- Home
- A-Z Publications
- Publications
Publications
Multi-agent Based Optimal Sizing of Hybrid Renewable Energy Systems and their Significance in Sustainable Energy Development
Nov 2024
Publication
This paper delves into the enhancement and optimization of on-grid renewable energy systems using a variety of renewable energy sources with a particular focus on large-scale applications designed to meet the energy demand of a certain load. As global concerns surrounding climate change continue to mount the urgency of replacing traditional fossil fuel-based power generation with cleaner more cost-effective and dependable alternatives becomes increasingly apparent. In this context a comprehensive investigation is conducted on grid connected hybrid energy system that combines photovoltaic wind and fuel cell technologies. The study employs three state-of-the-art optimization algorithms namely Walrus Optimization Algorithm (WaOA) Coati Optimization Algorithm (COA) and Osprey Optimization Algorithm (OOA) to determine the optimal system size and energy management strategies all aimed at minimizing the cost of energy (COE) for grid-based electricity. The results of the optimization process are compared with the results obtained from the utilization of the Particle swarm optimization (PSO) and Grey Wolf optimizer (GWO). The findings of this study underscore both the practical feasibility and the critical importance of adopting on-grid renewable energy systems to decrease the dependence on traditional energy sources within the grid. The proposed WaOA succeeded to reach the optimal solution of the optimal design process with a COE of 0.51758129611 $//kwh while keeping the loss of power supply probability (LPSP) the reliability index at 7.303681e-19. The practical recommendations and forwardlooking insights provided within this research hold the potential to foster sustainable development and effectively mitigate carbon emissions in the future.
Hydrogen and the Global Energy Transition—Path to Sustainability and Adoption across All Economic Sectors
Feb 2024
Publication
This perspective article delves into the critical role of hydrogen as a sustainable energy carrier in the context of the ongoing global energy transition. Hydrogen with its potential to decarbonize various sectors has emerged as a key player in achieving decarbonization and energy sustainability goals. This article provides an overview of the current state of hydrogen technology its production methods and its applications across diverse industries. By exploring the challenges and opportunities associated with hydrogen integration we aim to shed light on the pathways toward achieving a sustainable hydrogen economy. Additionally the article underscores the need for collaborative efforts among policymakers industries and researchers to overcome existing hurdles and unlock the full potential of hydrogen in the transition to a low-carbon future. Through a balanced analysis of the present landscape and future prospects this perspective article aims to contribute valuable insights to the discourse surrounding hydrogen’s role in the global energy transition.
Exploring Hydrogen–Diesel Dual Fuel Combustion in a Light-Duty Engine: A Numerical Investigation
Nov 2024
Publication
Dual fuel combustion has gained attention as a cost-effective solution for reducing the pollutant emissions of internal combustion engines. The typical approach is combining a conventional high-reactivity fossil fuel (diesel fuel) with a sustainable low-reactivity fuel such as bio-methane ethanol or green hydrogen. The last one is particularly interesting as in theory it produces only water and NOx when it burns. However integrating hydrogen into stock diesel engines is far from trivial due to a number of theoretical and practical challenges mainly related to the control of combustion at different loads and speeds. The use of 3D-CFD simulation supported by experimental data appears to be the most effective way to address these issues. This study investigates the hydrogen-diesel dual fuel concept implemented with minimum modifications in a light-duty diesel engine (2.8 L 4-cylinder direct injection with common rail) considering two operating points representing typical partial and full load conditions for a light commercial vehicle or an industrial engine. The numerical analysis explores the effects of progressively replacing diesel fuel with hydrogen up to 80% of the total energy input. The goal is to assess how this substitution affects engine performance and combustion characteristics. The results show that a moderate hydrogen substitution improves brake thermal efficiency while higher substitution rates present quite a severe challenge. To address these issues the diesel fuel injection strategy is optimized under dual fuel operation. The research findings are promising but they also indicate that further investigations are needed at high hydrogen substitution rates in order to exploit the potential of the concept.
H2 URESONIC: Design of a Solar-Hydrogen University Renewable Energy System for a New and Innovative Campus
Feb 2024
Publication
The necessity to move to sustainable energy solutions has inspired an investigation of innovative technologies for satisfying educational institutions’ sustainable energy needs. The possibility of a solar-hydrogen storage system and its integration into university energy management is investigated in this article. The study opens by providing context noting the growing relevance of renewable energy in universities as well as the necessity for effective energy storage systems. The goal is to delve into solar-hydrogen technology outlining its components operating mechanism and benefits over typical storage systems. The chapter on Integration Design examines current university energy infrastructure identifies problems and provides ways for integrating solar-hydrogen systems seamlessly. This integration relies heavily on technological and economic considerations such as a cost-benefit analysis and scalability studies. Case studies include real-world examples performance measurements and significant insights learned from successful implementations. The chapter Future Prospects investigates new trends in solar-hydrogen technology as well as the impact of government legislation providing a forward-looking viewpoint for colleges considering adoption. The report concludes with a summary of significant findings emphasizing the benefits of solar-hydrogen integration and making recommendations for future implementations. The limitation of this research is that it only focuses on design and simulation as a phase of preliminary study.
Revolution in Renewables: Integration of Green Hydrogen for a Sustainable Future
Aug 2024
Publication
In recent years global efforts towards a future with sustainable energy have intensified the development of renewable energy sources (RESs) such as offshore wind solar photovoltaics (PVs) hydro and geothermal. Concurrently green hydrogen produced via water electrolysis using these RESs has been recognized as a promising solution to decarbonizing traditionally hard-to-abate sectors. Furthermore hydrogen storage provides a long-duration energy storage approach to managing the intermittency of RESs which ensures a reliable and stable electricity supply and supports electric grid operations with ancillary services like frequency and voltage regulation. Despite significant progress the hydrogen economy remains nascent with ongoing developments and persistent uncertainties in economic technological and regulatory aspects. This paper provides a comprehensive review of the green hydrogen value chain encompassing production transportation logistics storage methodologies and end-use applications while identifying key research gaps. Particular emphasis is placed on the integration of green hydrogen into both grid-connected and islanded systems with a focus on operational strategies to enhance grid resilience and efficiency over both the long and short terms. Moreover this paper draws on global case studies from pioneering green hydrogen projects to inform strategies that can accelerate the adoption and large-scale deployment of green hydrogen technologies across diverse sectors and geographies.
The Effects of Hydrogen Research and Innovation on International Hydrogen Trade
Feb 2024
Publication
Climate change and the pressure to decarbonize as well as energy security concerns have drawn the attention of policymakers and the industry to hydrogen energy. To advance the hydrogen economy at a global scale research and innovation progress is of significant importance among others. However previous studies have provided only limited quantitative evidence of the effects of research and innovation on the formation of a global hydrogen market. Instead they postulate rather than empirically support this relationship. Therefore this study analyzes the effects of research and innovation measured by scientific publications patents and standards on bilateral hydrogen trade flows for 32 countries between 1995 and 2019 in a gravity model of trade using regression analyses and Poisson Pseudo Maximum Likelihood (PPML) estimation. The main results of the PPML estimation show that research and innovation progress is indeed associated with increased trade especially with patenting and (international) standardization enhancing hydrogen export volumes. As policy implications we derive that increased public R&D funding can help increase the competitiveness of hydrogen energy and boost market growth along with infrastructure support and harmonized standards and regulations.
A Critical Analysis of Morocco’s Green Hydrogen Roadmap: A Modelling Approach to Assess Country Readiness from the Energy Trilemma Perspective
Apr 2024
Publication
Morocco despite its heavy reliance on imported fossil fuels which made up 68% of electricity generation in 2020 has recognised its significant renewable energy potential. The Nationally Determined Contribution (NDC) commitment is to reduce emissions by 45.5% from baseline levels with international assistance and abstain from constructing new coal plants. Moreover the Green Hydrogen Roadmap aims to export 10 TWh of green hydrogen by 2030 as well as use it for local electricity storage. This paper critically analyses this Roadmap and Morocco’s readiness to reach its ambitious targets focusing specifically on an energy trilemma perspective and using OSeMOSYS (Open-Source energy Modelling System) for energy modelling. The results reveal that the NDC scenario is only marginally more expensive than the least-cost scenario at around 1.3% (approximately USD 375 million) and facilitates a 23.32% emission reduction by 2050. An important note is the continued reliance on existing coal power plants across all scenarios which challenges both energy security and emissions. The assessment of the Green Hydrogen Scenarios highlights that it could be too costly for the Moroccan government to fund the Green Hydrogen Roadmap at this scale which leads to increased imports of polluting fossil fuels for cost reduction. In fact the emission levels are 39% higher in the green hydrogen exports scenario than in the least-cost scenario. Given these findings it is recommended that the Green Hydrogen Roadmap be re-evaluated with a suggestion for a postponement and reduction in scope.
Profitability of Hydrogen Production: Assessment of Investments in Electrolyser Under Various Market Circumstances
Aug 2024
Publication
Although hydrogen is increasingly seen as a crucial energy carrier in future zero-carbon energy system a profitable exploitation of electrolysers requires still high amounts of subsidies. To analyze the profitability of electrolysers attention has to be paid not only to the costs but also to the interaction between electricity and hydrogen markets. Using a model of internationally integrated electricity and hydrogen markets this paper analyses the profitability of electrolysers plants in various future market circumstances. We find that in particular the future supply of renewable electricity the demand for electricity as well as the prices of natural gas and carbon strongly affect the profitability of electrolysis. In order to make massive investments in electrolysers profitable with significantly lower subsidy requirements the amount of renewable electricity generation needs to grow strongly and the carbon prices should be higher while the demand for electricity should not increase accordingly. This research underscores the critical role of market conditions in shaping the viability of hydrogen electrolysis providing valuable insights for policymakers and stakeholders in the transition to a zero-carbon energy system.
A New Integrated System for Carbon Capture and Clean Hydrogen Production for Sustainable Societal Utilization
Oct 2024
Publication
Hydrogen production and carbon dioxide removal are considered two of the critical pieces to achieve ultimate sustainability target. This study proposes and investigates a new variation of potassium hydroxide thermochemical cycle in order to combine hydrogen production and carbon dioxide removal synergistically. An alkali metal redox thermochemical cycle developed where the potassium hydroxide is considered by using a nonequilibrium reaction. Also the multigeneration options are explored by using two stage steam Rankine cycle multi-effect distillation desalination Li-Br absorption chiller which are integrated with potassium hydroxide thermochemical cycle for hydrogen production carbon capture power generation water desalination and cooling purposes. A comparative assessment under different scenarios is carried out. The energy and exergy efficiencies of the hydrogen production thermochemical cycle are 44.2% and 67.66% when the hydrogen generation reaction is carried out at 180°C and the separation reactor temperature set at 400°C. Among the multigeneration scenarios a trigeneration option of hydrogen power and water indicates the highest energy efficiency as 66.02%.
Geomechanics of Hydrogen Storage in a Depleted Gas Field
Feb 2024
Publication
We perform a simulation study of hydrogen injection in a depleted gas reservoir to assess the geomechanical impact of hydrogen storage relative to other commonly injected gases (methane CO2). A key finding is that the differences in hydrogen density compressibility viscosity and thermal properties compared to the other gases result in significantly less thermal perturbation at reservoir level. The risks of fault reactivation and wellbore fractures due to thermally-induced stress changes are significantly lower when storing hydrogen compared to results observed in CO2 scenarios. This implies that hydrogen injection and production has a much smaller geomechanical footprint with benefits for operational safety. We also find that use of nitrogen cushion gas ensures efficient deliverability and phase separation in the reservoir. However in this study a large fraction of cushion gas was back-produced in each cycle demonstrating the need for further studies of the surface processing requirements and economic implications.
Conceptual Design of an Offshore Hydrogen Platform
Feb 2024
Publication
Offshore green hydrogen emerges as a guiding light in the global pursuit of environmental sustainability and net-zero objectives. The burgeoning expansion of offshore wind power faces significant challenges in grid integration. This avenue towards generating offshore green hydrogen capitalises on its ecological advantages and substantial energy potential to efficiently channel offshore wind power for onshore energy demands. However a substantial research void exists in efficiently integrating offshore wind electricity and green hydrogen. Innovative designs of offshore hydrogen platforms present a promising solution to bridge the gap between offshore wind and hydrogen integration. Surprisingly there is a lack of commercially established offshore platforms dedicated to the hydrogen industry. However the wealth of knowledge from oil and gas platforms contributes valuable insights to hydrogen platform design. Diverging from the conventional decentralised hydrogen units catering to individual turbines this study firstly introduces a pioneering centralised Offshore Green Hydrogen Platform (OGHP) which seamlessly integrates modular production storage and offloading modulars. The modular design of facilitates scalability as wind capacity increases. Through a detailed case study centred around a 100-Megawatt floating wind farm the design process of offshore green hydrogen modulars and its floating sub-structure is elucidated. Stability analysis and hydrodynamic analysis are performed to ensure the safety of the OGHP under the operation conditions. The case study will enhance our understanding OGHP and its modularised components. The conceptual design of modular OGHP offers an alternative solution to ‘‘Power-to-X’’ for offshore renewable energy sector.
SSEXHY Experimental Results on Pressure Dynamics from Head-on Reflections of Hydrogen Flames
Sep 2023
Publication
In the past few years CEA has been fully involved at both experimental and modeling levels in projects related to hydrogen safety in nuclear and chemical industries and has carried out a test program using the experimental bench SSEXHY (Structure Submitted to an EXplosion of HYdrogen) in order to build a database of the deformations of simple structures following an internal hydrogen explosion. Different propagation regimes of explosions were studied varying from detonations to slow deflagrations.<br/>During the experimental campaign it was found that high-speed deflagrations corresponding to relatively poor hydrogen-air mixtures resulted in higher specimen deformation compared to those related to detonations of nearly stoichiometric mixtures. This paper explains this counter-intuitive result from qualitative and quantitative points of view. It is shown that the overpressure and impulse from head-on reflections of hydrogen flames corresponding to poor mixtures of specific concentrations could have very high values at the tube end.
Simulations of Blast Wave and Fireball Occurring due to Rupture oj High-Pressure Hydrogen Tank
Jun 2017
Publication
In the present study pilot simulations of the phenomena of blast wave and fireball generated by the rupture of a high-pressure (35 MPa) hydrogen tank (volume 72 L) due to fire were carried out. The computational fluid dynamics (CFD) model includes the realizable k-ε model for turbulence and the eddy dissipation model coupled with the one-step chemical reaction mechanism for combustion. The simulation results were compared with experimental data on a stand-alone hydrogen tank rupture in a bonfire test. The simulations provided insights into the interaction between the blast wave propagation and combustion process. The simulated blast wave decay is approximately identical to the experimental data concerning pressure at various distances. Fireball is first ignited at the ground level which is considered to be due to stagnation flow conditions. Subsequently the flame propagates toward the interface between hydrogen and air.
A Comprehensive Review on the Power Supply System of Hydrogen Production Electrolyzers for Future Integrated Energy Systems
Feb 2024
Publication
Hydrogen energy is regarded as an ideal solution for addressing climate change issues and an indispensable part of future integrated energy systems. The most environmentally friendly hydrogen production method remains water electrolysis where the electrolyzer constructs the physical interface between electrical energy and hydrogen energy. However few articles have reviewed the electrolyzer from the perspective of power supply topology and control. This review is the first to discuss the positioning of the electrolyzer power supply in the future integrated energy system. The electrolyzer is reviewed from the perspective of the electrolysis method the market and the electrical interface modelling reflecting the requirement of the electrolyzer for power supply. Various electrolyzer power supply topologies are studied and reviewed. Although the most widely used topology in the current hydrogen production industry is still single-stage AC/DC the interleaved parallel LLC topology constructed by wideband gap power semiconductors and controlled by the zero-voltage switching algorithm has broad application prospects because of its advantages of high power density high efficiency fault tolerance and low current ripple. Taking into account the development trend of the EL power supply a hierarchical control framework is proposed as it can manage the operation performance of the power supply itself the electrolyzer the hydrogen energy domain and the entire integrated energy system.
Modelling of a "Hydrogen Valley" to Investigate the Impact of a Regional Pipeline for Hydrogen Supply
Jul 2024
Publication
Introduction: The transition towards electrolysis-produced hydrogen in refineries and chemical industries is expected to have a potent impact on the local energy system of which these industries are part. In this study three urban areas with hydrogen-intense industries are studied regarding how the energy system configuration is affected if the expected future hydrogen demand is met in each node individually as compared to forming a “Hydrogen Valley” in which a pipeline can be used to trade hydrogen between the nodes.<br/>Method: A technoeconomic mixed-integer linear optimization model is used to study the investments in and dispatch of the included technologies with an hourly time resolution while minimizing the total system cost. Four cases are investigated based on the availability of offshore wind power and the possibility to invest in a pipeline.<br/>Results: The results show that investments in a pipeline reduces by 4%–7% the total system cost of meeting the demands for electricity heating and hydrogen in the cases investigated. Furthermore investments in a pipeline result in greater utilization of local variable renewable electricity resources as compared to the cases without the possibility to invest in a pipeline.<br/>Discussion: The different characteristics of the local energy systems of the three nodes in local availability of variable renewable electricity grid capacity and available storage options compared to local demands of electricity heating and hydrogen are found to be the driving forces for forming a Hydrogen Valley.
Artificial Intelligence for Hydrogen-Enabled Integrated Energy Systems: A Systematic Review
Aug 2024
Publication
Hydrogen-enabled Integrated Energy Systems (H-IES) stand out as a promising solution with the potential to replace current non-renewable energy systems. However their development faces challenges and has yet to achieve widespread adoption. These main challenges include the complexity of demand and supply balancing dynamic consumer demand and challenges in integrating and utilising hydrogen. Typical energy management strategies within the energy domain rely heavily on accurate models from domain experts or conventional approaches such as simulation and optimisation approaches which cannot be satisfied in the real-world operation of H-IES. Artificial Intelligence (AI) or Advanced Data Analytics (ADA) especially Machine Learning (ML) has the ability to overcome these challenges. ADA is extensively used across several industries however further investigation into the incorporation of ADA and hydrogen for the purpose of enabling H-IES needs to be investigated. This paper presents a systematic literature review to study the research gaps research directions and benefits of ADA as well as the role of hydrogen in H-IES.
Will Hydrogen and Synthetic Fuels Energize our Future? Their Role in Europe's Climate-neutral Energy System and Power System Dynamics
Aug 2024
Publication
This study evaluates the technoeconomic impacts of direct and indirect electrification on the EU's net-zero emissions target by 2050. By linking the JRC-EU-TIMES long-term energy system model with PLEXOS hourly resolution power system model this research offers a detailed analysis of the interactions between electricity hydrogen and synthetic fuel demand production technologies and their effects on the power sector. It highlights the importance of high temporal resolution power system analysis to capture the synergistic effects of these components often overlooked in isolated studies. Results indicate that direct electrification increases significantly and unimpacted by biomass CCS and nuclear energy assumptions. However indirect electrification in the form of hydrogen varies significantly between 1400 and 2200 TWhH2 by 2050. Synthetic fuels are essential for sector coupling making up 6–12% of total energy consumption by 2050 with the power sector supplying most hydrogen and CO2 for their production. Varying levels of indirect electrification impact electrolysers renewable energy and firm capacities. Higher indirect electrification increases electrolyser capacity factors by 8% leading to more renewable energy curtailment but improves system reliability by reducing 11 TWh unserved energy and increasing flexibility options. These insights inform EU energy policies stressing the need for a balanced approach to electrification biomass use and CCS to achieve a sustainable and reliable net-zero energy system by 2050. We also explore limitations and sensitivities.
Experimental Study on the Effect of the Ignition Location on Vented Deflagration of Hydrogen-air Mixtures in Enclosure
Sep 2023
Publication
No countermeasures exist for accidents that might occur in hydrogen-based facilities (leaks fires explosions etc.). In South Korea discussions are underway regarding measures to ensure safety from such accidents such as the construction of underground hydrogen storage tank facilities. However explosion vents with a minimum ventilation area are required in such facilities to minimize damage to buildings and other structures due to accidental explosions. These explosion vents allow the generated overpressure and flames to be safely dispersed outside; however a safe separation distance must be secured to minimize damage to humans. This study aimed to determine the safe separation distance to minimize human damage after analyzing the dispersed overpressure and flame behavior following a vent explosion. Explosion experiments were conducted to investigate the influence of the ignition source location on internal and external overpressure and external flame behavior using a cuboid concrete structure with a volume of 20.33 m3 filled with a hydrogen-air mixture (29.0 vol.%). The impact on overpressure and flame was increased with the increasing distance of the ignition source from the vent. Importantly depending on the ignition location the incident pressure was up to 24.4 times higher while the reflected pressure was 8.7 times higher. Additionally a maximum external overpressure of 30.01 kPa was measured at a distance of 2.4 m from the vent predicting damage to humans at the “Injury” level (1 % fatality probability). Whereas no significant damage would occur at a distance of 7.4 m or more from the vent.
Study on the Application of a Multi-Energy Complementary Distributed Energy System Integrating Waste Heat and Surplus Electricity for Hydrogen Production
Feb 2024
Publication
To improve the recovery of waste heat and avoid the problem of abandoning wind and solar energy a multi-energy complementary distributed energy system (MECDES) is proposed integrating waste heat and surplus electricity for hydrogen storage. The system comprises a combined cooling heating and power (CCHP) system with a gas engine (GE) solar and wind power generation and miniaturized natural gas hydrogen production equipment (MNGHPE). In this novel system the GE’s waste heat is recycled as water vapor for hydrogen production in the waste heat boiler while surplus electricity from renewable sources powers the MNGHPE. A mathematical model was developed to simulate hydrogen production in three building types: offices hotels and hospitals. Simulation results demonstrate the system’s ability to store waste heat and surplus electricity as hydrogen thereby providing economic benefit energy savings and carbon reduction. Compared with traditional energy supply methods the integrated system achieves maximum energy savings and carbon emission reduction in office buildings with an annual primary energy reduction rate of 49.42–85.10% and an annual carbon emission reduction rate of 34.88–47.00%. The hydrogen production’s profit rate is approximately 70%. If the produced hydrogen is supplied to building through a hydrogen fuel cell the primary energy reduction rate is further decreased by 2.86–3.04% and the carbon emission reduction rate is further decreased by 12.67–14.26%. This research solves the problem of waste heat and surplus energy in MECDESs by the method of hydrogen storage and system integration. The economic benefits energy savings and carbon reduction effects of different building types and different energy allocation scenarios were compared as well as the profitability of hydrogen production and the factors affecting it. This has a positive technical guidance role for the practical application of MECDESs.
Green Hydrogen Production Plants: A Techno-economic Review
Aug 2024
Publication
Green hydrogen stands as a promising clean energy carrier with potential net-zero greenhouse gas emissions. However different system-level configurations for green hydrogen production yield different levels of efficiency cost and maturity necessitating a comprehensive assessment. This review evaluates the components of hydrogen production plants from technical and economic perspectives. The study examines six renewable energy sources—solar photovoltaics solar thermal wind biomass hydro and geothermal—alongside three types of electrolyzers (alkaline proton exchange membrane and solid oxide electrolyzer cells) and five hydrogen storage methods (compressed hydrogen liquid hydrogen metal hydrides ammonia and liquid organic hydrogen carriers). A comprehensive assessment of 90 potential system configurations is conducted across five key performance indicators: the overall system cost efficiency emissions production scale and technological maturity. The most cost-effective configurations involve solar photovoltaics or wind turbines combined with alkaline electrolyzers and compressed hydrogen storage. For enhanced system efficiency geothermal sources or biomass paired with solid oxide electrolyzer cells utilizing waste heat show significant promise. The top technologically mature systems feature combinations of solar photovoltaics wind turbines geothermal or hydroelectric power with alkaline electrolyzers using compressed hydrogen or ammonia storage. The highest hydrogen production scales are observed in systems with solar PV wind or hydro power paired with alkaline or PEM electrolyzers and ammonia storage. Configurations using hydro geothermal wind or solar thermal energy sources paired with alkaline electrolyzers and compressed hydrogen or liquid organic hydrogen carriers yield the lowest life cycle GHG emissions. These insights provide valuable decision-making tools for researchers business developers and policymakers guiding the optimization of system efficiency and the reduction of system costs.
No more items...