- Home
- A-Z Publications
- Publications
Publications
Research on the Sealing Mechanism of Split-Liner High-Pressure Hydrogen Storage Cylinders
Mar 2024
Publication
Hydrogen storage is a crucial factor that limits the development of hydrogen energy. This paper proposes using a split liner for the inner structure of a hydrogen storage cylinder. A self-tightening seal is employed to address the sealing problem between the head and the barrel. The feasibility of this structure is demonstrated through hydraulic pressure experiments. The influence laws of the O-ring compression rate the distance from the straight edge section of the head to the sealing groove and the thickness of the head on the sealing performance of gas cylinders in this sealing structure are revealed using finite elements analysis. The results show that when the gas cylinder is subjected to medium internal pressure the maximum contact stress on the O-ring extrusion deformation sealing surface is greater than the medium pressure. There is sufficient contact width that is the arc length of the part where the stress on the O-ring contact surface is greater than the medium pressure so that it can form a good sealing condition. At the same time increasing the compression ratio of the O-ring and the head’s thickness will help improve the sealing performance and reducing the distance from the straight edge section of the head to the sealing groove will also improve the sealing performance.
A Geospatial Method for Estimating the Levelised Cost of Hydrogen Production from Offshore Wind
Jan 2023
Publication
This paper describes the development of a general-purpose geospatial model for assessing the economic viability of hydrogen production from offshore wind power. A key feature of the model is that it uses the offshore project's location characteristics (distance to port water depth distance to gas grid injection point). Learning rates are used to predict the cost of the wind farm's components and electrolyser stack replacement. The notional wind farm used in the paper has a capacity of 510 MW. The model is implemented in a geographic information system which is used to create maps of levelised cost of hydrogen from offshore wind in Irish waters. LCOH values in 2030 spatially vary by over 50% depending on location. The geographically distributed LCOH results are summarised in a multivariate production function which is a simple and rapid tool for generating preliminary LCOH estimates based on simple site input variables.
The Hydrogen Economy - Where is the Water?
Jul 2022
Publication
"Green hydrogen” i.e. hydrogen produced by splitting water with a carbon “free” source of electricity via electrolysis is set to become the energy vector enabling a deep decarbonisation of society and a virtuous water based energy cycle. If to date water electrolysis is considered to be a scalable technology the source of water to enable a “green hydrogen” economy at scale is questionable. Countries with the highest renewable energy potential like Australia are also among the driest places on earth. Globally 380000 GL/year of wastewater is available and this is much more than the 34500 GL/year of water required to produce the projected 2.3 Gt of hydrogen of a mature hydrogen economy. Hence the need to assess both technically and economically whether some wastewater treatment effluent are a better source for green hydrogen. Analysis of Sydney Water’s wastewater treatment plants alone shows that these plants have 37.6 ML/day of unused tertiary effluents which if electrolysed would generate 420000 t H2/day or 0.88 Mt H2/year and cover ∼100% of Australia’s estimated production by 2030. Furthermore the production of oxygen as a by-product of the electrolysis process could lead to significant benefits to the water industry not only in reducing the cost of the hydrogen produced for $3/kg (assuming a price of oxygen of $3–4 per kg) but also in improving the environmental footprint of wastewater treatment plants by enabling the onsite re-use of oxygen for the treatment of the wastewater. Compared to desalinated water that requires large investments or stormwater that is unpredictable it is apparent that the water utilities have a critical role to play in managing water assets that are “climate independent” as the next “golden oil” opportunity and in enabling a “responsible” hydrogen industry that sensibly manages its water demands and does not compete with existing water potable water demand.
Molten Carbonate Fuel Cells for Simultaneous CO2 Capture, Power Generation, and H2 Generation
Mar 2022
Publication
This article presents a new technology for the generation of power and steam or other process heat with very low CO2 emissions. It is well known that cogeneration of electricity and steam is highly efficient and that amine units can be used to remove CO2 from combustion flue gas but that the amine unit consumes a significant amount of steam and power reducing the overall system efficiency. In this report the use of molten carbonate fuel cells (MCFCs) to capture CO2 from cogen units is investigated and shown to be highly efficient due to the additional power that they produce while capturing the CO2. Furthermore the MCFCs are capable of reforming methane to hydrogen simultaneous to the power production and CO2 capture. This hydrogen can either be recycled as fuel for consumption by the cogen or MCFCs or exported to an independent combustion unit as low carbon fuel thereby decarbonizing that unit as well. The efficiency of MCFCs for CO2 capture is higher than use of amines in all cases studied often by a substantial margin while at the same time the MCFCs avoid more CO2 than the amine technology. As one example the use of amines on a cogeneration unit can avoid 87.6% of CO2 but requires 4.91 MJ/kg of additional primary energy to do so. In contrast the MCFCs avoid 89.4% of CO2 but require only 1.37 MJ/kg of additional primary energy. The high thermal efficiency and hydrogen export option demonstrate the potential of this technology for widespread deployment in a low carbon energy economy.
Review and Perspectives of Key Decarbonization Drivers to 2030
Jan 2023
Publication
Global climate policy commitments are encouraging the development of EU energy policies aimed at paving the way for cleaner energy systems. This article reviews key decarbonization drivers for Italy considering higher environmental targets from recent European Union climate policies. Energy efficiency the electrification of final consumption the development of green fuels increasing the share of renewable energy sources in the electric system and carbon capture and storage are reviewed. A 2030 scenario is designed to forecast the role of decarbonization drivers in future energy systems and to compare their implementation with that in the current situation. Energy efficiency measures will reduce final energy consumption by 15.6% as primary energy consumption will decrease by 19.8%. The electrification of final consumption is expected to increase by 6.08%. The use of green fuels is estimated to triple as innovative fuels may go to market at scale to uphold the ambitious decarbonization targets set in the transportation sector. The growing trajectory of renewable sources in the energy mix is confirmed as while power generation is projected to increase by 10% the share of renewables in that generation is expected to increase from 39.08% to 78.16%. Capture and storage technologies are also expected to play an increasingly important role. This article has policy implications and serves as a regulatory reference in the promotion of decarbonization investments.
Renewable Energy, Carbon Capture & Sequestration and Hydrogen Solutions as Enabling Technologies for Reduced CO2 Energy Transition at a National Level: An Application to the 2030 Italian National Energy Scenarios
Dec 2022
Publication
Globally climate change fossil fuel depletion and greenhouse emissions are fundamental problems requiring massive effort from the international scientific community to be addressed and solved. Following the Clean Energy for all Europeans Package (CEP) guidelines the Italian Government has established challenging and tight objectives both on energy and climate matter to be targeted by 2030. Accordingly research activities on different topics are carried out in Italy looking at the installation of intermittent renewable energy systems (IRES) implementation of carbon capture and sequestration (CCS) on existing power plants and hydrogen technology and infrastructure penetration for accomplishing the end-users demands. The optimal integration of the above-mentioned technologies is one of the most effective weapons to address these objectives. The paper investigates different energy scenarios for meeting the Italian National Energy and Climate Plan (NECP) 2030 targets showing how the combined implementation of around +12 GW of IRES and +6 GW of electrolyzers compared to the national estimates simultaneously with the CCS of around 10 Mt of CO2 per year can reduce the CO2 emissions up to about 247 Mt/year. Thanks to the adoption of the well-established software platform EnergyPlan the integration of IRES plants CCS and hydrogen-based technologies have been explored and the most successful results for concurrently reducing the impact of industrial transport residential and energy sectors and mitigating the greenhouse emissions substantially relies on the diversifications. Results show both the technical and economic convenience of a 2030 energy scenario which implements properly hydrogen IRES and CCS penetration in the energy system meeting the NECP 2030 targets and maintaining both the over-generation of the power plants below 5 TWh and the initial capital expenditure to be sustained for this scenario to occur below +80% compared to the 2019 energy scenario.
A Review of Factors Affecting SCC Initiation and Propagation in Pipeline Carbon Steels
Aug 2022
Publication
Pipelines have been installed and operated around the globe to transport oil and gas for decades. They are considered to be an effective economic and safe means of transportation. The major concern in their operation is corrosion. Among the different forms of corrosion stress corrosion cracking (SCC) which is caused by stresses induced by internal fluid flow or other external forces during the pipeline’s operation in combined action with the presence of a corrosive medium can lead to pipeline failure. In this paper an extensive review of different factors affecting SCC of pipeline steels in various environmental conditions is carried out to understand their impact. Several factors such as temperature presence of oxidizers (O2 CO2 H2S etc.) composition and concentration of medium pH applied stress and microstructure of the metal/alloy have been established to affect the SCC of pipeline steels. SCC susceptibility of a steel at a particular temperature strongly depends on the type and composition of the corrosive medium and microstructure. It was observed that pipeline steels with water quenched and quenched and tempered heat treatments such as those that consist of acicular ferrite or bainitic ferrite grains are more susceptible to SCC irrespective of solution type and composition. Applied stress stress concentration and fluctuating stress facilitates SCC initiation and propagation. In general the mechanisms for crack initiation and propagation in near-neutral solutions are anodic dissolution and hydrogen embrittlement.
A Novel Approach for Quantifying Hydrogen Embrittlement Using Side-grooved CT Samples
Feb 2022
Publication
Aerospace parts made of high strength steels such as landing gears and helicopter transmissions are often electroplated to satisfy various engineering specifications. However plated parts are occasionnaly rejected because of hydrogen embrittlement and the industry has few means of evaluating quantitatively the actual damage caused by hydrogen. In the present article we developed a novel method to measure the stress intensity threshold for hydrogen embrittlement (Kth) in industrial plating conditions. The method consists in plating side-grooved CT samples in industrial plating baths and measuring Kth with an incremental step loading methodology. We validated the method with a benchmark case known to produce embrittlement (omitted post-plating bake) and we used the method on a test case for which the level of embrittlement was unknown (delayed bake). For the benchmark case we measured a Kth of 49.0 MPa m0.5 for non-baked samples. This value is significantly lower than the fracture toughness of the unplated material which is 63.8 MPa m0.5 . We conclude that this novel combination of geometry and test method is efficient in quantifying hydrogen embrittlement of samples plated in industrial conditions. For the test case the Kth are respectively 57.9 MPa m0.5 and 58.8 MPa m0.5 for samples baked 100 h and 4 h after plating. We conclude that delaying the post-plating bake does not cause hydrogen embrittlement in the studied conditions. Using a finite element hydrogen diffusion analysis we argue that the side grooves on CT samples increase the sensitivity to hydrogen embrittlement in comparison to smooth samples. In smooth samples a zone of plane stress at the surface of the specimen shields hydrogen from penetrating to the center of the specimen a phenomenon which is alleviated with machining side grooves.
Techno-economic Assessment of a Hybrid Off-grid DC System for Combined Heat and Power Generation in Remote Islands
Mar 2019
Publication
Hybrid renewable energy systems that combine heat and electricity generation is an achievable option for remote areas where grid is uneconomical to extend. In this study a renewable-based system was designed to satisfy the electrical and thermal demands of a remote household in an off-grid Greek island. A hybrid DC system consisted of a combination of photovoltaic modules wind turbine electrolyzer-hydrogen tank fuel cell and batteries were analysed using HOMER Pro software. Based on the optimal obtained system it is found that such a system can satisfy both electrical and thermal load demand throughout the year in a reliable manner.
First Solar Hydrogen Storage in a Private Building in Western Switzerland: Building energy Analysis and Schematic Design
Sep 2019
Publication
Self-sufficiency of buildings with carbon emission reduction can be obtained thanks to the introduction of Photovoltaics systems coupled with Hydrogen seasonal storage. To be self-sufficient over the year the electricity converted to hydrogen by electrolysis during the sunny season can be re-used with the help of fuel cells during the winter season. This article is dealing with the dimensioning methodology of a solar PV hydrogen-electrochemical system for self-sufficient buildings. We introduce the case study of the first private building in western Switzerland that will be equipped with solar hydrogen storage. Calculation results of the dimensioning of the PV system with storage will be presented. The life cycle assessment and the calculations of the environmental indicators GWP and CED will be introduced.
Numerical Modelling of H2 Storage with Cushion Gas of CO2 in Subsurface Porous Media: Filter Effects of CO2 Solubility
Jun 2022
Publication
The central objective of this study is to improve the understanding of flow behaviour during hydrogen (H2) storage in subsurface porous media with a cushion gas of carbon dioxide (CO2). In this study we investigate the interactions between various factors driving the flow behaviour including the underlying permeability heterogeneity viscous instability and the balance between the viscous and gravity forces. In particular we study the impact of CO2 solubility in water on the level of H2 purity. This effect is demonstrated for the first time in the context of H2 storage. We have performed a range of 2D vertical cross-sectional simulations at the decametre scale with a very fine cell size (0.1 m) to capture the flow behaviour in detail. This is done since it is at this scale that much of the mixing between injected and native fluids occurs in physical porous media. It is found that CO2 solubility may have different (positive and negative) impacts on the H2 recovery performance (i.e. on the purity of the produced H2) depending on the flow regimes in the system. In the viscous dominated regime the less viscous H2 may infiltrate and bypass the cushion gas of CO2 during the period of H2 injection. This leads to a quick and dramatic reduction in the H2 purity when back producing H2 due to the co-production of the previously bypassed CO2. Interestingly the impurity levels in the H2 are much less severe in the case when CO2 solubility in water is considered. This is because the bypassed CO2 will redissolve into the water surrounding the bypassed zones which greatly retards the movement of CO2 towards the producer. In the gravity dominated scenario H2 accumulates at the top of the model and displaces the underlying cushion gas in an almost piston-like fashion. Approximately 58% of H2 can be recovered at a purity level above 98% (combustion requirements by ISO) in this gravity-dominated case. However when CO2 solubility is considered the H2 recovery performance is slightly degraded. This is because the dissolved CO2 is also gradually vaporised during H2 injection which leads to an expansion of mixing zone of CO2 and H2. This in turn reduces the period of high H2 purity level (>98%) during back-production.
Exergy Estimate of a Novel Hybrid Solar-gas Power and Organic Rankine Cycle-based Hydrogen-production System
Mar 2022
Publication
This study proposes a novel hybrid solar-gas power and hydrogen-production system which is comprised by the solar tower thermal system gas-steam turbine combined cycle and organic Rankine cycle-based hydrogen-production system. Based on the Ebsilon code the operation processes of the hybrid system are simulated. The results show that the output power and electric efficiency of the hybrid system are 103.9 MW and 41.3% and the daily hydrogen output is 62.2 kg. The operation simulation results of the hybrid system reveal that the gas-steam combined cycle and solar island can both achieve stable operations and the power generation section and hydrogen-production device can both work effectively which means the hybrid system is technically feasible. The exergy estimate results of the hybrid system show that the combustion chamber and solar receiver have the two largest exergy destructions which are 56.5 MW and 45.3 MW. That means the performances of the two components can be further improved. For the hydrogen-production system the exergy destructions of the proton exchange membrane electrolyzer turbine condenser and evaporator of the organic Rankine cycle are 0.156 MW 0.111 MW 2.338 MW and 1.891 MW and the corresponding exergy efficiencies are 51.2% 92.6% 80.7% and 79.5% respectively.
Optimal Allocation of Energy Sources in Hydrogen Production for Sustainable Deployment of Electric Vehicles
Jan 2023
Publication
We analyze the use of hydrogen as a fuel for the automotive industry with the aim of decarbonizing the economy. Hydrogen is a suitable option for avoiding pollutant gas emissions developing environmentally friendly technologies replacing fossil fuels with clean renewable energies and complying with the Paris Agreement and Glasgow resolutions. In this sense renewable energies such as wind solar photovoltaic geothermal biomass etc. can be used to produce the necessary hydrogen to power vehicles. In this way the entire process from hydrogen production to its consumption as fuel will be 100% clean. If we are to meet future energy demands it is necessary to forecast the amount of hydrogen needed taking into account the facilities currently available and new ones that will be required for its generation storage and distribution. This paper presents a process for optimizing hydrogen production for the automotive industry that considers the amount of hydrogen needed the type of facilities from which it will be produced how the different sources of production are to be combined to achieve a competitive product and the potential environmental impacts of each energy source. It can serve as a frame of reference for the various actors in the hydropower and automotive industries so that more efficient designs can be planned for the gradual introduction of hydrogen fuel cell vehicles (HFCVs). The methodology implemented in this paper sets an optimization problem for minimizing energy production costs and reducing environmental impacts according to the source of energy production. The EU framework with respect to the decarbonization of the economy the percentages of the different types of energy sources used and the non-polluting vehicle fleet in the automotive sector will be considered.
Optimal Integration of Hydrogen-Based Energy Storage Systems in Photovoltaic Microgrids: A Techno-Economic Assessment
Aug 2020
Publication
The feasibility and cost-effectiveness of hydrogen-based microgrids in facilities such as public buildings and small- and medium-sized enterprises provided by photovoltaic (PV) plants and characterized by low electric demand during weekends were investigated in this paper. Starting from the experience of the microgrid being built at the Renewable Energy Facility of Sardegna Ricerche (Italy) which among various energy production and storage systems includes a hydrogen storage system a modeling of the hydrogen-based microgrid was developed. The model was used to analyze the expected performance of the microgrid considering different load profiles and equipment sizes. Finally the microgrid cost-effectiveness was evaluated using a preliminary economic analysis. The results demonstrate that an effective design can be achieved with a PV system sized for an annual energy production 20% higher than the annual energy requested by the user and a hydrogen generator size 60% of the PV nominal power size. This configuration leads to a self-sufficiency rate of about 80% and without public grants a levelized cost of energy comparable with the cost of electricity in Italy can be achieved with a reduction of at least 25–40% of the current initial costs charged for the whole plant depending on the load profile shape.
A Review of Hydrogen Production and Supply Chain Modeling and Optmization
Jan 2023
Publication
This paper reviews recent optimization models for hydrogen supply chains and production. Optimization is a central component of systematic methodologies to support hydrogen expansion. Hydrogen production is expected to evolve in the coming years to help replace fossil fuels; these high expectations arise from the potential to produce low-carbon hydrogen via electrolysis using electricity generated by renewable sources. However hydrogen is currently mainly used in refinery and industrial operations; therefore physical infrastructures for transmission distribution integration with other energy systems and efficient hydrogen production processes are lacking. Given the potential of hydrogen the greenfield state of infrastructures and the variability of renewable sources systematic methodologies are needed to reach competitive hydrogen prices and design hydrogen supply chains. Future research topics are identified: 1) improved hydrogen demand projections 2) integrated sector modeling 3) improving temporal and spatial resolutions 4) accounting for climate change 5) new methods to address sophisticated models.
Experimental Study on the Self-ignition of Pressurized Hydrogen Released into Three-way Tubes
Sep 2021
Publication
To explore the effect of bifurcation structures on the spontaneous ignition and shock wave result from the sudden release of pressurized hydrogen. Three-way tubes with different bifurcation angles (90° 120° 150°) were used in the experiments. They are two Y-shape tubes and one T-shape tube. The photoelectric and pressure signals in the tube were recorded by the sensor. The results show that the reflected shock wave will be formed at the bifurcation. In addition the intensity and velocity of the leading shock wave will attenuate sharply when it passes through the bifurcation.The smaller bifurcation angle of tubethe smaller overpressure decay rate of shock wave at bifurcation position.The smaller the bifurcation angle of tubes the weaker the reflected shock wave transmitted downstream and the greater attenuation of shock wave intensity. Experimental results have reference value for the safety of hydrogen storage at high-pressure and are helpful to understand the influence of different tube structures on spontaneous ignition when hydrogen is transported at high pressure.
Hydrogen Permeation Behavior of QP1180 High Strength Steel in Simulated Coastal Atmosphere
Mar 2022
Publication
The hydrogen permeation behavior of QP1180 high strength steel for automobile was studied in simulate coastal atmosphere environment by using Devanathan-Stachurski dual electrolytic cell the cyclic corrosion test (CCT) thermal desorption spectrometry (TDS) and electrochemical measurement methods. The current density of hydrogen permeation generally increases with reducing the relative humidity from 95% to 50% and periodically changes in the CCT process. These mainly result from the evolution of corrosion and rust layer on the specimen surface with the atmospheric humidity and intermittent salt spraying. The contents of diffusible hydrogen and non-diffusible hydrogen in the steel enlarge slightly in the CCT process. The plastic deformation about 11.3% results in much higher diffusible hydrogen content in steel but noticeably reduces the hydrogen permeation current and almost has no influence on the non-diffusible hydrogen content. The combination of double electrolytic cell and standard cyclic corrosion test can effectively characterize the hydrogen permeation of high strength steel in atmospheric service environments.
Future Electricity Series Part 2 - Power from Renewables
Sep 2013
Publication
The independent cross-party report highlights a ‘sensible middle ground’ in the renewables debate and calls for more effort in building cross-party consensus. It finds that the UK has only just begun to harness low carbon renewable resources bigger than North Sea oil and gas and argues that the Government could do more to narrow the scope of debate about the technology mix beyond 2020. It argues that it should work with industry and academia first to establish ‘low regrets’ levels of technology deployment and second to ensure that policies are in place to incentivise investments such as supply chain investment needed to deliver these low regrets actions.
This approach would help provide the longer term clarity that could secure supply chain investments giving the UK a head-start in the global race. The report finds that these investments could be missed delayed or more expensive if there is insufficient confidence about long term demand for key technologies such as offshore wind. Work by Government to help incentivise these investments would increase the likelihood that technology cost reductions are achieved and help mitigate against high costs if new nuclear or carbon capture and storage development fail or are delayed.
On affordability the report finds that there are ‘hidden’ benefits that the UK could see from investing more in renewables through electricity bills between now and 2020. These include: avoiding bill increases driven by fossil fuels; making electricity bills more predictable; and providing an economic boost. The extra money paid to support renewables and other low carbon generation such as nuclear power could be more than offset by energy efficiency savings although Government needs to do more to show how these savings will arise.
On sustainability the report tackles myths about the carbon emitted in manufacturing renewable technologies or in backing up varying technologies such as wind solar wave and tidal. It finds that even when considering these factors renewables are still amongst the most low carbon options. The report also looks at the sustainability of electricity from biomass. Bioenergy overall could provide up to ten per cent of energy and reduce the cost of cutting carbon by £44 billion per year in 2050. The Government’s new biomass policies are a pragmatic response to concerns about the sustainability of biomass power which balances protecting the environment building public confidence and enabling the sector to grow.
On security of supply the inquiry argues that debate should focus on the whole electricity system and that individual technologies should be considered in the context of how they add to or reduce system risks. Considered like this renewables reduce some risks such as fuel supply risks which caused concern last winter and add to others such as system balancing risks. System balancing risks from varying renewables (wind solar wave and tidal technologies) are manageable using a number of existing and developing technologies.
The independent report chaired by former Energy Minister Charles Hendry MP and Shadow Energy Minister Baroness Worthington was compiled between May and September 2013 and was sponsored by Siemens and DONG Energy. It is part of a year-long independent and cross party inquiry into the UK power sector the Future Electricity Series sponsored by the Institution of Gas Engineers and Managers.
Link to Launch Video
This approach would help provide the longer term clarity that could secure supply chain investments giving the UK a head-start in the global race. The report finds that these investments could be missed delayed or more expensive if there is insufficient confidence about long term demand for key technologies such as offshore wind. Work by Government to help incentivise these investments would increase the likelihood that technology cost reductions are achieved and help mitigate against high costs if new nuclear or carbon capture and storage development fail or are delayed.
On affordability the report finds that there are ‘hidden’ benefits that the UK could see from investing more in renewables through electricity bills between now and 2020. These include: avoiding bill increases driven by fossil fuels; making electricity bills more predictable; and providing an economic boost. The extra money paid to support renewables and other low carbon generation such as nuclear power could be more than offset by energy efficiency savings although Government needs to do more to show how these savings will arise.
On sustainability the report tackles myths about the carbon emitted in manufacturing renewable technologies or in backing up varying technologies such as wind solar wave and tidal. It finds that even when considering these factors renewables are still amongst the most low carbon options. The report also looks at the sustainability of electricity from biomass. Bioenergy overall could provide up to ten per cent of energy and reduce the cost of cutting carbon by £44 billion per year in 2050. The Government’s new biomass policies are a pragmatic response to concerns about the sustainability of biomass power which balances protecting the environment building public confidence and enabling the sector to grow.
On security of supply the inquiry argues that debate should focus on the whole electricity system and that individual technologies should be considered in the context of how they add to or reduce system risks. Considered like this renewables reduce some risks such as fuel supply risks which caused concern last winter and add to others such as system balancing risks. System balancing risks from varying renewables (wind solar wave and tidal technologies) are manageable using a number of existing and developing technologies.
The independent report chaired by former Energy Minister Charles Hendry MP and Shadow Energy Minister Baroness Worthington was compiled between May and September 2013 and was sponsored by Siemens and DONG Energy. It is part of a year-long independent and cross party inquiry into the UK power sector the Future Electricity Series sponsored by the Institution of Gas Engineers and Managers.
Link to Launch Video
Effects of Renewable Energy Unstable Source to Hydrogen Production: Safety Considerations
Sep 2021
Publication
Hydrogen is considered a promising energy carrier for a sustainable future when it is produced by utilizing renewable energy. Nowadays less than 4% of hydrogen production is based on electrolysis processes. Each component of a hydrogen energy system needs to be optimized to increase the operation time and system efficiency. Only in this way hydrogen produced by electrolysis processes can be competitive with the conventional fossil energy sources. As conventional electrolysers are designed for operation at fixed process conditions the implementation of fluctuating and highly intermittent renewable energy is challenging. Alkaline water electrolysis is a key technology for large-scale hydrogen production powered by renewable energy. At low power availability conventional alkaline water electrolysers show a limited part-load range due to an increased gas impurity. Explosive mixtures of hydrogen and oxygen must be prevented; thus a safety shutdown is performed when reaching specific gas contamination. The University of Pisa is setting up a dedicated laboratory including a 40-kW commercial alkaline electrolyser: the focus of the study is to analyze the safety of the electrolyser together with its performance and the real energy efficiency analyzing its operational data collected under different operating conditions affected by the unstable energy supply.
HyDeploy2 Technical Services Report: Downstream Gas Standards Review
Jan 2021
Publication
The application of appropriate procedures in the downstream gas industry (defined as any works downstream of the emergency control value) is critical in protecting consumers of gas both domestic and commercial. The two primary standard setting bodies for the downstream gas industry are the British Standard Institution (BSI) and the Institution of Gas Engineers and Managers (IGEM). To ensure only competent engineers carry out works on a gas installation all gas businesses or selfemployed persons must become a member of Gas Safe Register as stipulated by the Gas Safety (Installation and Use) Regulations 1998 1 and each gas operative shall be included on the register and hold a valid license card that covers the areas of gas work they undertake. Membership of the Gas Safe Register is contingent upon demonstration of competency the recognised competency assessments are based on the relevant BSI and IGEM standards. Therefore the primary source of a gas operative’s competency to work on natural gas installations are the associated BSI and IGEM natural gas downstream standards.<br/>Investigation was undertaken to understand the potential implications of introducing 20 mol% hydrogen (H2) within natural gas supplies on the ability of gas operatives to competently carry out works. This investigation took the form of identifying all BSI and IGEM standards that could be applied on natural gas installations and reviewing them within the context of the known effects of introducing a 20 mol% H2 blend. Following review a series of technical questions were generated and responded to by the Health and Safety Executive Science Division. The responses provided were then reviewed and if considered necessary challenged to provide further information. The procedural review was led by Blue Flame Associates a body deemed sufficiently competent in downstream standards training certification and investigation. The report was subsequently reviewed by industry and feedback received. The industry comments were reviewed by the Project Team and where considered necessary the report was updated.
No more items...