- Home
- A-Z Publications
- Publications
Publications
Optimal Decarbonisation Pathways for the Italian Energy System: Modelling a Long-term Energy Transition to Achieve Zero Emission by 2050
May 2024
Publication
The goal of achieving a zero-emission energy system by 2050 requires accurate energy planning to minimise the overall cost of the energy transition. Long-term energy models based on cost-optimal solutions are extremely dependent on the cost forecasts of different technologies. However such forecasts are inherently uncertain. The aim of the present work is to identify a cost-optimal pathway for the Italian energy system decarbonisation and assess how renewable cost scenarios can affect the optimal solution. The analysis has been carried out with the H2RES model a single-objective optimisation algorithm based on Linear Programming. Different cost scenarios for photovoltaics on-shore and off-shore wind power and lithium-ion batteries are simulated. Results indicate that a 100% renewable energy system in Italy is technically feasible. Power-to-X technologies are crucial for balancing purposes enabling a share of non-dispatchable generation higher than 90%. Renewable cost scenarios affect the energy mix however both on-shore and off-shore wind saturate the maximum capacity potential in almost all scenarios. Cost forecasts for lithium-ion batteries have a significant impact on their optimal capacity and the role of hydrogen. Indeed as battery costs rise fuel cells emerge as the main solution for balancing services. This study emphasises the importance of conducting cost sensitivity analyses in long-term energy planning. Such analyses can help to determine how changes in cost forecasts may affect the optimal strategies for decarbonising national energy systems.
Environmental Life-cycle Analysis of Hydrogen Technology in the United States
Oct 2024
Publication
Hydrogen is a zero-carbon energy carrier with potential to decarbonize industrial and transportation sectors but its life-cycle greenhouse gas (GHG) emissions depend on its energy supply chain and carbon management measures (e.g. carbon capture and storage). Global support for clean hydrogen production and use has recently intensified. In the United States Congress passed several laws that incentivize the production and use of renewable and low-carbon hydrogen such as the Bipartisan Infrastructure Law (BIL) in 2021 and the Inflation Reduction Act (IRA) in 2022 which provides tax credits of up to $3/kg depending on the carbon intensity of the produced hydrogen. A comprehensive life-cycle accounting of GHG emissions associated with hydrogen production is needed to determine the carbon intensity of hydrogen throughout its value chain. In the United States Argonne’s R&D GREET® (Greenhouse Gases Regulated emissions and Energy use in Technologies) model has been widely used for hydrogen carbon intensity calculations. This paper describes the major hydrogen technology pathways considered in the United States and provides data sources and carbon intensity results for each of the hydrogen production and delivery pathways using consistent system boundaries and most recent technology performance and supply chain data.
Hydrogen Blending in Natural Gas Pipelines: A Comprehensive Review of Material Compatibility and Safety Considerations
Nov 2024
Publication
The increasing demand for energy and the urgent need to reduce carbon emissions have positioned hydrogen as a promising alternative. This review paper explores the potential of hydrogen blending in natural gas pipelines focusing on the compatibility of pipeline materials and the associated safety challenges. Hydrogen blending can significantly reduce carbon emissions from homes and industries as demonstrated by various projects in Canada and globally. However the introduction of hydrogen into natural gas pipelines poses risks such as hydrogenassisted materials degradation which can compromise the integrity of pipeline materials. This study reviews the effects of hydrogen on the mechanical properties of both vintage and modern pipeline steels cast iron copper aluminum stainless steel as well as plastics elastomers and odorants that compose an active natural gas pipeline network. The review highlights the need for updated codes and standards to ensure safe operation and discusses the implications of hydrogen on material selection design and safety considerations. Overall this manuscript aims to provide a comprehensive resource on the current state of pipeline materials in the context of hydrogen blending emphasizing the importance of further research to address the gaps in current knowledge and to develop robust guidelines for the integration of hydrogen into existing natural gas infrastructure.
Great Britain's Hydrogen Infrastructure Development - Investment Priorities and Locational Flexibility
Aug 2024
Publication
Future pathways for Great Britain’s energy system decarbonization have highlighted the importance of lowcarbon hydrogen as an energy carrier and demand flexibility support. However the potential application within various sectors (heating industry transport) and production capacity through different technologies (methane reformation with carbon capture biomass gasification electrolysis) is highly varying introducing substantial uncertainties for hydrogen infrastructure development. This study sets out infrastructure priorities and identifies locational flexibility for hydrogen supply and demand options. Advances on limitations of previous research are made by developing an open-source model of the hydrogen system of Great Britain based on three Net Zero scenarios set out by National Grid in their Future Energy Scenarios in high temporal and spatial resolution. The model comprehensively covers demand sectors and supply options in addition to extending the locational considerations of the Future Energy Scenarios. This study recommends prioritizing the establishment of green hydrogen hubs in the near-term aligning with demands for synthetic fuels production industry and power which can facilitate the subsequent roll out of up to 10GW of hydrogen production capacity by 2050. The analysis quantifies a high proportion of hydrogen supply and demand which can be located flexibly.
Numerical Simulation of Transition to Detonation in a Hydrogen-air Mixture Due to Shock Wave Focusing on a 90-Deg Wedge
Sep 2023
Publication
The interaction of a shock wave with a specific angle or concave wall due to its reflection and focusing is a way to onset the detonation provided sufficiently strong shock wave. In this work we present numerical simulation results of the detonation initiation due to the shock reflection and focusing in a 90-degree wedge for mixtures of H2 and air. The code used was ddtFoam [1–3] that is a component of the larger OpenFOAM open-source CFD package of density-based code for solving the unsteady compressible Navier-Stokes equations. The numerical model represents the 2-D geometry of the experiments performed by Rudy [4]. The numerical results revealed three potential scenarios in the corner after reflection: shock wave reflection without ignition deflagrative ignition with intermediate transient regimes with a delayed transition to detonation in lagging combustion zone at around 1.8 mm from the apex of the wedge and ignition with an instantaneous transition to detonation with the formation of the detonation wave in the corner tip. In the experimental investigation the transition velocity for the stoichiometric mixture was approximately 715 m/s while in the numerical simulation the transition velocity for the stoichiometric mixture was 675.65 m/s 5.5% decrease in velocity.
Climate Change Mitigation Potentials of on Grid-connected Power-to-X Fuels and Advanced Biofuels for the European Maritime Transport
Jul 2023
Publication
This study proposes a country-based life-cycle assessment (LCA) of several conversion pathways related 10 to both on grid-connected Power-to-X (PtX) fuels and advanced biofuel production for maritime transport 11 in Europe. We estimate the biomass resource availability (both agricultural and forest residues and 12 second-generation energy crops from abandoned cropland) electricity mix and a future-oriented 13 prospective LCA to assess how future climate change mitigation policies influence the results. Our results 14 indicate that the potential of PtX fuels to achieve well-to-wake greenhouse gas intensities lower than 15 those of fossil fuels is limited to countries with a carbon intensity of the electricity mix below 100 gCO2eq kWh-1 16 . The more ambitious FuelEU Maritime goal could be achieved with PtX only if connected to electricity sources below ca. 17 gCO2eq kWh-1 17 which can become possible for most of the national 18 electricity mix in Europe by 2050 if renewable energy sources will become deployed at large scales. For 19 drop-in and hydrogen-based biofuels biomass residues have a higher potential to reduce emissions than 20 dedicated energy crops. In Europe the potentials of energy supply from all renewable and low-carbon 21 fuels (RLFs) range from 32-149% of the current annual fuel consumption in European maritime transport. 22 The full deployment of RLFs with carbon capture and storage technologies could mitigate up to 184% of 23 the current well-to-wake shipping emissions in Europe. Overall our study highlights how the strategic use 24 of both hydrogen-based biofuels and PtX fuels can contribute to the climate mitigation targetsfor present 25 and future scenarios of European maritime transport.
Hydrogen as Fuel in the Maritime Sector: From Production to Propulsion
Nov 2024
Publication
The maritime sector plays a crucial role in global trade yet its contribution to greenhouse gas emissions remains significant. The adoption of hydrogen as a clean energy solution is gaining traction to address this. This review paper delves into the opportunities and challenges of integrating hydrogen as a marine fuel. The entire hydrogen supply chain is investigated from production to end use highlighting advancements limitations and potential safety risks. Key findings reveal that while hydrogen offers promise for reducing emissions its widespread adoption requires a well-established production storage and distribution infrastructure. Challenges persist in large-scale storage transportation and bunkering particularly in addressing space limitations and ensuring safety protocols. Propulsion systems such as internal combustion engines gas turbines and fuel cells show po tential for hydrogen adoption yet further research is needed to optimize efficiency and address technical con straints. Safety considerations also appear prominently necessitating comprehensive bunkering operations and hazard management protocols. Addressing knowledge gaps is imperative for successfully integrating hydrogen as a marine fuel. Future research should focus on optimizing storage methods developing efficient propulsion systems and enhancing safety measures to enhance hydrogen utilization in the maritime sector.
Energy Hub Model for the Massive Adoption of Hydrogen in Power Systems
Sep 2024
Publication
A promising energy carrier and storage solution for integrating renewable energies into the power grid currently being investigated is hydrogen produced via electrolysis. It already serves various purposes but it might also enable the development of hydrogen-based electricity storage systems made up of electrolyzers hydrogen storage systems and generators (fuel cells or engines). The adoption of hydrogen-based technologies is strictly linked to the electrification of end uses and to multicarrier energy grids. This study introduces a generic method to integrate and optimize the sizing and operation phases of hydrogen-based power systems using an energy hub optimization model which can manage and coordinate multiple energy carriers and equipment. Furthermore the uncertainty related to renewables and final demands was carefully assessed. A case study on an urban microgrid with high hydrogen demand for mobility demonstrates the method’s applicability showing how the multi-objective optimization of hydrogen-based power systems can reduce total costs primary energy demand and carbon equivalent emissions for both power grids and mobility down to −145%. Furthermore the adoption of the uncertainty assessment can give additional benefits allowing a downsizing of the equipment.
Industrial Decarbonization through Blended Combustion of Natural Gas and Hydrogen
Aug 2024
Publication
The transition to cleaner energy sources particularly in hard-to-abate industrial sectors often requires the gradual integration of new technologies. Hydrogen crucial for decarbonization is explored as a fuel in blended combustions. Blending or replacing fuels impacts combustion stability and heat transfer rates due to differing densities. An extensive literature review examines blended combustion focusing on hydrogen/methane mixtures. While industrial burners claim to accommodate up to 20% hydrogen theoretical support is lacking. A novel thermodynamic analysis methodology is introduced evaluating methane/hydrogen combustion using the Wobbe index. The findings highlight practical limitations beyond 25% hydrogen volume necessitating a shift to “totally hydrogen” combustion. Blended combustion can be proposed as a medium-term strategy acknowledging hydrogen’s limited penetration. Higher percentages require burner and infrastructure redesign.
Green Hydrogen Energy Production: Current Status and Potential
Jan 2024
Publication
The technique of producing hydrogen by utilizing green and renewable energy sources is called green hydrogen production. Therefore by implementing this technique hydrogen will become a sustainable and clean energy source by lowering greenhouse gas emissions and reducing our reliance on fossil fuels. The key beneft of producing green hydrogen by utilizing green energy is that no harmful pollutants or greenhouse gases are directly released throughout the process. Hence to guarantee all of the environmental advantages it is crucial to consider the entire hydrogen supply chain involving storage transportation and end users. Hydrogen is a promising clean energy source and targets plan pathways towards decarbonization and net-zero emissions by 2050. This paper has highlighted the techniques for generating green hydrogen that are needed for a clean environment and sustainable energy solutions. Moreover it summarizes an overview outlook and energy transient of green hydrogen production. Consequently its perspective provides new insights and research directions in order to accelerate the development and identify the potential of green hydrogen production.
Well Integrity in Salt Cavern Hydrogen Storage
Jul 2024
Publication
Underground hydrogen storage (UHS) in salt caverns is a sustainable energy solution to reduce global warming. Salt rocks provide an exceptional insulator to store natural hydrogen as they have low porosity and permeability. Nevertheless the salt creeping nature and hydrogeninduced impact on the operational infrastructure threaten the integrity of the injection/production wells. Furthermore the scarcity of global UHS initiatives indicates that investigations on well integrity remain insufficient. This study strives to profoundly detect the research gap and imperative considerations for well integrity preservation in UHS projects. The research integrates the salt critical characteristics the geomechanical and geochemical risks and the necessary measurements to maintain well integrity. The casing mechanical failure was found as the most challenging threat. Furthermore the corrosive and erosive effects of hydrogen atoms on cement and casing may critically put the well integrity at risk. The research also indicated that the simultaneous impact of temperature on the salt creep behavior and hydrogen-induced corrosion is an unexplored area that has scope for further research. This inclusive research is an up-to-date source for analysis of the previous advancements current shortcomings and future requirements to preserve well integrity in UHS initiatives implemented within salt caverns.
Hydrogen Production from Low-quality Water: Challenges and Perspectives
Sep 2022
Publication
The Next Generation EU plan fosters the development of a large capacity for hydrogen generation. However water and energy resources are strictly connected to an indissoluble nexus. For that water electrolysis may counteract the coexistence of two primary UNO Sustainable Development Goals humankind must face to achieve a prosperous and equal society namely SDG 7 (Affordable access to renewable energy sources) and SDG 6 (clean water). To design innovative energy systems implementing hydrogen as an efficient and sustainable vector water resources need careful management and energy use ought not to compete with freshwater delivery. Therefore the present study reviews the technologies available for hydrogen production and their fitness to water quality standards. Among the feeding possibilities to be scrutinized wastewaters and saline waters are worth attention. Each source of water asks for a specific design and management of the water treatment pre-process. Since these steps are energydemanding in some applications the direct use of low-quality water to produce hydrogen may be envisaged. An example is the direct feeding of seawater to Solid Oxide Electrolysers (SOE). SOEs appear more promising than commercial low-temperature electrolysis systems since water steam production integrates the function of preliminary water treatment.
A Review of Type V Composite Pressure Vessels and Automated Fibre Placement Based Manufacturing
Feb 2023
Publication
Hydrogen is emerging as a promising future energy medium in a wide range of industries. For mobile applica tions it is commonly stored in a gaseous state within high-pressure composite overwrapped pressure vessels (COPVs). The current state of the art pressure vessel technology known as Type V eliminates the internal polymer gas barrier used in Type IV vessels and instead relies on carbon fibre laminate to provide structural properties and prevent gas leakage. Achieving this functionality at high pressure poses several engineering challenges that have thus far prohibited commercial application. Additionally the traditional manufacturing process for COPVs filament winding has several constraints that limit the design space. Automated fibre placement (AFP) a highly flexible robotic composites manufacturing technique has the potential to replace filament winding for composite pressure vessel manufacturing and provide pathways for further vessel optimi sation. A combination of both AFP and Type V technology could provide an avenue for a new generation of highperformance composite pressure vessels. This critical review presents key work on industry-standard Type IV vessels alongside the current state of Type V CPV technology including manufacturing developments challenges cost relevance to commercial standards and future fabrication solutions using AFP. Additionally a novel Type V CPV design concept for a two-piece AFP produced vessel is presented.
An Overview of the Photocatalytic Water Splitting over Suspended Particles
Jan 2021
Publication
The conversion of solar to chemical energy is one of the central processes considered in the emerging renewable energy economy. Hydrogen production from water splitting over particulate semiconductor catalysts has often been proposed as a simple and a cost-effective method for largescale production. In this review we summarize the basic concepts of the overall water splitting (in the absence of sacrificial agents) using particulate photocatalysts with a focus on their synthetic methods and the role of the so-called “co-catalysts”. Then a focus is then given on improving light absorption in which the Z-scheme concept and the overall system efficiency are discussed. A section on reactor design and cost of the overall technology is given where the possibility of the different technologies to be deployed at a commercial scale and the considerable challenges ahead are discussed. To date the highest reported efficiency of any of these systems is at least one order of magnitude lower than that deserving consideration for practical applications.
A Comparative Total Cost of Ownership Analysis of Heavy Duty On-road and Off-road Vehicles Powered by Hydrogen, Electricity, and Diesel
Dec 2022
Publication
This study investigated the cost competitiveness using total cost of ownership (TCO) analysis of hydrogen fuel cell electric vehicles (FCEVs) in heavy duty on and off-road fleet applications as a key enabler in the decarbonisation of the transport sector and compares results to battery electric vehicles (BEVs) and diesel internal combustion engine vehicles (ICEVs). Assessments were carried out for a present day (2021) scenario and a sensitivity analysis assesses the impact of changing input parameters on FCEV TCO. This identified conditions under which FCEVs become competitive. A future outlook is also carried out examining the impact of time-sensitive parameters on TCO when net zero targets are to be reached in the UK and EU. Several FCEVs are cost competitive with ICEVs in 2021 but not BEVs under base case conditions. However FCEVs do have potential to become competitive with BEVs under specific conditions favouring hydrogen including the application of purchase grants and a reduced hydrogen price. By 2050 a number of FCEVs running on several hydrogen scenarios show a TCO lower than ICEVs and BEVs using rapid chargers but for the majority of vehicles considered BEVs remain the lowest in cost unless specific FCEV incentives are implemented. This paper has identified key factors hindering the deployment of hydrogen and conducted comprehensive TCO analysis in heavy duty on and off-road fleet applications. The output has direct contribution to the decarbonisation of the transport sector.
Cost and Competitiveness of Green Hydrogen and the Effects of the European Union Regulatory Framework
May 2024
Publication
By passing the delegated acts supplementing the revised Renewable Energy Directive the European Commission has recently set a regulatory benchmark for the classifcation of green hydrogen in the European Union. Controversial reactions to the restricted power purchase for electrolyser operation refect the need for more clarity about the efects of the delegated acts on the cost and the renewable characteristics of green hydrogen. To resolve this controversy we compare diferent power purchase scenarios considering major uncertainty factors such as electricity prices and the availability of renewables in various European locations. We show that the permission for unrestricted electricity mix usage does not necessarily lead to an emission intensity increase partially debilitating concerns by the European Commission and could notably decrease green hydrogen production cost. Furthermore our results indicate that the transitional regulations adopted to support a green hydrogen production ramp-up can result in similar cost reductions and ensure high renewable electricity usage.
Water Electrolysis and Hydrogen in the European Union - Status Report on Technology Development, Trends, Value Chains & Markets
Jan 2024
Publication
This report is an output of the Clean Energy Technology Observatory (CETO) and is an update of the “Water electrolysis and hydrogen in the European Union” 2023 CETO report. CETO’s objective is to provide an evidencebased analysis feeding the policy making process and hence increasing the effectiveness of R&I policies for clean energy technologies and solutions. It monitors EU research and innovation activities on clean energy technologies needed for the delivery of the European Green Deal; and assesses the competitiveness of the EU clean energy sector and its positioning in the global energy market. CETO is being implemented by the Joint Research Centre for DG Research and Innovation Energy in coordination with DG Energy.
Assessment of Hydrogen Transport Aircraft
Sep 2022
Publication
Zero-carbon-dioxide-emitting hydrogen-powered aircraft have in recent decades come back on the stage as promising protagonists in the fght against global warming. The main cause for the reduced performance of liquid hydrogen aircraft lays in the fuel storage which demands the use of voluminous and heavy tanks. Literature on the topic shows that the optimal fuel storage solution depends on the aircraft range category but most studies disagree on which solution is optimal for each category. The objective of this research was to identify and compare possible solutions to the integration of the hydrogen fuel containment system on regional short/medium- and large passenger aircraft and to understand why and how the optimal tank integration strategy depends on the aircraft category. This objective was pursued by creating a design and analysis framework for CS-25 aircraft capable of appreciating the efects that diferent combinations of tank structure fuselage diameter tank layout shape venting pressure and pressure control generate at aircraft level. Despite that no large diferences among categories were found the following main observations were made: (1) using an integral tank structure was found to be increasingly more benefcial with increasing aircraft range/size. (2) The use of a forward tank in combination with the aft one appeared to be always benefcial in terms of energy consumption. (3) The increase in fuselage diameter is detrimental especially when an extra aisle is not required and a double-deck cabin is not feasible. (4) Direct venting has when done efciently a small positive efect. (5) The optimal venting pressure varies with the aircraft confguration performance and mission. The impact on performance from sizing the tank for missions longer than the harmonic one was also quantifed.
Offshore Wind Power—Seawater Electrolysis—Salt Cavern Hydrogen Storage Coupling System: Potential and Challenges
Jan 2025
Publication
Offshore wind power construction has seen significant development due to the high density of offshore wind energy and the minimal terrain restrictions for offshore wind farms. However integrating this energy into the grid remains a challenge. The scientific community is increasingly focusing on hydrogen as a means to enhance the integration of these fluctuating renewable energy sources. This paper reviews the research on renewable energy power generation water electrolysis for hydrogen production and large-scale hydrogen storage. By integrating the latest advancements we propose a system that couples offshore wind power generation seawater electrolysis (SWE) for hydrogen production and salt cavern hydrogen storage. This coupling system aims to address practical issues such as the grid integration of offshore wind power and large-scale hydrogen storage. Regarding the application potential of this coupling system this paper details the advantages of developing renewable energy and hydrogen energy in Jiangsu using this system. While there are still some challenges in the application of this system it undeniably offers a new pathway for coastal cities to advance renewable energy development and sets a new direction for hydrogen energy progress.
New Development Paths through Green Hydrogen? An Ex-ante Assessment of Structure and Agency in Chile and Namibia
Jan 2025
Publication
Many developing countries seek to participate in the emerging global green hydrogen industry not only as exporters of green hydrogen and its derivatives to Europe and the Far East but also to use it for their own energy security and green transition. They hope that new development paths will lead to late-comer industrialisation. This article assesses corresponding prospects in Chile and Namibia two countries that pursue particularly ambitious plans on green hydrogen. To better understand the chances for path creation ex ante the authors draft an innovative framework that refers to context factors – that is structure – and three types of transformative agency. Against the backdrop of information from secondary sources and a series of expert interviews they uncover sound institutional reforms and initiatives of place-based leadership to promote the green hydrogen industry. However Chile and Namibia lack Schumpeterian entrepreneurship. It therefore remains to be seen whether new development paths will be inclusive contributing to in-country development. Typical downsides of extractive industries in resource peripheries might occur.
No more items...