- Home
- A-Z Publications
- Publications
Publications
Potential Development of Renewable Hydrogen Imports to European Markets until 2030
Mar 2022
Publication
This paper considers potential import routes for low-carbon and renewable hydrogen (H2) to main European markets like Germany. In particular it analyses claims made by Hydrogen Europe and subsequently picked up by the European Commission in its Hydrogen Strategy that there will be 40GW of electrolyser capacity in nearby countries providing hydrogen imports to Europe by 2030. The analysis shows that by 2030 potential demand for H2 could be high enough to initiate some limited international hydrogen trade most likely between European countries initially rather than from outside Europe. Geographically a northern hydrogen cluster around Netherlands and NW Germany will be more significant for hydrogen demand while southern Europe is more likely to have surplus low cost renewable power generation. The paper considers potential H2 exporters to Europe including Ukraine and North African countries (in line with the proposal from Hydrogen Europe) as well as Norway and Russia. (The research pre-dates recent political and military tensions between Russia and Ukraine which are likely to influence future development pathways). The supply cost of hydrogen in 2030 is predicted to be in a reasonably (and perhaps surprisingly) narrow band around €3/kg from various sources and supply chains. The paper concludes that overall while imports of hydrogen to Europe are certainly possible in the longer term there are many challenges to be addressed. This conclusion supports the growing consensus that development of low carbon hydrogen certainly within Europe is likely to start within relatively local hydrogen clusters with some limited bilateral trade.
The research paper can be found on their website
The research paper can be found on their website
A Hydrogen Strategy for a Climate-neutral Europe
Jul 2020
Publication
In an integrated energy system hydrogen can support the decarbonisation of industry transport power generation and buildings across Europe. The EU Hydrogen Strategy addresses how to transform this potential into reality through investments regulation market creation and research and innovation.
Hydrogen can power sectors that are not suitable for electrification and provide storage to balance variable renewable energy flows but this can only be achieved with coordinated action between the public and private sector at EU level. The priority is to develop renewable hydrogen produced using mainly wind and solar energy. However in the short and medium term other forms of low-carbon hydrogen are needed to rapidly reduce emissions and support the development of a viable market.
This gradual transition will require a phased approach:
Hydrogen can power sectors that are not suitable for electrification and provide storage to balance variable renewable energy flows but this can only be achieved with coordinated action between the public and private sector at EU level. The priority is to develop renewable hydrogen produced using mainly wind and solar energy. However in the short and medium term other forms of low-carbon hydrogen are needed to rapidly reduce emissions and support the development of a viable market.
This gradual transition will require a phased approach:
- From 2020 to 2024 we will support the installation of at least 6 gigawatts of renewable hydrogen electrolysers in the EU and the production of up to one million tonnes of renewable hydrogen.
- From 2025 to 2030 hydrogen needs to become an intrinsic part of our integrated energy system with at least 40 gigawatts of renewable hydrogen electrolysers and the production of up to ten million tonnes of renewable hydrogen in the EU.
- From 2030 to 2050 renewable hydrogen technologies should reach maturity and be deployed at large scale across all hard-to-decarbonise sectors.
- To help deliver on this Strategy the Commission is launched the European Clean Hydrogen Alliance with industry leaders civil society national and regional ministers and the European Investment Bank. The Alliance will build up an investment pipeline for scaled-up production and will support demand for clean hydrogen in the EU.
Pyrolysis-gasification of Wastes Plastics for Syngas Production Using Metal Modified Zeolite Catalysts Under Different Ratio of Nitrogen/Oxygen
Jun 2020
Publication
The aim of this study was the syngas production by the gasification of plastic waste (polyethylene polypropylene and terephthalate polyethylene). Ca Ce La Mg and Mn were used to promote the Ni/ZSM-5 catalyst in order to enhance the production of higher syngas yield. The modified catalysts can enhanced the reaction rate of the pyrolysis process and resulting in high syngas in the product yields. Especially cerium lanthanum promoted catalysts can enhance the yield of syngas. The effect of the reaction temperature and nitrogen/oxygen ratio of the carrier gas was also investigated. The maximum syngas production was obtained with lanthanum catalyst (112.2 mmol/g (95%N2 and 5%O2) and 130.7 mmol/g (90%N2 and 10%O2) at 850 °C. Less carbon depositions was found at 850 °C or even by the using of catalyst and more oxygen in the carrier gas. The oxygen content of the pyrolysis-gasification atmosphere had a key role to the syngas yield and affects significantly the carbon-monoxide/carbon-dioxide ratio. Catalysts can also accelerate the methanization reactions and isomerize the main carbon frame. Increasing in both temperature and oxygen in the atmosphere led to higher n-paraffin/n-olefin ratio and more multi-ring aromatic hydrocarbons in pyrolysis oils. The concentration of hydrocarbons containing oxygen and branched compounds was also significantly affected by catalysts.
Business Energy and Industrial Strategy Committee Inquiry into Decarbonising Heat in Homes
Dec 2020
Publication
The Hydrogen Taskforce welcomes the opportunity to submit evidence to the Business Energy and Industrial Strategy Committee’s inquiry into decarbonising heat in homes. It is the Taskforce’s view that:
In March 2020 the Taskforce has defined a set of policy recommendations for Government which are designed to ensure that hydrogen can scale to meet the future demands of a net zero energy system: • Development of a cross departmental UK Hydrogen Strategy within UK Government;• Commit £1bn of capex funding over the next spending review period to hydrogen production storage and distribution projects;• Develop a financial support scheme for the production of hydrogen in blending industry power and transport.• Amend Gas Safety Management Regulations (GSMR) to enable hydrogen blending and take the next steps towards 100% hydrogen heating through supporting public trials and mandating 100% hydrogen-ready boilers by 2025; and• Commit to the support of 100 Hydrogen Refuelling Stations (HRS) by 2025 to support the rollout of hydrogen transport.
You can download the whole document from the Hydrogen Taskforce website here
- Decarbonising heat is one of the biggest challenges that the UK faces in meeting Net Zero and several solutions will be required;
- Hydrogen can play a valuable role in reducing the cost of decarbonising heat. Its high energy density enables it to be stored cost effectively at scale providing system resilience;
- Hydrogen heating can be implemented at minimal disruption to the consumer;
- The UK holds world-class advantages in hydrogen production distribution and application; and
- Other economies are moving ahead in the development of this sector and the UK must respond.
In March 2020 the Taskforce has defined a set of policy recommendations for Government which are designed to ensure that hydrogen can scale to meet the future demands of a net zero energy system: • Development of a cross departmental UK Hydrogen Strategy within UK Government;• Commit £1bn of capex funding over the next spending review period to hydrogen production storage and distribution projects;• Develop a financial support scheme for the production of hydrogen in blending industry power and transport.• Amend Gas Safety Management Regulations (GSMR) to enable hydrogen blending and take the next steps towards 100% hydrogen heating through supporting public trials and mandating 100% hydrogen-ready boilers by 2025; and• Commit to the support of 100 Hydrogen Refuelling Stations (HRS) by 2025 to support the rollout of hydrogen transport.
You can download the whole document from the Hydrogen Taskforce website here
Sustainability Implications of Using Hydrogen as an Automotive Fuel in Western Australia
Jul 2020
Publication
Hydrogen is regarded as a potential solution to address future energy demands and environmental protection challenges. This study assesses the triple bottom line (TBL) sustainability performance of hydrogen as an automotive fuel for Western Australia (WA) using a life cycle approach. Hydrogen is considered to be produced through water electrolysis. Two scenarios current grid electricity and future renewable-based hydrogen were compared with gasoline as a base case. The results show that locally produced grid electricity-based hydrogen is good for local jobs but exhibits higher environmental impacts and negative economic benefits for consumers when compared to gasoline. After incorporating wind-generated electricity reductions of around 69% and 65% in global warming potential (GWP) and fossil fuel depletion (FFD) respectively were achieved compared to the base case gasoline. The land utilization for the production of hydrogen is not a problem as Western Australia has plenty of land to accommodate renewable energy projects. Water for hydrogen feedstock could be sourced through seawater desalination or from wastewater treatment plants in WA. Hydrogen also performed better than gasoline in terms of human health and conservation of fossil fuel indicators under the renewable energy scenario. Local job creation potential of hydrogen was estimated to be 1.29E-03 man-hours/VKT. It has also been found that the cost of hydrogen fuel cell vehicles (HFCV) needs to be similar to that of gasoline vehicles (GV) in order to be comparable with the gasoline life cycle cost per vehicle kilometre travel (VKT).
The Global Status of CCS 2019: Targeting Climate Change
Dec 2019
Publication
CCS is an emissions reduction technology critical to meeting global climate targets. The Global Status of CCS 2019 documents important milestones for CCS over the past 12 months its status across the world and the key opportunities and challenges it faces. We hope this report will be read and used by governments policy-makers academics media commentators and the millions of people who care about our climate.
Transport Pathway to Hydrogen webinar
Mar 2021
Publication
Webinar to accompany the launch of the Cadent Future Role of Gas in Transport report which can be found here
Roadmap to Decarbonising European Shipping
Nov 2018
Publication
Shipping is one of the largest greenhouse gas (GHG) emitting sectors of the global economy responsible for around 1 Gt of CO2eq every year. If shipping were a country it would be the 6th biggest GHG emitter. EU related shipping is responsible for about 1/5 of global ship GHG emissions emitting on average 200 Mt/year. This report assesses potential technology pathways for decarbonising EU related shipping through a shift to zero carbon technologies and the impact such a move could have on renewable electricity demand in Europe. It also identifies key policy and sustainability issues that should be considered when analysing and supporting different technology options to decarbonise the maritime sector. The basis of the study is outbound journeys under the geographical scope of the EU ship MRV Regulation.
We have not tried to quantify the emissions reductions that specific regulatory measures to be introduced at the IMO or EU level might contribute towards decarbonisation by 2050 because there are too many uncertainties. We have taken a more limited first approach and investigated how zero carbon propulsion pathways that currently seem feasible to decarbonise shipping would likely affect the future EU renewable energy supply needs.
It is now generally accepted that ship design efficiency requirements while potentially having an important impact on future emissions growth will fall well short of what is needed. Further operational efficiency measures such as capping operational speed will be important to immediately peak energy consumption and emissions but will be insufficient to decarbonise the sector or reduce its growing energy needs. In this context this study assumes that with all the likely immediate measures adopted energy demand for EU related shipping will still grow by 50% by 2050 over 2010 levels. This is within the range of the 20 -1 20% global BAU maritime energy demand growth estimate.
The decarbonisation of shipping will require changes in on -board energy storage and use and the necessary accompanying bunkering infrastructure. This study identifies the technology options for zero emission propulsion that based on current know-how are likely to be adopted. It is not exhaustive nor prescriptive because the ultimate pathways will likely depend on both the requirements of the shipping industry in terms of cost efficiency and safety and on the future renewable electricity sources that the shipping sect or will need to compete for.
Literature is nascent on the different techno-economic options likely to be available to decarbonise shipping and individual ships 4 but almost completely lacking on the possible impacts of maritime decarbonisation on the broader energy system(s). Understanding these impacts is nevertheless essential because it will influence financial and economic decision making by the EU and member states including those related to investment in future renewable energy supplies and new ship bunkering infrastructure. With this in mind the report aims to provide a preliminary first answer to the following question: Under different zero emission technology pathways how much additional renewable electricity would be needed to cater for the needs of EU related shipping in 2050?
Link to Document Download on Transport & Environment website
We have not tried to quantify the emissions reductions that specific regulatory measures to be introduced at the IMO or EU level might contribute towards decarbonisation by 2050 because there are too many uncertainties. We have taken a more limited first approach and investigated how zero carbon propulsion pathways that currently seem feasible to decarbonise shipping would likely affect the future EU renewable energy supply needs.
It is now generally accepted that ship design efficiency requirements while potentially having an important impact on future emissions growth will fall well short of what is needed. Further operational efficiency measures such as capping operational speed will be important to immediately peak energy consumption and emissions but will be insufficient to decarbonise the sector or reduce its growing energy needs. In this context this study assumes that with all the likely immediate measures adopted energy demand for EU related shipping will still grow by 50% by 2050 over 2010 levels. This is within the range of the 20 -1 20% global BAU maritime energy demand growth estimate.
The decarbonisation of shipping will require changes in on -board energy storage and use and the necessary accompanying bunkering infrastructure. This study identifies the technology options for zero emission propulsion that based on current know-how are likely to be adopted. It is not exhaustive nor prescriptive because the ultimate pathways will likely depend on both the requirements of the shipping industry in terms of cost efficiency and safety and on the future renewable electricity sources that the shipping sect or will need to compete for.
Literature is nascent on the different techno-economic options likely to be available to decarbonise shipping and individual ships 4 but almost completely lacking on the possible impacts of maritime decarbonisation on the broader energy system(s). Understanding these impacts is nevertheless essential because it will influence financial and economic decision making by the EU and member states including those related to investment in future renewable energy supplies and new ship bunkering infrastructure. With this in mind the report aims to provide a preliminary first answer to the following question: Under different zero emission technology pathways how much additional renewable electricity would be needed to cater for the needs of EU related shipping in 2050?
Link to Document Download on Transport & Environment website
Microbial Fuel Cells: Technologically Advanced Devices and Approach for Sustainable/renewable Energy Development
Dec 2021
Publication
There is a huge quantity of energy needs/demands for multiple developmental and domestic activities in the modern era. And in this context consumption of more non-renewable energy is reported and created many problems or issues (availability of fossil fuel stocks in the future period causes a huge quantity of toxic gases or particles or climatic change effects) at the global level. And only sustainable or renewable fuel development can provide alternate fuel and we report from various biological agents processes including microbial biofuel cell applications for future energy needs only. These will not cause any interference in natural resources or services. Microbial biofuel cells utilize the living cell to produce bioelectricity via bioelectrochemical system. It can drive electricity or other energy generation currents via lived cell interaction. Microbial fuel cells (MFCs) and enzymatic biofuel cells with their advancement in design can improve sustainable bio-energy production by proving an efficient conversion system compared to chemical fuels into electric power. Different types of MFCs operation are reported in wastewater treatment with biogas biohydrogen and other biofuel/energy generation. Later biogas can convert into electric power. Hybrid microbial biofuel cell utility with photochemical reaction is found for electricity generation. Recent research and development in microbial biofuel design and its application will emphasize bioenergy for the future.
Hydrogen Embrittlement Evaluation of Micro Alloyed Steels by Means of J-Integral Curve
Jun 2019
Publication
The aim of this work is the evaluation of the hydrogen effect on the J-integral parameter. It is well-known that the micro alloyed steels are affected by Hydrogen Embrittlement phenomena only when they are subjected at the same time to plastic deformation and hydrogen evolution at their surface. Previous works have pointed out the absence of Hydrogen Embrittlement effects on pipeline steels cathodically protected under static load conditions. On the contrary in slow strain rate tests it is possible to observe the effect of the imposed potential and the strain rate on the hydrogen embrittlement steel behavior only after the necking of the specimens. J vs. Δa curves were measured on different pipeline steels in air and in aerated NaCl 3.5 g/L solution at free corrosion potential or under cathodic polarization at −1.05 and −2 V vs. SCE. The area under the J vs. Δa curves and the maximum crack propagation rate were taken into account. These parameters were compared with the ratio between the reduction of area in environment and in air obtained by slow strain rate test in the same environmental conditions and used to rank the different steels.
Hydrogen Production by Steam Reforming of Ethanol on Rh-Pt Catalysts: Influence of CeO2, ZrO2, and La2O3 as Supports
Nov 2015
Publication
CeO2- ZrO2- and La2O3-supported Rh-Pt catalysts were tested to assess their ability to catalyze the steam reforming of ethanol (SRE) for H2 production. SRE activity tests were performed using EtOH:H2O:N2 (molar ratio 1:3:51) at a gaseous space velocity of 70600 h−1 between 400 and 700 °C at atmospheric pressure. The SRE stability of the catalysts was tested at 700 °C for 27 h time on stream under the same conditions. RhPt/CeO2 which showed the best performance in the stability test also produced the highest H2 yield above 600 °C followed by RhPt/La2O3 and RhPt/ZrO2. The fresh and aged catalysts were characterized by TEM XPS and TGA. The higher H2 selectivity of RhPt/CeO2 was ascribed to the formation of small (~5 nm) and stable particles probably consistent of Rh-Pt alloys with a Pt surface enrichment. Both metals were oxidized and acted as an almost constant active phase during the stability test owing to strong metal-support interactions as well as the superior oxygen mobility of the support. The TGA results confirmed the absence of carbonaceous residues in all the aged catalysts.
Stress Corrosion Behavior of AM50Gd Magnesium Alloy in Different Environments
May 2019
Publication
A new type of high strength corrosion-resistant magnesium alloy was prepared by adding 1% rare earth Gd to AM50 and then treated with hot extrusion method. The stress corrosion properties of the new materials in air pure water 0.5 mol/L NaCl and 0.5 mol/L Na2SO4 solution were studied by the slow strain rate tensile (SSRT) test in situ open circuit potential test Tafel curve test stereomicroscope SEM and EDS. The results showed the following. The stress corrosion sensitivity of the material in different environments was Na2SO4> NaCl > distilled water > air. According to the Tafel curves measured at 0 and 100 MPa the corrosion voltage decreased little and the corrosion current density increased rapidly under 100 Pa. This was because the film of the corrosion product ruptured to form a large cathode and a small anode which resulted in a large instantaneous corrosion current. The mechanism of hydrogen embrittlement and anodic dissolution together affected the stress corrosion behavior of the alloy. In distilled water hydrogen embrittlement played a major role while in NaCl and Na2SO4solution hydrogen embrittlement and anodic dissolution were both affected. The direct reason of the stress corrosion crack (SCC) samples’ failure was the cracks expanding rapidly at the bottom of pit which was caused by corrosion.
The Renewable Energy Transition in Africa: Powering Access, Resilience and Prosperity
Mar 2021
Publication
A renewables-based energy transition promises to deliver vast socio-economic benefits to countries across Africa improving energy access creating jobs and boosting energy security. To realise these benefits African countries have an opportunity to leapfrog fossil fuel technologies to a more sustainable climate-friendly power strategy aligned with the Paris Agreement and low-carbon growth.<br/><br/>The Renewable Energy Transition in Africa jointly prepared by Germany's KfW Development Bank Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) and the International Renewable Energy Agency (IRENA) on behalf of the German Federal Ministry for Economic Cooperation and Development (BMZ) explores how African countries can achieve universal energy access within the 2030 Agenda timeframe and identifies four areas of action:<br/><br/>Promote access to energy;<br/>De-risk and promoting private sector investments;<br/>Strengthen and modernise the grid;<br/>Support systemic innovation.<br/>The study also explores the transformational potential of the electricity sector in five Africa countries: Ghana Ivory Coast Morocco Rwanda and South Africa. Specifically developed by IRENA country case studies show the real-life applicability of power sector transformation and demonstrates how countries can:<br/><br/>Take advantage of the abundancy and competitiveness of renewables;<br/>Align ambitious renewable targets in energy and climate plans;<br/>Continue supporting the development of regional markets;<br/>Leverage renewables and distributed energy resources to achieve universal energy access;<br/>Develop tailored power sector transformation plans based on a systemic innovation approach;<br/>Build on policy frameworks for just and inclusive transitions.
Recyclable Metal Fuels for Clean and Compact Zero-carbon Power
Jun 2018
Publication
Metal fuels as recyclable carriers of clean energy are promising alternatives to fossil fuels in a future low-carbon economy. Fossil fuels are a convenient and widely-available source of stored solar energy that have enabled our modern society; however fossil-fuel production cannot perpetually keep up with increasing energy demand while carbon dioxide emissions from fossil-fuel combustion cause climate change. Low-carbon energy carriers with high energy density are needed to replace the multiple indispensable roles of fossil fuels including for electrical and thermal power generation for powering transportation fleets and for global energy trade. Metals have high energy densities and metals are therefore fuels within many batteries energetic materials and propellants. Metal fuels can be burned with air or reacted with water to release their chemical energy at a range of power-generation scales. The metal-oxide combustion products are solids that can be captured and then be recycled using zero-carbon electrolysis processes powered by clean energy enabling metals to be used as recyclable zero-carbon solar fuels or electrofuels. A key technological barrier to the increased use of metal fuels is the current lack of clean and efficient combustor/reactor/engine technologies to convert the chemical energy in metal fuels into motive or electrical power (energy). This paper overviews the concept of low-carbon metal fuels and summarizes the current state of our knowledge regarding the reaction of metal fuels with water to produce hot hydrogen on demand and the combustion of metal fuels with air in laminar and turbulent flames. Many important questions regarding metal-fuel combustion processes remain unanswered as do questions concerning the energy-cycle efficiency and life-cycle environmental impacts and economics of metals as recyclable fuels. Metal fuels can be an important technology option within a future low-carbon society and deserve focused attention to address these open questions.
Hydrogen and Renewable Energy Sources Integrated System for Greenhouse Heating
Sep 2013
Publication
A research is under development at the Department of Agro-Environmental Sciences of the University of Bari “Aldo Moro” in order to investigate the suitable solutions of a power system based on solar energy (photovoltaic) and hydrogen integrated with a geothermal heat pump for powering a self sustained heated greenhouse. The electrical energy for heat pump operation is provided by a purpose-built array of solar photovoltaic modules which supplies also a water electrolyser system controlled by embedded pc; the generated dry hydrogen gas is conserved in suitable pressured storage tank. The hydrogen is used to produce electricity in a fuel cell in order to meet the above mentioned heat pump power demand when the photovoltaic system is inactive during winter night-time or the solar radiation level is insufficient to meet the electrical demand. The present work reports some theoretical and observed data about the electrolyzer operation. Indeed the electrolyzer has required particular attention because during the experimental tests it did not show a stable operation and it was registered a performance not properly consistent with the predicted performance by means of the theoretical study.
Reducing Emissions in Scotland 2020 Progress Report to the Scottish Parliament
Oct 2020
Publication
Outline
This is the eighth annual Progress Report to the Scottish Parliament required by Scottish Ministers under the Climate Change (Scotland) Act 2009. It assesses Scotland’s progress in achieving its legislated targets to reduce greenhouse gas emissions
Overall greenhouse gas emissions reduced by 3% in 2017 compared to a 10% fall in 2016. The fall was again led by the power sector due in large part to Scotland’s first full year of coal-free electricity generation. Recent performance in other sectors shows only incremental improvement at best and unless emissions reductions are delivered economy-wide Scotland is at risk of missing its new interim target of a 56% reduction in emissions by 2020.
Key findings
Setting a net-zero greenhouse gas emissions target for 2045 represents a step-change in ambition for Scotland.
The Scottish Parliament’s 2030 target to reduce emissions by 75% will be extremely challenging to meet. It must be backed up by steps to drive meaningful emissions reductions immediately.
Scotland’s Programme for Government 2019-20 alongside other recent policies sent a clear signal that the Scottish Government is taking its more ambitious targets seriously but there is much more to do.
Scotland’s ability to deliver its net-zero target is contingent on action taken in the UK and vice versa.
This is the eighth annual Progress Report to the Scottish Parliament required by Scottish Ministers under the Climate Change (Scotland) Act 2009. It assesses Scotland’s progress in achieving its legislated targets to reduce greenhouse gas emissions
Overall greenhouse gas emissions reduced by 3% in 2017 compared to a 10% fall in 2016. The fall was again led by the power sector due in large part to Scotland’s first full year of coal-free electricity generation. Recent performance in other sectors shows only incremental improvement at best and unless emissions reductions are delivered economy-wide Scotland is at risk of missing its new interim target of a 56% reduction in emissions by 2020.
Key findings
Setting a net-zero greenhouse gas emissions target for 2045 represents a step-change in ambition for Scotland.
The Scottish Parliament’s 2030 target to reduce emissions by 75% will be extremely challenging to meet. It must be backed up by steps to drive meaningful emissions reductions immediately.
Scotland’s Programme for Government 2019-20 alongside other recent policies sent a clear signal that the Scottish Government is taking its more ambitious targets seriously but there is much more to do.
Scotland’s ability to deliver its net-zero target is contingent on action taken in the UK and vice versa.
Power-to-fuels Via Solid-oxide Electrolyzer: Operating Window and Techno-economics
May 2019
Publication
Power-to-fuel systems via solid-oxide electrolysis are promising for storing excess renewable electricity by efficient electrolysis of steam (or co-electrolysis of steam and CO2) into hydrogen (or syngas) which can be further converted into synthetic fuels with plant-wise thermal integration. Electrolysis stack performance and durability determine the system design performance and long-term operating strategy; thus solid-oxide electrolyzer based power-to-fuels were investigated from the stack to system levels. At the stack level the data from a 6000-h stack testing under laboratory isothermal conditions were used to calibrate a quasi-2D model which enables to predict practical isothermal stack performance with reasonable accuracy. Feasible stack operating windows meeting various design specifications (e.g. specific syngas composition) were further generated to support the selection of operating points. At the system level with the chosen similar stack operating points various power-to-fuel systems including power-to-hydrogen power-to-methane power-to-methanol (dimethyl ether) and power-to-gasoline were compared techno-economically considering system-level heat integration. Several operating strategies of the stack were compared to address the increase in stack temperature due to degradation. The modeling results show that the system efficiency for producing H2 methane methanol/dimethyl ether and gasoline decreases sequentially from 94% (power-to-H2) to 64% (power-to-gasoline) based on a higher heating value. Co-electrolysis which allows better heat integration can improve the efficiency of the systems with less exothermic fuel-synthesis processes (e.g. methanol/dimethyl ether) but offers limited advantages for power-to-methane and power-to-gasoline systems. In a likely future scenario where the growing amount of electricity from renewable sources results in increasing periods of a negative electricity price solid oxide electrolyser based power-to-fuel systems are highly suitable for levelling the price fluctuations in an economic way.
Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project
Dec 2011
Publication
This report summarizes the work conducted under U.S. Department of Energy (DOE) under contract DE-FC36-04GO14285 by Mercedes-Benz & Research Development North America (MBRDNA) Chrysler Daimler Mercedes Benz USA (MBUSA) BP DTE Energy and NextEnergy to validate fuel cell technologies for infrastructure transportation as well as assess technology and commercial readiness for the market. The Mercedes Team together with its partners tested the technology by operating and fuelling hydrogen fuel cell vehicles under real world conditions in varying climate terrain and driving conditions. Vehicle and infrastructure data was collected to monitor the progress toward the hydrogen vehicle and infrastructure performance targets of $2.00 to 3.00/gge hydrogen production cost and 2000-hour fuel cell durability. Finally to prepare the public for a hydrogen economy outreach activities were designed to promote awareness and acceptance of hydrogen technology. DTE BP and NextEnergy established hydrogen filling stations using multiple technologies for on-site hydrogen generation storage and dispensing. DTE established a hydrogen station in Southfield Michigan while NextEnergy and BP worked together to construct one hydrogen station in Detroit. BP constructed another fueling station in Burbank California and provided a full-time hydrogen trailer at San Francisco California and a hydrogen station located at Los Angeles International Airportmore.
Effect of Corrosion-induced Hydrogen Embrittlement and its Degradation Impact on Tensile Properties and Fracture Toughness of (Al-Cu-Mg) 2024 Alloy
Jul 2016
Publication
In the present work the effect of artificial ageing of AA2024-T3 on the tensile mechanical properties and fracture toughness degradation due to corrosion exposure will be investigated. Tensile and fracture toughness specimens were artificially aged to tempers that correspond to Under-Ageing (UA) Peak-Ageing (PA) and Over-Ageing (OA) conditions and then were subsequently exposed to exfoliation corrosion environment. The corrosion exposure time was selected to be the least possible according to the experimental work of Alexopoulos et al. (2016) so as to avoid the formation of large surface pits trying to simulate the hydrogen embrittlement degradation only. The mechanical test results show that minimum corrosion-induced decrease in elongation at fracture was achieved for the peak-ageing condition while maximum was noticed at the under-ageing and over-ageing conditions. Yield stress decrease due to corrosion is less sensitive to tempering; fracture toughness decrease was sensitive to ageing heat treatment thus proving that the S΄ particles play a significant role on the corrosion-induced degradation.
Room Temperature Metal Hydrides for Stationary and Heat Storage Applications: A Review
Apr 2021
Publication
Hydrogen has been long known to provide a solution toward clean energy systems. With this notion many efforts have been made to find new ways of storing hydrogen. As a result decades of studies has led to a wide range of hydrides that can store hydrogen in a solid form. Applications of these solid-state hydrides are well-suited to stationary applications. However the main challenge arises in making the selection of the Metal Hydrides (MH) that are best suited to meet application requirements. Herein we discuss the current state-of-art in controlling the properties of room temperature (RT) hydrides suitable for stationary application and their long term behavior in addition to initial activation their limitations and emerging trends to design better storage materials. The hydrogen storage properties and synthesis methods to alter the properties of these MH are discussed including the emerging approach of high-entropy alloys. In addition the integration of intermetallic hydrides in vessels their operation with fuel cells and their use as thermal storage is reviewed.
No more items...