- Home
- A-Z Publications
- Publications
Publications
Hydrogen Refuelling Stations for Public Transport Quality and Safety in the User-interface
Sep 2007
Publication
Hydrogen stations and supply systems for public transport have been demonstrated in a number of European cities during the last four years. The first refuelling facility was put into operation in Reykjavik in April 2003. Experience from the four years of operation shows that safety related incidents are more frequent in the user interface than in the other parts of the hydrogen refuelling station (HRS). This might be expected taking into account the fact that the refuelling is manually operated and that according to industrial statistics human failures normally stand for more than 80% of all safety related incidents. On the other hand the HRS experience needs special attention since the refuelling at the existing stations is carried out by well trained personnel and that procedures and systems are followed closely. So far the quality and safety approach to hydrogen refuelling stations has been based on industrial experience. This paper addresses the challenge related to the development of safe robust and easy to operate refuelling systems. Such systems require well adapted components and system solutions as well as user procedures. The challenge to adapt the industrial based quality and safety philosophy and methodologies to new hydrogen applications and customers in the public sector is addressed. Risk based safety management and risk acceptance criteria relevant to users and third party are discussed in this context. Human factors and the use of incident reporting as a tool for continuous improvement are also addressed. The paper is based on internal development programmes for hydrogen refuelling stations in Hydro and on participation in international EU and IPHE projects such as CUTE HyFLEET:CUTE HySafe and HyApproval.
Safe Operation of Combined Cycle Gas Turbine and Gas Engine Systems Using Hydrogen Rich Fuels
Oct 2015
Publication
This paper describes work performed by a consortium led by the UK Health and Safety Laboratory(HSL)to identify the safe operating conditions for combined cycle power generating systems running on high hydrogen fuels. The work focuses on hydrogen and high hydrogen syngas and biogas waste-stream fuel mixtures which may prove hazardous in the event of a turbine or engine flame out resulting in a flammable fuel mixture entering the hot exhaust system and igniting. The paper describes the project presenting some initial results from this work including the development of large scale experimental facilities on the550 acre HSL site near Buxton Derbyshire UK. It describes the large scale experimental facility which utilises the exhaust gas from a Rolls-Royce Viper jet-engine (converted to run on butane) feeding into a 12 m long 0.60 m diameter instrumented tube at a pre-combustion velocity of 22 m/s. A variable geometry simulated heat exchanger with a 40 %2blockage ratio is present in the tube. Flammable mixtures injected into the tube close to the Viper outlet together with make-up oxygen are then ignited. Extensive optical ionisation temperature and pressure sensors are employed along the length of the tube to measure the pressures and flame speeds resulting from the combustion event. Some preliminary results from the test programme are discussed including deflagration to detonation transitions at high equivalence ratios.
The Norwegian Government’s Hydrogen Strategy - Towards a Low Emission Society
Jun 2020
Publication
On Wednesday 3rd of June 2020 Norwegian Minister for Petroleum and Energy Tina Bru and Minister for Climate and Environment Sveinung Rotevatn presented the Norwegian government's hydrogen strategy.<br/>The strategy sets the course for the government's efforts to stimulate development of hydrogen-related technologies. Hydrogen as an energy carrier can contribute to reduction of greenhouse gases and create value for the Norwegian business sector. The government wishes to prioritise efforts in areas where Norway Norwegian enterprises and technology clusters may influence the development of hydrogen related technologies and where there are opportunites for increased value creation and green growth. For hydrogen to be a low-carbon or emission-free energy carrier it must be produced with no or low emissions such as through water electrolysis with renewable electricity or from natural gas with carbon capture and storage.<br/>Today technology maturity and high costs represent barriers for increased use of hydrogen especially in the transport sector and as feedstock in parts of industry. If hydrogen and hydrogen-based solutions such as ammonia are to be used in new areas both the technology and the solutions must become more mature. In this respect further technology development will be vital.
Low-carbon Energy Transition With the Sun and Forest: Solar-driven Hydrogen Production from Biomass
Nov 2021
Publication
There is a need to derive hydrogen from renewable sources and the innovative stewardship of two natural resources namely the Sun and forest could provide a new pathway. This paper provides the first comparative analysis of solar-driven hydrogen production from environmental angles. A novel hydrogen production process proposed in this paper named Solar-Driven Advanced Biomass Indirect-Gasification (SABI-Hydrogen) shows promise toward achieving continuous operation and scalability the two key challenges to meet future energy needs. The calculated Global Warming Potential for 1 kg of solar-driven hydrogen production is 1.04 kg CO2-eq/kg H2 less than half of the current biomass gasification process which emits 2.67 kg CO2-eq/kg H2. Further SABI-Hydrogen demonstrates the least-carbon intensive pathway among all current hydrogen production methods. Thus solar-driven hydrogen production from biomass could lead to a sustainable supply essential for a low-carbon energy transition.
Hydrogen for Renewable Energy Export: Broadening the Concept of Hydrogen Safety
Sep 2019
Publication
Recently we have seen hydrogen (re)emerge as an important component of widespread decarbonisation of energy sectors. From an Australian perspective this brings with it an opportunity to store transport and export renewable energy—either as liquefied hydrogen or in a carrier such as ammonia. The growth of the hydrogen industry to now include the power and transport sectors as well as the notion of hydrogen export has broadened the range of safety considerations required and seen them extend into the realm of the consumer for the first time.<br/>Hydrogen as well as ammonia and other carriers such as methanol are existing industrial chemicals which have established protocols for their handling and use in the chemicals sector. As their use in energy and transport increases especially in the context of widespread domestic use their handling and use by inexperienced people in less-controlled environments expands shifting the risk profiles and management systems required. There is also the potential for novel hydrogen carriers such as methylcyclohexane/toluene to reach commercial viability at industrial scale.<br/>This paper will discuss some of these emerging applications of hydrogen and its carriers and discuss some of the technological innovations under development that may accompany a new energy industry— with some consideration given to their potential risks and the required safety considerations. In addition we will also provide an overview of global activity in this area and how new standards and regulations would need to be developed for the adaption of these technologies in an Australian context.
Self-ignition and Flame Propagation of Pressurized Hydrogen Released Through Tubes
Sep 2019
Publication
The spontaneous ignition of hydrogen released from the high pressure tank into the downstream pipes with different lengths varied from 0.3m to 2.2m has been investigated experimentally. In this study the development of shock wave was recorded by pressure sensors and photoelectric sensors were used to confirm the presence of a flame in the pipe. In addition the development of jet flame was recorded by high-speed camera and IR camera. The results show that the minimal release pressure in different tube when self-ignition of hydrogen occurred could decrease first and then increase with the increase of the aspect of pipe. And the minimum release pressure of hydrogen self-ignition was 3.87MPa. When the flame of self-ignition hydrogen spouted out of the tube Mach disk was observed. The method of CFD was adopted. The development of shock wave at the tube exit was reproduced and structures as barrel shock the reflected shock and the Mach disk are presented. Because of these special structures the flame at the nozzle is briefly extinguished and re-ignited. At the same time the complete development process of the jet flame was recorded including the formation and separation of the spherical flame. The flame structure exhibits three typical levels before the hemispherical flame separation.
Statistical Analysis of Electrostatic Spark Ignition of Lean H2-O2-Ar Mixtures
Sep 2009
Publication
Determining the risk of accidental ignition of flammable mixtures is a topic of tremendous importance in industry and aviation safety. The concept of minimum ignition energy (MIE) has traditionally formed the basis for studying ignition hazards of fuels. In recent years however the viewpoint of ignition as a statistical phenomenon has formed the basis for studying ignition as this approach appears to be more consistent with the inherent variability in engineering test data. We have developed a very low energy capacitive spark ignition system to produce short sparks with fixed lengths of 1 to 2 mm. The ignition system is used to perform spark ignition tests in lean hydrogen oxygen-argon test mixtures over a range of spark energies. The test results are analyzed using statistical tools to obtain probability distributions for ignition versus spark energy demonstrating the statistical nature of ignition. The results also show that small changes in the hydrogen concentration lead to large changes in the ignition energy and dramatically different flame characteristics. A second low-energy spark ignition system is also developed to generate longer sparks with varying lengths up to 10 mm. A second set of ignition tests is performed in one of the test mixtures using a large range of park energies and lengths. The results are analyzed to obtain a probability distribution for ignition versus the spark energy per unit spark length. Preliminary results show that a single threshold MIE value does not exist and that the energy per unit length may be a more appropriate parameter for quantifying the risk of ignition.
Implementation of hydrogen plasma activation of Mg powder in two steps hydrogenation
Oct 2017
Publication
Development of technologically and economically feasible solutions for hydrogen storage stimulates progress in hydrogen economy. High gravimetric and volumetric capacities of magnesium hydride makes it promising material capable to accelerate implementation of hydrogen-based technologies in our daily life. However widely discussed limitations of sorption kinetics and thermodynamic properties must be managed in MgH2. This work investigates two steps hydrogenation when process of hydrogen absorption is followed after hydrogen plasma activation. Such technique initiates creation of new channels for enhanced hydrogen sorption. Moreover synthesis of negligible amount of hydride acts as positive factor for further hydrogenation.
From Research Results to Published Codes And Standards - Establishing Code Requirements For NFPA 55 Bulk Hydrogen Systems Separation Distances
Sep 2009
Publication
Performing research in the interest of providing relevant safety requirements is a valuable and essential endeavor but translating research results into enforceable requirements adopted into codes and standards a process sometimes referred to as codification can be a separate and challenging task. This paper discusses the process utilized to successfully translate research results related to bulk gaseous hydrogen storage separation (or stand-off) distances into code requirements in NFPA 55:Storage Use and Handling of Compressed Gases and Cryogenic Fluids in Portable and StationaryContainers Cylinders and Tanks and NFPA 2: Hydrogen Technologies. The process utilized can besummarized as follows: First the technical committees for the documents to be revised were engaged to confirm that the codification process was endorsed by the committee. Then a sub-committee referred to as a task group was formed. A chair must be elected or appointed. The chair should be a generalist with code enforcement or application experience. The task group was populated with several voting members of each technical committee. By having voting members as part of the task group the group becomes empowered and uniquely different from any other code proposal generating body. The task group was also populated with technical experts as needed but primarily the experts needed are the researchers involved. Once properly populated and empowered the task group must actively engage its members. The researchers must educate the code makers on the methods and limitations of their work and the code makers must take the research results and fill the gaps as needed to build consensus and create enforceable code language and generate a code change proposal that will be accepted. While this process seems simple there are pitfalls along the way that can impede or nullify the desired end result – changes to codes and standards. A few of these pitfalls include: wrong task group membership task group not empowered task group not supported in-person meetings not possible consensus not achieved. This paper focuses on the process used and how pitfalls can be avoided for future efforts.
Numerical Investigation of a Vertical Surface on the Flammable Extent of Hydrogen and Methane Vertical Jets
Sep 2011
Publication
The effect of vertical surface on the extent of high pressure unignited jets of both hydrogen and methane is studied using computer fluid dynamics simulations performed with FLACS Hydrogen. Results for constant flow rate through a 6.35 mm round leak orifice from 100 barg 250 barg 400 barg 550 barg and 700 barg compressed gas systems are presented for vertical jets. To quantify the effect of the surface on the jet the jet exit is positioned at various distances from the surface ranging from 0.029 m to 12 m. Free jets simulations are performed for comparison purposes.
Hydrogen Inhibition Effect of Chitosan and Sodium Phosphate on ZK60 Waste Dust in a Wet Dust Removal System: A Feasible Way to Control Hydrogen Explosion
Dec 2021
Publication
Wet dust removal systems used to control dust in the polishing or grinding process of Mg alloy products are frequently associated with potential hydrogen explosion caused by magnesium-water reaction. For purpose of avoiding hydrogen explosion risks we try to use a combination of chitosan (CS) and sodium phosphate (SP) to inhibit the hydrogen evolution reaction between magnesium alloy waste dust and water. The hydrogen evolution curves and chemical kinetics modeling for ten different mixing ratios demonstrate that 0.4% wt CS + 0.1% wt SP yields the best inhibition efficiency with hydrogen generation rate of almost zero. SEM and EDS analyses indicate that this composite inhibitor can create a uniform smooth tight protective film over the surface of the alloy dust particles. FTIR and XRD analysis of the chemical composition of the surface film show that this protective film contains CS and SP chemically adsorbed on the surface of ZK60 but no detectable Mg(OH)2 suggesting that magnesium-water reaction was totally blocked. Our new method offers a thorough solution to hydrogen explosion by inhibiting the hydrogen generation of magnesium alloy waste dust in a wet dust removal system.
Numerical Investigation of a Mechanical Device Subjected to a Deflagration-to-detonation Transition
Sep 2011
Publication
In this work we evaluate the consequences of the combustion of a stoichiometric mixture of hydrogen-air on a mechanical device which can be considered as a long tube. In order to choose the most dangerous combustion regime for the mechanical device we devote a particular attention to the investigation of the 1D deflagration-to-detonation transition. Then once established the most dangerous combustion regime we compute the reacting flow and the stress and strain in the mechanical device. Analyses are performed using both semi-analytical solutions and Europlexus a computer program for the simulation of fluid-structure systems under transient dynamic loading.
Production of Sustainable Hydrogen and Carbon for the Metallurgical Industry
Dec 2021
Publication
Hydrogen will presumably become an important substitute for carbon as a reductant in the metallurgical industry for processes such as steel production. However the challenge to supply enough CO2 -free hydrogen for metallurgical processes has not been resolved yet. This paper reviews different production technologies for hydrogen and their advantages and drawbacks. Additionally it will highlight the development of plasma technology to produce hydrogen and carbon black which has been taking place at SINTEF during the last 30 years.
Hyper Experiments on Catastrophic Hydrogen Releases Inside a Fuel Cell Enclosure
Sep 2009
Publication
As a part of the experimental work of the EC-funded project HYPER Pro-Science GmbH performed experiments to evaluate the hazard potential of a severe hydrogen leakage inside a fuel cell cabinet. During this study hydrogen distribution and combustion experiments were performed using a generic enclosure model with the dimensions of the fuel cell "Penta H2" provided by ARCOTRONICS (now EXERGY Fuel Cells) to the project partner UNIPI for their experiments on small foreseeable leaks. Hydrogen amounts of 1.5 to 15 g H2 were released within one second into the enclosure through a nozzle with an internal diameter of 8 mm. In the distribution experiments the effects of different venting characteristics and different amounts of internal enclosure obstruction on the hydrogen concentrations measured at fixed positions in- and outside the model were investigated. Based on the results of these experiments combustion experiments with ignition positions in- and outside the enclosure and two different ignition times were performed. BOS (Background-Oriented-Schlieren) observation combined with pressure and light emission measurements were performed to describe the characteristics and the hazard potential of the induced hydrogen combustions. The experiments provide new experimental data on the distribution and combustion behaviour of hydrogen that is released into a partly vented and partly obstructed enclosure with different venting characteristics.
In Situ X-ray Absorption Spectroscopy Study on Water Formation Reaction of Palladium Metal Nanoparticle Catalysts
Oct 2015
Publication
Proper management of hydrogen gas is very important for safety security of nuclear power plants. Hydrogen removal by water formation reaction on a catalyst is one of the candidates for creating hydrogen free system. We observed in situ and time-resolved structure change of palladium metal nanoparticle catalyst during the water formation reaction by using X-ray absorption spectroscopy technique. A poisoning effect by carbon monoxide on catalytic activity was also studied. We have found that the creation of oxidized surface layer on palladium metal nanoparticles plays an important role for the water formation reaction process.
Influence of Doping Element in Distributed Hydrogen Optical Fiber Densors with Brillouin Scattering
Sep 2013
Publication
Distributed hydrogen optical fiber sensor with Brillouin scattering is an innovative solution to measure hydrogen in harsh environment as nuclear industry. Glass composition is the key point to enhance the sensing parameter of the fiber in the target application. Several optical fiber with different doping element were used for measuring hydrogen saturation. Permeability of optical plays a major role to the kinetic of hydrogen diffusion. Fluorine doped fiber increase the sorption and the desorption of hydrogen.
Simulation of High-pressure Liquid Hydrogen Releases
Sep 2011
Publication
Sandia National Laboratories is working with stakeholders to develop scientific data for use by standards development organizations to create hydrogen codes and standards for the safe use of liquid hydrogen. Knowledge of the concentration field and flammability envelope for high-pressure hydrogen leaks is an issue of importance for the safe use of liquid hydrogen. Sandia National Laboratories is engaged in an experimental and analytical program to characterize and predict the behaviour of liquid hydrogen releases. This paper presents a model for computing hydrogen dilution distances for cold hydrogen releases. Model validation is presented for leaks of room temperature and 80 K high-pressure hydrogen gas. The model accounts for a series of transitions that occurs from a stagnate location in the tank to a point in the leak jet where the concentration of hydrogen in air at the jet centerline has dropped to 4% by volume. The leaking hydrogen is assumed to be a simple compressible substance with thermodynamic equilibrium between hydrogen vapor hydrogen liquid and air. For the multi-phase portions of the jet near the leak location the REFPROP equation of state models developed by NIST are used to account for the thermodynamics. Further downstream the jet develops into an atmospheric gas jet where the thermodynamics are described as a mixture of ideal gases (hydrogen–air mixture). Simulations are presented for dilution distances in under-expanded high-pressure leaks from the saturated vapor and saturated liquid portions of a liquid hydrogen storage tank at 10.34 barg (150 PSIG).
A Comparison Exercise on the CFD Detonation Simulation in Large Scale Confined Volumes
Sep 2009
Publication
The use of hydrogen as an energy carrier is going to widen exponentially in the next years. In order to ensure the public acceptance of the new fuel not only the environmental impact has to be excellent but also the risk management of its handling and storage must be improved. As a part of modern risk assessment procedure CFD modeling of the accident scenario development must provide reliable data on the possible pressure loads resulted from explosion processes. The expected combustion regimes can be ranged from slow flames to deflagration-to-detonation transition and even to detonation. In the last case the importance of the reliability of simulation results is particularly high since detonation is usually considered as a worst case state of affairs. A set of large-scale detonation experiments performed in Kurchatov Institute at RUT facility was selected as benchmark. RUT has typical industry-relevant characteristic dimensions. The CFD codes possibilities to correctly describe detonation in mixtures with different initial and boundary conditions were surveyed. For the modeling two detonation tests HYD05 and HYD09 were chosen; both tests were carried out in uniform hydrogen/air mixtures; first one with concentration of 20.0% vol. and the second one with 25.5% vol. In the present exercise three CFD codes using a number of different models were used to simulate these experiments. A thorough inter-comparison between the CFD results including codes models and obtained pressure predictions was carried out and reported. The results of this inter comparison should provide a solid basis for the further code development and detonation models’ validation thus improving CFD predictive capabilities.
Prospective Life Cycle Assessment of Hydrogen Production by Waste Photoreforming
Jan 2022
Publication
Identifying sustainable energy vectors is perhaps one of the most critical issues that needs addressing to achieve a climate-neutral society by 2050. In this context the hydrogen economy has been proposed as a solution to mitigate our current fossil-based energy system while the concept of the circular economy aims to boost the efficient use of resources. Photoreforming offers a promising opportunity for recycling and transforming widely available biomass-derived wastes (e.g. crude glycerol from biodiesel) into clean hydrogen fuel. This processing technology may be a versatile method that can be performed not only under UV light but also under visible light. However this approach is currently at the lab-scale and some inherent challenges must be overcome not least the relatively modest hydrogen production rates for the lamps’ substantial energy consumption. This study aims to assess the main environmental impacts identifying the hotspots and possible trade-off in which this technology could operate feasibly. We introduce an assessment of the windows of opportunity using seven categories of environmental impact with either artificial light or sunlight as the source of photocatalytic conversion. We compared the environmental indicators from this study with those of the benchmark water electrolysis and steam–methane reforming (SMR) technologies which are currently operating at a commercial scale. The results obtained in this study situate biowaste photoreforming within the portfolio of sustainable H2 production technologies of interest for future development in terms of target H2 production rates and lifetimes of sustainable operation.
Potential for Hydrogen Production from Biomass Residues in the Valencian Community
Sep 2007
Publication
The production of hydrogen from renewable sources is essential to develop the future hydrogen economy. Biomass is an abundant clean and renewable energy source and it can be important in the production of hydrogen. The Valencian Community due to its great agricultural and forestry activities generates an important quantity of biomass residues that can be used for energy generation approximately 778 kt of wet biomass residues per year. This great quantity of biomass can be transformed into a hydrogen-rich gas by different thermochemical conversion processes. In this article the potential of production of hydrogen-rich gas is analyzed considering several factors affecting the conversion yield of these processes. As a result of this analysis it could be possible to produce 1271 MNm3 of H2 per year considering the total biomass residues of the community and selecting the gasification processes.
Safety of Hydrogen and Natural Gas Mixtures by Pipelines- ANR French Project Hydromel
Sep 2011
Publication
In order to gain a better understanding of hazards linked with Hydrogen/Natural gas mixtures transport by pipeline the National Institute of Industrial Environment and Risks (INERIS) alongside with the Atomic Energy Commission (CEA) the industrial companies Air Liquide and GDF SUEZ and the French Research Institutes ICARE and PPRIME (CNRS) have been involved in a project called HYDROMEL. This project was partially funded by the French National Research Agency (ANR) in the framework of its PAN-H program aimed at promoting the R&D activities related to the hydrogen deployment. Firstly the project partners investigated how a NG/H2 mixture may influence the modelling of a hazard scenario i.e. how the addition of a quantity of hydrogen in natural gas can increase the potential of danger. Therefore it was necessary to build an experimental database of physics properties for mixtures. Secondly effect distances in accidental scenarios that could happen on pipelines have been calculated with existing models adapted to the mixtures. This part was preceded by a benchmark exercise between all partners models and experimental results found in the literature. Finally the consortium wrote a good practice guideline for modelling the effects related to the release of natural gas /hydrogen mixture?. The selected models and their comparison with data collected in the literature as well as the experimental results of this project and the main conclusions of the guidelines are presented in this paper.
Comparison of Modelling Approaches for CFD Simulations of High Pressure Hydrogen Releases
Sep 2011
Publication
Several approaches have been used in the past to model the source of a high pressure under-expanded jet such as the computationally expensive resolution of the jet shock structure and the simpler pseudo-source or notional nozzle approaches. In each approach assumptions are made introducing inaccuracies in the CFD calculations. This work assesses the effect of different source modelling approaches on the accuracy of CFD calculations by comparing simulation results to experimental data of the axial distribution of the flow velocity and H2 concentration.
Hydrogen Venting Under Variable Flow Conditions
Sep 2011
Publication
Safety distances for hydrogen plumes are currently derived using models developed for hydrocarbon releases. It is well known that hydrogen behaves in a significantly different manner to that of hydrocarbons when released to atmosphere. There are two main aspects involved with the development of safety distances for credible hydrogen releases; the intensity of the thermal radiation from such a plume should it be ignited and the distance downwind from the release point to the point where a flammable mixture with air no longer exists. A number of distinct areas of venting behaviour were investigated; Thermal radiation from ignited plumes from vertical open ended vent pipes Far field radiation measurements for direct comparison with models Thermal radiation from ignited plumes from vertical vent pipes terminating in a T-piece Thermal radiation measurements from ignited hydrogen with a 45 vent termination Hydrogen concentration measurements with a T-piece.
Detection of Hydrogen Released In a Full-Scale Residential Garage
Sep 2011
Publication
Experiments were conducted to assess detectability of a low-level leak of hydrogen gas and the uniformity of hydrogen concentration at selected sensor placement locations in a realistic setting. A 5%2hydrogen/95%2nitrogen gas mixture was injected at a rate of 350 L/min for about 3/4 hour into a 93m3 residential garage space through a 0.09 m2 square open-top dispersion box located on the floor. Calibrated catalytic sensors were placed on ceiling and wall locations and the sensors detected hydrogen early in the release and continued to measure concentrations to peak and diminishing levels. Experiments were conducted with and without a car parked over the dispersion box. The results show that a car positioned over the dispersion box tends to promote dilution of the hydrogen cause a longer time for locations to reach a fixed threshold and produce lower peak concentrations than with no car present.
The Effect of Vacancy Concentration on Hydrogen Diffusion in Alpha-Fe by Molecular Dynamic
Sep 2017
Publication
Diffusion coefficient is in significant dependence on vacancy concentration due to that migration of vacancy is the dominant mechanism of atom transport or diffusion in processes such as void formation dislocation movement and solid phase transformation. This study aims to investigate the effect of vacancy concentration on hydrogen diffusion in alpha-Fe by molecular dynamics simulations especially at low temperatures and with loading. Comparisons of the diffusion coefficients between alpha-Fe with a perfect structure and different-concentration vacancies as well as comparisons between experimental and theoretical results had been made to characterize and summarize the effect of vacancy on hydrogen diffusion coefficient.
Comparison of Convective Schemes in Hydrogen Impinging Jet CFD Simulation
Oct 2015
Publication
Hydrogen impinging jets can be formed in the case of an accidental release indoors or outdoors. The CFD simulation of hydrogen impinging jets suffers from numerical errors resulting in a non-physical velocity and hydrogen concentration field with a butterfly like structure. In order to minimize the numerical errors and to avoid the butterfly effect high order schemes need to be used. The aim of this work is to give best practices guidelines for hydrogen impinging jet simulations. A number of different numerical schemes is evaluated. The number of cells which discretize the source is also examined.
Dependency of Equivalence Ratio on Hydrogen Cylindrical Detonation Induced by Direct Initiation
Sep 2011
Publication
A hydrogen fuel is expected to expand its demand in the future. However hydrogen has to be treated with enough caution because of wide combustible conditions and easiness to ignite. Detonation accidents are caused in hydrogen gas such as the explosion accident in Fukushima first nuclear plant (2011). Therefore it is necessary to comprehend initiation conditions of detonation to prevent its detonation explosion. In the present study cylindrical detonation induced by direct initiation is simulated to understand the dependency of equivalence ratios in hydrogen-oxygen mixture. The several detailed kinetic models are compared to select the most appropriate model for detonation in a wide range of equivalence ratios. The Petersen-Hanson model is used in the present study due to the best agreement among the other models. In the numerical results of cylindrical detonation induced by direct initiation a cellular structure which is similar to the experimental smoked foil record is observed. The local pressure is up to 12 MPa under the condition at the standard state. The ignition process of cylindrical detonation has two stages. At the first stage the normalized cell width /L1/2 at each equivalence ratio increases linearly. At the second stage cell bifurcations appear due to a generation of new transverse waves. It is observed that a transverse wave transforms to a transverse detonation at the end of the first stage and after that some disturbance is developed to be a new transverse wave at the beginning of the second stage.
Flame Propagation Near the Limiting Conditions in a Thin Layer Geometry
Sep 2019
Publication
A series of experiments on hydrogen flame propagation in a thin layer geometry is presented. Premixed hydrogen-air compositions in the range from 6 to 15%(vol.) H2 are tested. Semi-open vertical combustion chamber consists of two transparent Plexiglas side walls with main dimensions of 90x20 cm with a gap from 1 to 10 mm in between. Test mixtures are ignited at the open end of the chamber so that the flame propagates towards the closed end. Ignition position changes from top to bottom in order to take into account an effect of gravity on flame propagation regimes. High-speed shadow imaging is used to visualize and record the combustion process. Thermal-diffusion and Darrieus-Landau instabilities are governing the general flame behaviour. Heat losses to side walls and viscous friction in a thin layer may fully suppress the flame propagation with local or global extinction. The sensitivity to heat losses can be characterized using a Peclet number as a ratio of layer thickness to laminar flame thickness. Approaching to critical Peclet number Pec = 42 the planar or wrinkled flame surface degradants to one-or two-heads "finger" flame propagating straight (for two-heads flame) or chaotic (for one-head "finger" flame). Such a "fingering" of the flame is found for the first time for gaseous systems and very similar to that reported for smouldering or filtering combustion of solid materials and also under micro-gravity conditions. The distance between "fingers" may depend on deficit of limiting component. The processes investigated can be very important from academic and practical points of view with respect to safety of hydrogen fuel cells.
Hydrogen Subsonic Upward Release and Dispersion Experiments in Closed Cylindrical Vessel
Sep 2007
Publication
Report presents the preliminary experimental results on hydrogen subsonic leakage in a closed vessel under the well-controlled boundary/initial conditions. Formation of hydrogen-air gas mixture cloud was studied for a transient (10 min) upward hydrogen leakage which was followed by subsequent evolution (15 min) of explosive cloud. Low-intensity ( 0.46⋅10−3 m3/sec) hydrogen release was performed via circular (diameter 0.014 m) orifice located in the bottom part of a horizontal cylindrical vessel ( ≈4 m3). A spatially distributed net of the 24 hydrogen sensors and 24 temperature sensors was used to permanently track the time dependence of the hydrogen concentration and temperature fields in vessel. Analysis of the simultaneous experimental records for the different spatial points permits to delineate the basic flow patterns and stages of hydrogen subsonic release in closed vessel in contrast to hydrogen jet release in open environment. The quantitative data were obtained for the averaged speeds of explosive cloud envelop (50% fraction of the Lower Flammability Limit (LFL)) propagation in the vertical and horizontal directions. The obtained data will be used as an experimental basis for development of the guidelines for an indoors allocation of the hydrogen sensors. Data can be also used as a new benchmark case for the reactive Computational Fluid Dynamics codes validation.
Thermal Loading Cases of Hydrogen High Pressure Storage Cylinders
Sep 2007
Publication
Composite cylinders with metal liner are used for the storage of compressed hydrogen in automotive application. These hybrid pressure cylinders are designed for a nominal working pressure of up to 70 MPa. They also have to withstand a temperature range between -40°C and +85°C according GRPE draft [1] and for short periods up to a maximum temperature of 140°C during filling (fast filling) [2]. In order to exploit the material properties efficiently with a high degree of lightweight optimization and a high level of safety on the same time a better understanding of the structural behavior of hybrid designs is necessary. Work on this topic has been carried out in the frame of a work package on safety aspects and regulation (Subproject SAR) of the European IP StorHy (www.storhy.net). The temperature influence on the composite layers is distinctive due to there typical polymer material behavior. The stiffness of the composite layer is a function of temperature which influences global strains and stress levels (residual stresses) in operation. In order to do an accurate fatigue assessment of composite hybrid cylinders a realistic modeling of a representative temperature load is needed. For this climate data has been evaluated which were collected in Europe over a period of 30 years [3]. Assuming that the temperature follows a Gaussian (normal) distribution within the assessed period of 30 years it is possible to generate a frequency distribution for different temperature classes for the cold extreme and the hot extreme. Combining these distributions leads to the overall temperature range distribution (frequency over temperature classes). The climatic temperature influence the filling temperature and the pressure load have to be considered in combination with the operation profile of the storage cylinder to derive a complete load vector for an accurate assessment of the lifetime and safety level.
Validation Testing In Support Of Hydrogen Codes and Standards Developments
Sep 2011
Publication
New codes and standards are being developed to facilitate the safe deployment of emerging hydrogen technologies. Hydrogen markets will benefit from standards that address the specific properties of hydrogen hydrogen effects on strength of materials and hydrogen compressed gas storage at pressures up to 70 MPa. The need for validation of new hydrogen requirements has been identified by codes and standards technical committees. The US Department of Energy (DOE) office of Energy Efficiency and Renewable Energy (EERE) has tasked the National Renewable Energy Laboratory (NREL) with the role of supporting hydrogen codes and standards research and development needs. NREL has provided validation test support to several new standards development efforts including pressure testing of 70 MPa on board vehicle storage systems flaw testing of stationary hydrogen tanks fill protocols for hydrogen fuel dispensing and hydrogen compatibility testing for hydrogen pressure relief devices (HPRD’s). Validation test results are presented for these four specific standards development needs.
Australia's National Hydrogen Strategy
Nov 2019
Publication
Australia’s National Hydrogen Strategy sets a vision for a clean innovative safe and competitive hydrogen industry that benefits all Australians. It aims to position our industry as a major player by 2030.<br/>The strategy outlines an adaptive approach that equips Australia to scale up quickly as the hydrogen market grows. It includes a set of nationally coordinated actions involving governments industry and the community.
Real World Hydrogen Technology Validation
Sep 2011
Publication
The Department of Energy the Department of Defense's Defense Logistics Agency and the Department of Transportation's Federal Transit Administration have funded learning demonstrations and early market deployments to provide insight into applications of hydrogen technologies on the road in the warehouse and as stationary power. NREL's analyses validate the technology in real-world applications reveal the status of the technology and facilitate the development of hydrogen and fuel cell technologies manufacturing and operations. This paper presents the maintenance safety and operation data of fuel cells in multiple applications with the reported incidents near misses and frequencies. NREL has analyzed records of more than 225000 kilograms of hydrogen that have been dispensed through more than 108000 hydrogen fills with an excellent safety record.
CFD Simulations of the Effect of Ventilation on Hydrogen Release Behavior and Combustion in an Underground Mining Environment
Sep 2013
Publication
CFD simulations investigating the effect of ventilation airflow on hydrogen release behaviour in an underground mining tunnel were performed using FLACS hydrogen. Both dispersion and combustion scenarios of a hydrogen release coming from a severed distribution pipeline were investigated. Effects on the hydrogen dispersion such as ventilation strength and the mechanism of air flow supply (a pull or push fan) and mine opening surface roughness surface cavities and obstructions were explored. Results showing the effect of changing the position of the leak adding a cavity on the ceiling of the tunnel and changing the roughness of the walls are given. Overpressure sensitivity to the ignition delay was also considered. From the results for the varied ventilation regimes and spatial scenarios it is difficult to identify the optimal ventilation strategy giving the safest conditions for hydrogen distribution and refuelling in an underground mine.
Fuel Cell in Maritime Applications Challenges, Chances and Experiences
Sep 2011
Publication
The shipping industry is becoming increasingly visible on the global environmental agenda. Shipping's share of air pollution is becoming significant and public concern has led to ongoing political pressure to reduce shipping emissions. International legislation at the IMO governing the reduction of SOx and NOx emissions from shipping is being enforced and both the European Union and the USA are planning to introduce further regional laws to reduce emissions. Therefore new approaches for more environmental friendly and energy efficient energy converter are under discussion. One possible solution will be the use of fuel cell systems for auxiliary power or even main propulsion. The paper summarizes the legal background in international shipping related to the use of fuel cells and gas as fuel in ships. The focus of the paper will be on the first experiences on the use of fuel cell systems on board of ships. In this respect an incident on a fuel cell ship in Hamburg will be discussed. Moreover the paper will point out the potential for the use of fuel cell systems on board. Finally an outlook is given on ongoing and planed projects for the use of fuel cells on board of ships.
Estimation of Uncertainty in Risk Assessment of Hydrogen Applications
Sep 2011
Publication
Hydrogen technologies such as hydrogen fuelled vehicles and refuelling stations are being tested in practice in a number of projects (e.g. HyFleet-Cute and Whistler project) giving valuable information on the reliability and maintenance requirements. In order to establish refuelling stations the permitting authorities request qualitative and quantitative risk assessments to show the safety and acceptability in terms of failure frequencies and respective consequences. For new technologies not all statistical data can be established or are available in good quality causing assumptions and extrapolations to be made. Therefore the risk assessment results contain varying degrees of uncertainty as some components are well established while others are not. The paper describes a methodology to evaluate the degree of uncertainty in data for hydrogen applications based on the bias concept of the total probability and the NUSAP concept to quantify uncertainties of new not fully qualified hydrogen technologies and implications to risk management.
Hydrogen Fueling Standardization: Enabling ZEVs with "Same as Today" Fueling and FCEV Range and Safety
Oct 2015
Publication
Zero Emission Vehicles (ZEVs) are necessary to help reduce the emissions in the transportation sector which is responsible for 40% of overall greenhouse gas emissions. There are two types of ZEVs Battery Electric Vehicles (BEVs) and Fuel Cell Electric Vehicles (FCEVs) Commercial Success of BEVs has been challenging thus far also due to limited range and very long charging duration. FCEVs using H2 infrastructure with SAE J2601 and J2799 standards can be consistently fuelled in a safe manner fast and resulting in a range similar to conventional vehicles. Specifically fuelling with SAE J2601 with the SAE J2799 enables FCEVs to fill with hydrogen in 3-5 minutes and to achieve a high State of Charge (SOC) resulting in 300+ mile range without exceeding the safety storage limits. Standardized H2 therefore gives an advantage to the customer over electric charging. SAE created this H2 fuelling protocol based on modelling laboratory and field tests. These SAE standards enable the first generation of commercial FCEVs and H2 stations to achieve a customer acceptable fueling similar to today's experience. This report details the advantages of hydrogen and the validation of H2 fuelling for the SAE standards.
Influence of Pressure and Temperature on the Fatigue Strength of Type-3 Compressed-hydrogen Tanks
Sep 2011
Publication
The pressure of compressed hydrogen changes with temperature when mass and volume are constant. Therefore when a compressed-hydrogen tank is filled with a certain amount of hydrogen it is necessary to adjust the filling pressure according to the gas temperature. In this study we conducted hydraulic pressure-cycle tests to investigate the fatigue life of Type-3 compressed-hydrogen tanks when environmental temperature and filling pressure are changed. The results indicated that the fatigue life at low temperatures (−40 °C 28 MPa) and room temperature (15 °C 35 MPa) was almost equal. However the fatigue life at high temperatures (85 °C 44 MPa) was shorter than that under other conditions suggesting that stress changes caused by thermal stress affect the fatigue life of the Type-3 tank.
Effectiveness Evaluation of Facilities Protecting from Hydrogen-air Explosion Overpressure
Sep 2011
Publication
The physical processes of the explosion of the hydrogen cloud which is formed as a result of the instantaneous destruction of high-pressure cylinder in the fuelling station are investigated. To simulate the formation of hydrogen-air mixture and its combustion a three-dimensional model of an instantaneous explosion of the gas mixture based on the Euler equations supplemented by the conservation laws of mixture components solved by Godunov method is used. To reduce the influence of the overpressure effects in the shock wave on the surrounding environment it is proposed to use a number of protective measures. An estimation of the efficiency of safety devices is carried out by monitoring the overpressure changes in several critical points. To reduce the pressure load on the construction of protective devices a range of constructive measures is also offered.
Risk Analysis on Mobile Hydrogen Refueling Stations in the World Expo Shanghai
Sep 2013
Publication
During the World Expo Shanghai there were one hundred fuel-cell sight-seeing cars in operation at the Expo Site. The sight-seeing cars were not allowed to drive out of the Expo Site and the stationary hydrogen refuelling station was not permitted to build at the Expo Site for the sake of safety. A flexible solution to refuel the cars was the application of mobile hydrogen refuelling stations. To better understand the hazards and risks associated with the mobile hydrogen refueling stations a risk analysis was preformed to improve the safety of the operations. The risks to the station personnel and to the public were discussed separately. Results show that the stationary risks of the mobile stations to the personnel and refueling customers are lower than the risk acceptance criteria over an order of magnitude so occupational risks and risks to customers are completely acceptable. The third party risks can be acceptable as long as the appropriate mitigation measures are implemented especially well designed parking area and operation time. Leak from boosters is the main risk contributor to the stationary risks because of its highest failure rates according to the generic data and its worst harm effects based on the consequence evaluations. As for the road risks of the mobile stations they can be acceptable as long as the appropriate mitigation measures are implemented especially well-designed moving path and transportation time.
Analysis of Wind to Hydrogen Production and Carbon Capture Utilisation and Storage Systems for Novel Production of Chemical Energy Carriers
Apr 2022
Publication
As the offshore energy landscape transitions to renewable energy useful decommissioned or abandoned oil and gas infrastructure can be repurposed in the context of the circular economy. Oil and gas platforms for example offer opportunity for hydrogen (H2) production by desalination and electrolysis of sea water using offshore wind power. However as H2 storage and transport may prove challenging this study proposes to react this H2 with the carbon dioxide (CO2) stored in depleted reservoirs. Thus producing a more transportable energy carriers like methane or methanol in the reservoir. This paper presents a novel thermodynamic analysis of the Goldeneye reservoir in the North Sea in Aspen Plus. For Goldeneye which can store 30 Mt of CO2 at full capacity if connected to a 4.45 GW wind farm it has the potential to produce 2.10 Mt of methane annually and abate 4.51 Mt of CO2 from wind energy in the grid.
High-Order Perturbation Solutions to a Lh2 Spreading Model With Continuous Spill
Sep 2011
Publication
High-order perturbation solutions have been obtained for the simple physical model describing the LH2 spreading with a continuous spill and are shown to improve over the first-order perturbation solutions. The non-dimensional governing equations for the model are derived to obtain more general solutions. Non-dimensional parameters are sought as the governing parameters for the non-dimensional equations and the non-dimensional evaporation rate is used as the perturbation parameter. The results show that the second-order solutions exhibit an improvement over the first-order solutions with respect to the pool volume; however there is still a difference between numerical solutions and second-order solutions in the late stage of spread. Finally it is revealed that the third-order solutions almost agree with numerical solutions.
Modeling of Cryogenic Hydrogen jets
Oct 2015
Publication
In the present work the CFD modeling of cryogenic hydrogen releases in quiescent environment is presented. Two tests from the series of experiments performed in the ICESAFE facility at KIT (Karlsruhe Institute for Technology) have been simulated within the SUSANA project. During these tests hydrogen at temperature of 37K and 36K and at pressure of 19 and 29 bars respectively is released horizontally. The release at the nozzle is sonic and the modeling of the under-expanded jet was performed using two different approaches: the Ewan and Moodie approach and a modification of the Ewan and Moodie approach (modified Ewan and Moodie) that is introduced here and employs the momentum balance to calculate the velocity in the under-expanded jet. Using these approaches a pseudo-diameter is calculated and this diameter is set as source boundary in the simulation. Predictions are consistent with measurements for both experiments with both approaches. However the Ewan and Moodie approach seems to perform better.
Explosion Venting of Rich Hydrogen-air Mixtures in a Cylindrical Vessel with Two Symmetrical Vents
Oct 2015
Publication
The safety issues related to explosion venting of hydrogen-air mixtures are significant and deserve more detailed investigation. Vented hydrogen-air explosion has been studied extensively in vessels with a single vent. However little attention has been paid to the cases with more than one vent. In this paper experiments about explosion venting of rich hydrogen-air mixtures were conducted in a cylindrical vessel with two symmetrical vents to investigate the effect of vent area and distribution on pressure build up and flame behaviours. Venting accelerates the flame front towards the vent but has nearly no effect on the opposite side. The maximum internal overpressure decreases and the maximum external flame length increases with the increase of vent area. Two pressure peaks can be identified outside of vessel which correspond to the external explosion and the burnt gas jet respectively. Compared with single vent two vents with same total vent area leads to nearly unchanged maximum internal and external overpressure but much smaller external flame length.
Component Availability Effects for Pressure Relief Valves Used at Hydrogen Fueling Stations
Sep 2017
Publication
There are times in engineering when it seems that safety and equipment cost reduction are conflicting priorities. This could be the case for pressure relief valves and vent stack sizing. This paper explores the role that component availability (particularly variety in flow and orifice diameters) plays in the engineer’s decision of a relief valve. This paper outlines the guidelines and assumptions in sizing and selecting pressure relief devices (PRDs) found in a typical high pressure hydrogen fueling station. It also provides steps in sizing the station common vent stack where the discharge gas is to be routed to prior being released into the atmosphere. This paper also explores the component availability landscape for hydrogen station designers and identifies opportunities for improvement in the supply chain of components as hydrogen fueling stations increase in number and size. American Society of Mechanical Engineers Boiler and Pressure Vessel Code Section VIII (ASME BPVC Section VIII) Compressed Gas Association S-1.3 (CGA S-1.3) and American Petroleum Institute 520 (API 520) standards provide specific design criteria for hydrogen pressure relief valves. Results of these calculations do not match the available components. The available safety relief valves are 50 to 87 times larger than the required calculated flow capacities. Selecting a significantly oversized safety relief valve affects the vent stack design as the stack design requires sizing relative to the actual flowrate of the safety relief valve. The effect on the vent stack size in turn negatively affects site safety radiation threshold set back distances.
Self-ignition of Hydrogen-nitrogen Mixtures During High-pressure Release Into Air
Oct 2015
Publication
This paper demonstrates experimental and numerical study on spontaneous ignition of H2–N2 mixtures during high-pressure release into air through the tubes of various diameters and lengths. The mixtures included 5% and 10% (vol.) N2 addition to hydrogen being at initial pressure in range of 4.3–15.9 MPa. As a point of reference pure hydrogen release experiments were performed with use of the same experimental stand experimental procedure and extension tubes. The results showed that N2 addition may increase the initial pressure necessary to self-ignite the mixture as much as 2.12 or 2.85 – times for 5% and 10% N2 addition respectively. Additionally simulations were performed with use of Cantera code (0-D) based on the ideal shock tube assumption and with the modified KIVA3V code (2-D) to establish the main factors responsible for ignition and sustained combustion during the release.
Safety-Barrier Diagrams for Documenting Safety of Hydrogen Applications
Sep 2007
Publication
Safety-barrier diagrams have proven to be a useful tool in documenting the safety measures taken to prevent incidents and accidents in process industry. In Denmark they are used to inform the authorities and the nonexperts on safety relevant issues as safety-barrier diagrams are less complex compared to fault trees and are easy to understand. Internationally there is a growing interest in this concept with the use of so-called “bowtie” diagrams which are a special case of safety-barrier diagrams. Especially during the on-going introduction of new hydrogen technologies or applications as e.g. hydrogen refueling stations this technique is considered a valuable tool to support the communication with authorities and other stakeholders during the permitting process. Another advantage of safety-barrier diagrams is that there is a direct focus on those system elements that need to be subject to safety management in terms of design and installation operational use inspection and monitoring and maintenance. Safety-barrier diagrams support both quantitative and qualitative or deterministic approaches. The paper will describe the background and syntax of the methodology and thereafter the use of such diagrams for hydrogen technologies are demonstrated.
Attained Temperature During Gas Fuelling and Defueling Cycles of Compressed Hydrogen Tanks for FCV
Sep 2011
Publication
In this study we conducted hydrogen gas filling and discharging cycling tests to examine the thermal behaviour in hydrogen storage tanks under actual use conditions. As a result it was confirmed that the gas temperature in the tank varied depending on the initial test conditions such as the ambient temperature of the tank and the filling gas temperature and that the gas temperature tended to stabilize after several gas filling and discharging cycles.
CO2-Free Hydrogen Supply Chain Project and Risk Assessment for the Safety Design
Sep 2013
Publication
We at Kawasaki Heavy Industries have proposed a "CO2-Free H2 supply chain" using abundant brown coal of Australian origin as the energy source. This chain will store CO2 generated during the process for producing hydrogen from brown coal in a project (Carbon Net) that the Australia Government is promoting. Thus Japan can import CO2-free hydrogen. The supply chain consists of the hydrogen production system the hydrogen transport/storage system and the hydrogen use system. Related to their designs we have to consider their hazards polluted scenarios and safety measures via a safety assessment process that is compliant with international risk assessment standards. To verify safety designs related experiments and analyses will be conducted. This paper describes the approach to safety design for especially the related liquid hydrogen facilities.
Integration of Experimental Facilities: A Joint Effort for Establishing a Common Knowledge Base in Experimental Work on Hydrogen Safety
Sep 2009
Publication
With regard to the goals of the European HySafe Network research facilities are essential for the experimental investigation of relevant phenomena for testing devices and safety concepts as well as for the generation of validation data for the various numerical codes and models. The integrating activity ‘Integration of Experimental Facilities (IEF)’ has provided basic support for jointly performed experimental work within HySafe. Even beyond the funding period of the NoE HySafe in the 6th Framework Programme IEF represents a long lasting effort for reaching sustainable integration of the experimental research capacities and expertise of the partners from different research fields. In order to achieve a high standard in the quality of experimental data provided by the partners emphasis was put on the know-how transfer between the partners. The strategy for reaching the objectives consisted of two parts. On the one hand a documentation of the experimental capacities has been prepared and analysed. On the other hand a communication base has been established by means of biannual workshops on experimental issues. A total of 8 well received workshops has been organised covering topics from measurement technologies to safety issues. Based on the information presented by the partners a working document on best practice including the joint experimental knowledge of all partners with regard to experiments and instrumentation was created. Preserving the character of a working document it was implemented in the IEF wiki website which was set up in order to provide a central communication platform. The paper gives an overview of the IEF network activities over the last 5 years.
No more items...