuels and respective infrastructures have to be constructed or adjusted. Various heat recovery options have great potential for CO2 savings but can be technically challenging or have not yet been considered for techno-economic reasons.
A Tale of Two Phase Diagrams Interplay of Ordering and Hydrogen Uptake in Pd–Au–H
Apr 2021
Publication
Due to their ability to reversibly absorb/desorb hydrogen without hysteresis Pd–Au nanoalloys have been proposed as materials for hydrogen sensing. For sensing it is important that absorption/desorption isotherms are reproducible and stable over time. A few studies have pointed to the influence of short and long range chemical order on these isotherms but many aspects of the impact of chemical order have remained unexplored. Here we use alloy cluster expansions to describe the thermodynamics of hydrogen in Pd–Au in a wide concentration range. We investigate how different chemical orderings corresponding to annealing at different temperatures as well as different external pressures of hydrogen impact the behavior of the material with focus on its hydrogen absorption/desorption isotherms. In particular we find that a long-range ordered L12 phase is expected to form if the H2 pressure is sufficiently high. Furthermore we construct the phase diagram at temperatures from 250 K to 500 K showing that if full equilibrium is reached in the presence of hydrogen phase separation can often be expected to occur in stark contrast to the phase diagram in para-equilibrium. Our results explain the experimental observation that absorption/desorption isotherms in Pd–Au are often stable over time but also reveal pitfalls for when this may not be the case.
Towards an Understanding of Hydrogen Supply Chains: A Structured Literature Review Regarding Sustainability Evaluation
Oct 2021
Publication
Hydrogen technologies have received increased attention in research and development to foster the shift towards carbon-neutral energy systems. Depending on the specific production techniques transportation concepts and application areas hydrogen supply chains (HSCs) can be anything from part of the energy transition problem to part of the solution: Even more than battery-driven electric mobility hydrogen is a polyvalent technology and can be used in very different contexts with specific positive or negative sustainability impacts. Thus a detailed sustainability evaluation is crucial for decision making in the context of hydrogen technology and its diverse application fields. This article provides a comprehensive structured literature review in the context of HSCs along the triple bottom line dimensions of environmental economic and social sustainability analyzing a total of 288 research papers. As a result we identify research gaps mostly regarding social sustainability and the supply chain stages of hydrogen distribution and usage. We suggest further research to concentrate on these gaps thus strengthening our understanding of comprehensive sustainability evaluations for HSCs especially in social sustainability evaluation. In addition we provide an additional approach for discussion by adding literature review results from neighboring fields highlighting the joint challenges and insights regarding sustainability evaluation.
No more items...