- Home
- A-Z Publications
- Publications
Publications
Effect of Vanadium-alloying on Hydrogen Embrittlement of Austenitic High-nitrogen Steels
Dec 2018
Publication
The effect of hydrogen on tensile behavior and fracture mechanisms of V-alloying and V-free high-nitrogen austenitic steels was evaluated. Two steels with the chemical compositions of Fe-23Cr–17Mn–0.1C–0.6N (0V-HNS) and Fe-19Cr–22Mn–1.5V–0.3C–0.9N (1.5V-HNS) were electrochemically hydrogen-charged in NaCl water-solution for 100 hours. According to X-ray diffraction analysis and TEM researches V-alloying promotes particle strengthening of the 1.5V-HNS. Despite differences in chemical compositions namely carbon and nitrogen concentrations a solid solution hardening is similar for both steels because of precipitate-assisted depletion of austenite by interstitial atoms (carbon and nitrogen) in 1.5V-HNS. For hydrogen-free state the values of the yield stress and the tensile strength are higher for particle-strengthened 1.5V-HNS as compared to 0V-HNS. Hydrogen-charging increases both the yield stress and the tensile strength of the steels but hydrogen-assisted fracture micromechanisms are different for 0V-HNS and 1.5V-HNS. Hydrogen-charging drastically reduces a total elongation in 0V-HNS but provides insufficient embrittlement in 1.5V-HNS. Hydrogen-assisted brittle layers form on lateral surfaces of the specimens and the widths and fracture micromechanisms in them are different for two steels. For 0V-HNS surface layers of 84 μm in width possess transgranular brittle fracture mechanism (quasi-cleavage mode). For 1.5V-HNS the brittle surface layers (31 μm width) destroy in intergranular brittle fracture mode. The central parts of steel specimens show dimple fracture similar to hydrogen-free steels. The possible reasons for different hydrogen-induced effects in 0V-HNS and 1.5V-HNS are discussed.
Hydrogen: A Critical Part of Heat Decarbonisation
Feb 2021
Publication
The use of clean hydrogen is likely to form a key part of a net-zero emissions future and has the potential to replace natural gas for end use heating. As part of BDR Thermea Group Baxi Heating UK are at the forefront of hydrogen boiler development. Working with the Hy4Heat programme hydrogen fuelled boilers have been produced for inclusion in trial sites across the UK. This presentation will explore progress to date together with the hydrogen-ready boiler concept.
Hydrogen Europe 2020
Dec 2020
Publication
2020: a great year for hydrogen! Among other things 2020 has been exceptional for H2 technology deployment and policy development. The European Commission’s hydrogen strategy is just one of many crowning achievements! What does the future hold?
National Hydrogen Roadmap: Pathways to an Economically Sustainable Hydrogen Industry in Australia
Apr 2021
Publication
The National Hydrogen Roadmap provides a blueprint for the development of a hydrogen industry in Australia.
Recently there has been a considerable amount of work undertaken (both globally and domestically) seeking to quantify the economic opportunities associated with hydrogen. The National Hydrogen Roadmap takes that analysis a step further by focusing on how those opportunities can be realised.
National Hydrogen Roadmap
The National Hydrogen Roadmap provides a blueprint for the development of a hydrogen industry in Australia.
The primary objective of the Roadmap is to provide a blueprint for the development of a hydrogen industry in Australia. With a number of activities already underway it is designed to help inform the next series of investment amongst various stakeholder groups (e.g. industry government and research) so that the industry can continue to scale in a coordinated manner.
Pathways to an economically sustainable industry
The low emissions hydrogen value chain now consists of a series of mature technologies. While there is considerable scope for further R&D this level of maturity has meant that the narrative has shifted from one of technology development to market activation.
Barriers to market activation stem from a lack of supporting infrastructure and/or the cost of hydrogen supply. However both barriers can be overcome via a series of strategic investments along the value chain from both the private and public sector.
The report shows that while government assistance is needed to kick-start the industry it can become economically sustainable thereafter. This is demonstrated by first assessing the target price of hydrogen needed for it be competitive with other energy carriers and feedstocks. Second the assessment considers the current state of the industry namely the cost and maturity of the underpinning technologies and infrastructure. It then identifies the material cost drivers and consequently the key priorities and areas for investment needed to make hydrogen competitive in each of the identified markets.
The opportunity for hydrogen to compete favourably on a cost basis in local applications such as transport and remote area power systems is within reach based on potential cost reductions to 2025. Further the development of a hydrogen export industry represents a significant opportunity for Australia and a potential 'game changer' for the local industry and the broader energy sector due to associated increases in scale."
You can read the full report on the CSIRO website at this link
Recently there has been a considerable amount of work undertaken (both globally and domestically) seeking to quantify the economic opportunities associated with hydrogen. The National Hydrogen Roadmap takes that analysis a step further by focusing on how those opportunities can be realised.
National Hydrogen Roadmap
The National Hydrogen Roadmap provides a blueprint for the development of a hydrogen industry in Australia.
The primary objective of the Roadmap is to provide a blueprint for the development of a hydrogen industry in Australia. With a number of activities already underway it is designed to help inform the next series of investment amongst various stakeholder groups (e.g. industry government and research) so that the industry can continue to scale in a coordinated manner.
Pathways to an economically sustainable industry
The low emissions hydrogen value chain now consists of a series of mature technologies. While there is considerable scope for further R&D this level of maturity has meant that the narrative has shifted from one of technology development to market activation.
Barriers to market activation stem from a lack of supporting infrastructure and/or the cost of hydrogen supply. However both barriers can be overcome via a series of strategic investments along the value chain from both the private and public sector.
The report shows that while government assistance is needed to kick-start the industry it can become economically sustainable thereafter. This is demonstrated by first assessing the target price of hydrogen needed for it be competitive with other energy carriers and feedstocks. Second the assessment considers the current state of the industry namely the cost and maturity of the underpinning technologies and infrastructure. It then identifies the material cost drivers and consequently the key priorities and areas for investment needed to make hydrogen competitive in each of the identified markets.
The opportunity for hydrogen to compete favourably on a cost basis in local applications such as transport and remote area power systems is within reach based on potential cost reductions to 2025. Further the development of a hydrogen export industry represents a significant opportunity for Australia and a potential 'game changer' for the local industry and the broader energy sector due to associated increases in scale."
You can read the full report on the CSIRO website at this link
Renewable Energy Market Analysis: Africa and its Regions
Jan 2022
Publication
An energy system centred on renewable energy can help resolve many of Africa’s social economic health and environmental challenges. A profound energy transition is not only feasible it is essential for a climate-safe future in which sustainable development prerogatives are met. Renewables are key to overcoming energy poverty providing needed energy services without damaging human health or ecosystems and enabling a transformation of economies in support of development and industrialisation.
Africa is extraordinarily diverse and no single approach will advance its energy future. But efforts must be made to build modern resilient and sustainable energy systems across the continent to avoid trapping economies and societies in increasingly obsolete energy systems that burden them with stranded assets and limited economic prospects.
This report from the International Renewable Energy Agency (IRENA) sets out the opportunities at hand while also acknowledging the challenges Africa faces. It lays out a pathway to a renewables-based energy system and shows that the transition promises substantial gains in GDP employment and human welfare in each region of the continent.
Among the findings:
A large part of Africa has so far been left out of the energy transition:
Africa is extraordinarily diverse and no single approach will advance its energy future. But efforts must be made to build modern resilient and sustainable energy systems across the continent to avoid trapping economies and societies in increasingly obsolete energy systems that burden them with stranded assets and limited economic prospects.
This report from the International Renewable Energy Agency (IRENA) sets out the opportunities at hand while also acknowledging the challenges Africa faces. It lays out a pathway to a renewables-based energy system and shows that the transition promises substantial gains in GDP employment and human welfare in each region of the continent.
Among the findings:
A large part of Africa has so far been left out of the energy transition:
- Only 2% of global investments in renewable energy in the last two decades were made in Africa with significant regional disparities
- Less than 3% of global renewables jobs are in Africa
- In Sub-Saharan Africa electrification rate was static at 46% in 2019 with 906 million people still lacking access to clean cooking fuels and technologies
- Africa has vast resource potential in wind solar hydro and geothermal energy and falling costs are increasingly bringing renewables within reach
- Central and Southern Africa have abundant mineral resources essential to the production of electric batteries wind turbines and other low-carbon technologies
- Renewable energy deployment has grown in the last decade with more than 26 GW of renewables-based generation capacity added. The largest additions were in solar energy
- Average annual investments in renewable energy grew ten-fold from less than USD 0.5 billion in the 2000-2009 period to USD 5 billion in 2010-2020
- Distributed renewable energy solutions including stand-alone systems and mini-grids are playing a steadily growing role in expanding electricity access in off-grid areas and strengthening supply in already connected areas
- The energy transition under IRENA’s 1.5°C Scenario pathway predicts 6.4% higher GDP 3.5% higher economy-wide jobs and a 25.4% higher welfare index than that realised under current plans on average up to 2050
- Jobs created in the renewable energy transition will outweigh those lost by moving away from traditional energy. Every million U.S. dollars invested in renewables between 2020 – 2050 would create at least 26 job-years; for every million invested in energy efficiency at least 22 job-years would be created annually; for energy flexibility the figure is 18
- A comprehensive policy package that combines the pursuit of climate and environmental goals; economic development and jobs creation; and social equity and welfare for society as a whole
- Strong institutions international co-operation (including South- South co-operation) and considerable co-ordination at the regional level
Earth-Abundant Electrocatalysts for Water Splitting: Current and Future Directions
Mar 2021
Publication
Of all the available resources given to mankind the sunlight is perhaps the most abundant renewable energy resource providing more than enough energy on earth to satisfy all the needs of humanity for several hundred years. Therefore it is transient and sporadic that poses issues with how the energy can be harvested and processed when the sun does not shine. Scientists assume that electro/photoelectrochemical devices used for water splitting into hydrogen and oxygen may have one solution to solve this hindrance. Water electrolysis-generated hydrogen is an optimal energy carrier to store these forms of energy on scalable levels because the energy density is high and no air pollution or toxic gas is released into the environment after combustion. However in order to adopt these devices for readily use they have to be low-cost for manufacturing and operation. It is thus crucial to develop electrocatalysts for water splitting based on low-cost and land-rich elements. In this review I will summarize current advances in the synthesis of low-cost earth-abundant electrocatalysts for overall water splitting with a particular focus on how to be linked with photoelectrocatalytic water splitting devices. The major obstacles that persist in designing these devices. The potential future developments in the production of efficient electrocatalysts for water electrolysis are also described.
Effect of Anion Exchange Ionomer Content on Electrode Performance in AEM Water Electrolysis
Aug 2020
Publication
Anion exchange membrane water electrolysis (AEMWE) has acquired substantial consideration as a cost-effective hydrogen production technology. The anion ionomer content in the catalyst layers during hydrogen and oxygen evolution reaction (HER and OER) is of ultimate significance. Herein an in-situ half-cell analysis with reference electrodes was carried out for simultaneous potential measurements and identification of the influence of the anion exchange ionomer (AEI) content on anode and cathode performance. The measured half-cell potentials proved the influence of AEI content on the catalytic activity of HER and OER which was supported by the rotating disk electrode (RDE) measurements. Cathode overpotential of Ni/C was not negligible and more affected by the AEI content than anode with the optimized AEI content of 10 wt% while NiO anode OER overpotential was independent of the AEI content. For the same AEI content PGM catalysts showed higher electroactivity than Ni-based catalysts for HER and OER and the cathode catalyst's intrinsic activity is of high importance in the AEM electrolysis operation. Post-mortem analysis by SEM mapping of both AEI and catalyst distributions on the electrode surface showed the effect of AEI loading on the catalyst morphology which could be related to the electrode performance.
Insight into Anomalous Hydrogen Adsorption on Rare Earth Metal Decorated on 2 Dimensional Hexagonal Boron Nitride a Density Functional Theory Study
Mar 2020
Publication
Hydrogen interaction with metal atoms is of prime focus for many energy related applications like hydrogen storage hydrogen evolution using catalysis etc. Although hydrogen binding with many main group alkaline and transition metals is quite well understood its binding properties with lanthanides are not well reported. In this article by density functional theory studies we show how a rare earth metal cerium binds with hydrogen when decorated over a heteropolar 2D material hexagonal boron nitride. Each cerium adatom is found to bind eight hydrogen molecules which is a much higher number than has been reported for transition metal atoms. However the highest binding energy occurs at four hydrogen molecules. This anomaly therefore is investigated in the present article using first-principles calculations. The number density of hydrogen molecules adsorbed over the cerium adatom is explained by investigating the electronic charge volume interactions owing to a unique geometrical arrangement of the guest hydrogen molecules. The importance of geometrical encapsulation in enhancing electronic interactions is explained.
Techno-economic Feasibility of Road Transport of Hydrogen Using Liquid Organic Hydrogen Carriers
Sep 2020
Publication
The cost of storing and transporting hydrogen have been one of the main challenges for the realization of the hydrogen economy. Liquid organic hydrogen carriers (LOHC) are a promising novel solution to tackle these challenges. In this paper we compare the LOHC concept to compressed gas truck delivery and on-site production of hydrogen via water electrolysis. As a case study we consider transportation of by-product hydrogen from chlor-alkali and chlorate plants to a single industrial customer which was considered to have the greatest potential for the LOHC technology to enter the markets. The results show that the LOHC delivery chain could significantly improve the economics of long distance road transport. For economic feasibility the most critical parameters identified are the heat supply method for releasing hydrogen at the end-user site and the investment costs for LOHC reactors.
South Korea’s Big Move to Hydrogen Society
Nov 2020
Publication
Extensive energy consumption has become a major concern due to increase of greenhouse gas emissions and global warming. Hence hydrogen has attracted attention as a green fuel with zero carbon emission for green transportation through production of electric vehicles with hydrogen fuel cells. South Korea has launched a hydrogen society policy with the objective of expanding production of hydrogen from renewable energy sources. The hydrogen economy will play a critical role in reducing atmospheric pollution and global arming. However new development of infrastructure for hydrogen refuelling and increasing awareness of the hydrogen economy is required together with reduced prices of hydrogen-driven vehicles that are promising options for a sustainable green hydrogen economy.
A Critical Review of Renewable Hydrogen Production Methods: Factors Affecting Their Scale-Up and Its Role in Future Energy Generation
Feb 2022
Publication
An increase in human activities and population growth have significantly increased the world’s energy demands. The major source of energy for the world today is from fossil fuels which are polluting and degrading the environment due to the emission of greenhouse gases. Hydrogen is an identified efficient energy carrier and can be obtained through renewable and non-renewable sources. An overview of renewable sources of hydrogen production which focuses on water splitting (electrolysis thermolysis and photolysis) and biomass (biological and thermochemical) mechanisms is presented in this study. The limitations associated with these mechanisms are discussed. The study also looks at some critical factors that hinders the scaling up of the hydrogen economy globally. Key among these factors are issues relating to the absence of a value chain for clean hydrogen storage and transportation of hydrogen high cost of production lack of international standards and risks in investment. The study ends with some future research recommendations for researchers to help enhance the technical efficiencies of some production mechanisms and policy direction to governments to reduce investment risks in the sector to scale the hydrogen economy up.
A Study on the Characteristics of Academic Topics Related to Renewable Energy Using the Structural Topic Modelling and the Weak Signal Concept
Mar 2021
Publication
It is important to examine in detail how the distribution of academic research topics related to renewable energy is structured and which topics are likely to receive new attention in the future in order for scientists to contribute to the development of renewable energy. This study uses an advanced probabilistic topic modeling to statistically examine the temporal changes of renewable energy topics by using academic abstracts from 2010–2019 and explores the properties of the topics from the perspective of future signs such as weak signals. As a result in strong signals methods for optimally integrating renewable energy into the power grid are paid great attention. In weak signals interest in large-capacity energy storage systems such as hydrogen supercapacitors and compressed air energy storage showed a high rate of increase. In not-strong-but-well-known signals comprehensive topics have been included such as renewable energy potential barriers and policies. The approach of this study is applicable not only to renewable energy but also to other subjects.
TM-doped Mg12O12 Nano-cages for Hydrogen Storage Applications: Theoretical Study
Feb 2022
Publication
DFT calculations at B3LYP/6-31g(dp) with the D3 version of Grimme’s dispersion are performed to investigate the application of TM-encapsulated Mg12O12 nano-cages (TM= Mn Fe and Co) as a hydrogen storage material. The molecular dynamic (MD) calculations are utilized to examine the stability of the considered structures. TD-DFT method reveals that the TM-encapsulation converts the Mg12O12 from an ultraviolet into a visible optical active material. The adsorption energy values indicate that the Mn and Fe atoms encapsulation enhances the adsorption of H2 molecules on the Mg12O12 nano-cage. The pristine Mg12O12 and CoMg12O12 do not meet the requirements for hydrogen storage materials while the MnMg12O12 and FeMg12O12 obey the requirements. MnMg12O12 and FeMg12O12 can carry up to twelve and nine H2 molecules respectively. The hydrogen adsorption causes a redshift for the λmax value of the UV-Vis. spectra of the MnMg12O12 and FeMg12O12 nano-cages. The thermodynamic calculations show that the hydrogen storage reaction for MnMg12O12 nano-cage is a spontaneous reaction while for FeMg12O12 nano-cage is not spontaneous. The results suggested that the MnMg12O12 nano-cage may be a promising material for hydrogen storage applications.
Comarine Derivatives Designed as Carbon Dioxide and Hydrogen Storage
Feb 2022
Publication
The growing of fossil fuel burning leads to increase CO2 and H2 emissions which cause increasing of global warming that has brought big attention. As a result enormous researches have been made to reduce CO2 and H2 build up in the environment. One of the most promising approaches for managing CO2 and H2 gases percentage in the atmosphere is capturing and storage them inside proper materials. Therefore the design of new materials for carbon dioxide and hydrogen storage has received increasing research attention. Four derivatives of coumarine linked to thiazolidinone were synthesized in good yields by reacting 3-(2-Phenylaminoacetyl)coumarine and 2-phenylimino thiazolidinone-4-one in a solution of anhydrous sodium acetate /glacial acetic acid at 120° for 5-6 hours. The synthesised organic compounds were identified by using different techniques such as 1H NMR 13C NMR FTIR and energy dispersive X-ray spectra. The agglomeration shape and porosity of the particles were determined utilizing scanning electron microscopy (SEM) and microscopy images analysis. The capacity of carbon dioxide (CO2) and hydrogen (H2) adsorption on the prepared organic materials at 323 K 50 bar ranged from 22 to 31 cm3 /g and hydrogen from 4 to 12 cm3 /g for the four synthesised compounds which contain phenyl substituted with chloro nitro and bromo groups was found to be the most active adsorbent surfaces for carbon dioxide and hydrogen storage.
A Probabilistic Framework for the Techno-economic Assessment of Smart Energy Hubs for Electric Vehicle Charging
Apr 2022
Publication
Smart energy hubs (Smart Hubs) equipped with Vehicle-to-Grid (V2G) charging photovoltaic (PV) energy generation and hydrogen storage capabilities are an emerging technology with potential to alleviate the impact of electric vehicles (EV) on the electricity grid. Their operation however is characterised by intermittent PV energy generation as well as uncertainties in EV traffic and driver preference. These uncertainties when combined with the need to maximise their financial return while guaranteeing driver satisfaction yields a challenging decision-making problem. This paper presents a novel Monte-Carlo-based modelling and computational framework for simulating the operation of Smart Hubs — providing a means for a holistic assessment of their technical and financial viability. The framework utilises a compact and representative mathematical model accounting for power losses PV module degradation variability in EV uptake price inflation driver preference and diversity in charge points and EVs. It provides a comprehensive approach for dealing with uncertainties and dependencies in EV data while being built on an energy management algorithm that maximises revenue generation ensures driver satisfaction and preserves battery life. The energy management problem is formulated as a mixed-integer linear programming problem constituting a business case that includes an adequate V2G reward model for drivers. To demonstrate its applicability the framework was used to assess the financial viability of a fleet management site for various caps on vehicle stay at the site. From the assessment controlled charging was found to be more financially rewarding in all cases yielding between 1.7% and 3.1% more revenue than uncontrolled charging. The self-consumption of the site was found to be nearly 100% due mainly to local load shifting and dispatchable hydrogen generation. V2G injection was however negligible — suggesting its unattractiveness for sites that do not participate in the demand side response market. Overall the numerical results obtained validate the applicability of the proposed framework as a decision-support tool in the sustainable design and operation of Smart Hubs for EV charging.
Multi-Criteria Optimization of a Biomass-Based Hydrogen Production System Integrated With Organic Rankine Cycle
Oct 2020
Publication
Biomass-based gasification is an attractive and promising pathway for hydrogen production. In this work a biomass-based hydrogen production system integrated with organic Rankine cycle was designed and investigated to predict the performance of hydrogen production yield and electricity generation under various operating conditions. The modified equilibrium model presented desirable results for the produced syngas compositions compared with the experimental data. Hydrogen yields from four types of biomass (wood chips daily manure sorghum and grapevine pruning wastes) were compared under the same operating condition with wood chips exhibiting the maximum hydrogen yield of 11.59 mol/kg. The effects of gasification temperature equivalence ratio and steam-to-biomass ratio on the hydrogen yield and electricity generation were investigated by using the response surface method. Furthermore the system was optimized using a genetic algorithm based on the response surface model. A preferred optimal solution with a hydrogen yield of 39.31 mol/kg and an output power of 3558.08 kW (0.99 kW h/kg) was selected by the linear programming technique for multidimensional analysis of the preference method.
Hydrogen Embrittlement and Improved Resistance of Al Addition in Twinning-Induced Plasticity Steel: First-Principles Study
Apr 2019
Publication
Understanding the mechanism of hydrogen embrittlement (HE) of austenitic steels and developing an effective strategy to improve resistance to HE are of great concern but challenging. In this work first-principles studies were performed to investigate the HE mechanism and the improved resistance of Al-containing austenite to HE. Our results demonstrate that interstitial hydrogen atoms have different site preferences in Al-free and Al-containing austenites. The calculated binding energies and diffusion barriers of interstitial hydrogen atoms in Al-containing austenite are remarkably higher than those in Al-free austenite indicating that the presence of Al is more favorable for reducing hydrogen mobility. In Al-free austenite interstitial hydrogen atoms caused a remarkable increase in lattice compressive stress and a distinct decrease in bulk shear and Young’s moduli. Whereas in Al-containing austenite the lattice compressive stress and the mechanical deterioration induced by interstitial hydrogen atoms were effectively suppressed.
An Innovative and Comprehensive Approach for the Consequence Analysis of Liquid Hydrogen Vessel Explosions
Oct 2020
Publication
Hydrogen is one of the most suitable solutions to replace hydrocarbons in the future. Hydrogen consumption is expected to grow in the next years. Hydrogen liquefaction is one of the processes that allows for increase of hydrogen density and it is suggested when a large amount of substance must be stored or transported. Despite being a clean fuel its chemical and physical properties often arise concerns about the safety of the hydrogen technologies. A potentially critical scenario for the liquid hydrogen (LH2) tanks is the catastrophic rupture causing a consequent boiling liquid expanding vapour explosion (BLEVE) with consequent overpressure fragments projection and eventually a fireball. In this work all the BLEVE consequence typologies are evaluated through theoretical and analytical models. These models are validated with the experimental results provided by the BMW care manufacturer safety tests conducted during the 1990’s. After the validation the most suitable methods are selected to perform a blind prediction study of the forthcoming LH2 BLEVE experiments of the Safe Hydrogen fuel handling and Use for Efficient Implementation (SH2IFT) project. The models drawbacks together with the uncertainties and the knowledge gap in LH2 physical explosions are highlighted. Finally future works on the modelling activity of the LH2 BLEVE are suggested.
The Role of Hydrogen in Hydrogen Embrittlement of Metals: The Case of Stainless Steel
Apr 2019
Publication
Hydrogen embrittlement (HE) of metals has remained a mystery in materials science for more than a century. To try to clarify this mystery tensile tests were conducted at room temperature (RT) on a 316 stainless steel (SS) in air and hydrogen of 70 MPa. With an aim to directly observe the effect of hydrogen on ordering of 316 SS during deformation electron diffraction patterns and images were obtained from thin foils made by a focused ion beam from the fracture surfaces of the tensile specimens. To prove lattice contraction by ordering a 40% CW 316 SS specimen was thermally aged at 400 °C to incur ordering and its lattice contraction by ordering was determined using neutron diffraction by measuring its lattice parameters before and after aging. We demonstrate that atomic ordering is promoted by hydrogen leading to formation of short-range order and a high number of planar dislocations in the 316 SS and causing its anisotropic lattice contraction. Hence hydrogen embrittlement of metals is controlled by hydrogen-enhanced ordering during RT deformation in hydrogen. Hydrogen-enhanced ordering will cause the ordered metals to be more resistant to HE than the disordered ones which is evidenced by the previous observations where furnace-cooled metals with order are more resistant to HE than water-quenched or cold worked metals with disorder. This finding strongly supports our proposal that strain-induced martensite is a disordered phase.
Aldehyde Replacement Advances Efficient Hydrogen Production in Electrolyser
Mar 2022
Publication
The high energy consumption and production of undesired oxygen greatly restrict the wide adoption of water electrolysis for hydrogen production. In a paper recently published in Nature Catalysis Wang and coworkers rationally introduce aldehydes for oxidation at anode to replace oxygen evolution reaction which can produce hydrogen and value-added products at low potential realizing efficient bipolar hydrogen production with high-purity. Moreover these aldehydes are biomass-derived and contribute to sustainable hydrogen production
No more items...