- Home
- A-Z Publications
- Publications
Publications
Climate Impact Reduction Potentials of Synthetic Kerosene and Green Hydrogen Powered Mid-Range Aircraft Concepts
Jun 2022
Publication
One of aviation’s major challenges for the upcoming decades is the reduction in its climate impact. As synthetic kerosene and green hydrogen are two promising candidates their potentials in decreasing the climate impact is investigated for the mid-range segment. Evolutionary advancements for 2040 are applied first with an conventional and second with an advanced low-NOx and low-soot combustion chamber. Experts and methods from all relevant disciplines are involved starting from combustion turbofan engine overall aircraft design fleet level and climate impact assessment allowing a sophisticated and holistic evaluation. The main takeaway is that both energy carriers have the potential to strongly reduce the fleet level climate impact by more than 75% compared with the reference. Applying a flight-level constraint of 290 and a cruise Mach number of 0.75 causing 5% higher average Direct Operating Costs (DOC) the reduction is even more than 85%. The main levers to achieve this are the advanced combustion chamber an efficient contrail avoidance strategy in this case a pure flight-level constraint and the use of CO2 neutral energy carrier in a descending priority order. Although vehicle efficiency gains only lead to rather low impact reduction they are very important to compensate the increased costs of synthetic fuels or green hydrogen.
Hydrogen–Natural Gas Blending in Distribution Systems—An Energy, Economic, and Environmental Assessment
Aug 2022
Publication
Taking into account the international policies in the field of environmental protection in the world in general and in the European Union in particular the reduction of greenhouse gas (GHG) emissions and primarily of carbon dioxide has become one of the most important objectives. This can be obtained through various renewable energy sources and non-polluting technologies such as the mixing of hydrogen and natural gas. Combining hydrogen with natural gas is an emerging trend in the energy industry and represents one of the most important changes in the efforts to achieve extensive decarbonisation. The importance of this article consists of carrying out a techno-economic study based on the simulation of annual consumptions regarding the construction and use of production capacities for hydrogen to be used in mixtures with natural gas in various percentages in the distribution network of an important operator in Romania. In order to obtain relevant results natural gas was treated as a mixture of real gases with a known composition as defined in the chromatographic bulletin. The survey presents a case study for the injection of 5% 10% and 20% hydrogen in the natural gas distribution system of Bucharest the largest city in Romania. In addition to conducting this techno-economic study the implications for final consumers of this technical solution in reducing greenhouse gas emissions—mainly those of carbon dioxide from combustion—are also presented.
Hydrogen Production Possibility using Mongolian Renewable Energy
Jan 2019
Publication
There is widespread popular support for using renewable energy particularly solar and wind energy which provide electricity without giving rise to any carbon dioxide emissions. Harnessing these for electricity depends on the cost and efficiency of the technology which is constantly improving thus reducing costs per peak kilowatt and per kWh. Utilizing solar and wind-generated electricity in a stand-alone system requires corresponding battery or other storage capacity. The possibility of large-scale use of hydrogen in the future as a transport fuel increases the potential for both renewables and base-load electricity supply.
Dynamic Electric Simulation Model of a Proton Exchange Membrane Electrolyzer System for Hydrogen Production
Sep 2022
Publication
An energy storage system based on a Proton Exchange Membrane (PEM) electrolyzer system which could be managed by a nanoGrid for Home Applications (nGfHA) is able to convert the surplus of electric energy produced by renewable sources into hydrogen which can be stored in pressurized tanks. The PEM electrolyzer system must be able to operate at variable feeding power for converting all the surplus of renewable electric energy into hydrogen in reasonable time. In this article the dynamic electric simulation model of a PEM electrolyzer system with its pressurized hydrogen tanks is developed in a proper calculation environment. Through the calculation code the stack voltage and current peaks to a supply power variation from the minimum value (about 56 W) to the maximum value (about 440 W) are controlled and zeroed to preserve the stack the best range of the operating stack current is evaluated and hydrogen production is monitored.
The Impact of Fuel Cell Electric Freight Vehicles on Fuel Consumption and CO2 Emissions: The Case of Italy
Oct 2022
Publication
The Italian Recovery and Resilience Plan promotes among its many actions the use of hydrogen by the deployment of refuelling stations for heavy-duty vehicles predicting a 5–7% penetration rate of fuel cell electric vehicles (FCEVs) for long-distance freight transport. In this work the impact of this action on the reduction of greenhouse gas emissions and consumption was estimated assuming the plan’s objectives are met. To achieve this aim a national simulation model of the road freight transport system was implemented consisting of a graph of the national road network and an inter-provincial origin-destination matrix; the graph was based on data available from OpenStreetMap while the interprovincial matrix was estimated from the interregional matrix with the use of two linear regression models one for emitted goods and one for attracted goods. The simulation of the system made it possible to estimate the impact of this action on CO2 emissions and fuel consumption under three different scenarios. From 2025 to 2040 a reduction in CO2 emissions ranging from around 9 to around 16.5 million tonnes was estimated and a reduction in consumption ranging from around 3 billion to around 5.6 billion litres of diesel. These results show how this action can be seen as one of the bricks contributing to the fight against global warming.
Heat in Buildings Strategy: Achieving Net Zero Emissions in Scotland's Buildings
Oct 2021
Publication
Sets out our vision for the future of heat in buildings and the actions we are taking in the buildings sector to deliver our climate change commitments maximise economic opportunities and ensure a just transition including helping address fuel poverty.
A New Model for Constant Fuel Utilization and Constant Fuel Flow in Fuel Cells
Mar 2019
Publication
This paper presents a new model of fuel cells for two different modes of operation: constant fuel utilization control (constant stoichiometry condition) and constant fuel flow control (constant flow rate condition). The model solves the long-standing problem of mixing reversible and irreversible potentials (equilibrium and non-equilibrium states) in the Nernst voltage expression. Specifically a Nernstian gain term is introduced for the constant fuel utilization condition and it is shown that the Nernstian gain is an irreversibility in the computation of the output voltage of the fuel cell. A Nernstian loss term accounts for an irreversibility for the constant fuel flow operation. Simulation results are presented. The model has been validated against experimental data from the literature.
Techno-Economic Evaluation of Hydrogen Production via Gasification of Vacuum Residue Integrated with Dry Methane Reforming
Dec 2021
Publication
The continuous rise of global carbon emissions demands the utilization of fossil fuels in a sustainable way. Owing to various forms of emissions our environment conditions might be affected necessitating more focus of scientists and researchers to upgrade oil processing to more efficient manner. Gasification is a potential technology that can convert fossil fuels to produce clean and environmentally friendly hydrogen fuel in an economical manner. Therefore this study analyzed and examined it critically. In this study two different routes for the production of high-purity hydrogen from vacuum residue while minimizing the carbon emissions were proposed. The first route (Case I) studied the gasification of heavy vacuum residue (VR) in series with dry methane reforming (DMR). The second route studied the gasification of VR in parallel integration with DMR (Case II). After investigating both processes a brief comparison was made between the two routes of hydrogen production in terms of their CO2 emissions energy efficiency energy consumption and environmental and economic impacts. In this study the two vacuum-residue-to-hydrogen (VRTH) processes were simulated using Aspen Plus for a hydrogen production capacity of 50 t/h with 99.9 wt.% purity. The results showed that Case II offered a process energy efficiency of 57.8% which was slightly higher than that of Case I. The unit cost of the hydrogen product for Case II was USD 15.95 per metric ton of hydrogen which was almost 9% lower than that of Case I. In terms of the environmental analysis both cases had comparably low carbon emissions of around 8.3 kg of CO2/kg of hydrogen produced; with such high purity the hydrogen could be used for production of other products further downstream or for industrial applications.
Development of a Flashback Correlation for Burner-stabilized Hydrogen-air Premixed Flames
Feb 2022
Publication
With a growing need for replacing fossil fuels with cleaner alternatives hydrogen has emerged as a viable candidate for providing heat and power. However stable and safe combustion of hydrogen is not simple and as such a number of key issues have been identified that need to be understood for a safe design of combustion chambers. One such issue is the higher propensity of hydrogen flames to flashback compared to that for methane flames. The flashback problem is coupled with higher burner temperatures that could cause strong thermal stresses in burners and could hinder their performance. In order to systematically investigate flashback in premixed hydrogen-air flames for finding a global flashback criteria in this study we use numerical simulations as a basic tool to study flashback limits of slit burners. Flashback limits are found for varying geometrical parameters and equivalence ratios and the sensitivity of each parameter on the flashback limit and burner temperatures are identified and analyzed. It is shown that the conventional flashback correlation with critical velocity gradient does not collapse the flashback data as it does not take into account stretch induced preferential diffusion effects. A new Karlovitz number definition is introduced with physical insights that collapses the flashback data at all tested conditions in an excellent manner.
Hydrogen Research: Technology First, Society Second?
Jul 2021
Publication
Hydrogen futures are in the making right in front of our eyes and will determine socio-ecological path dependencies for decades to come. However expertise on the societal effects of the hydrogen transition is in its infancy. Future energy research needs to include the social sciences humanities and interdisciplinary studies: energy cultures have to be examined as well as power relations and anticipation processes since the need for (green) hydrogen is likely to require a massive expansion of renewable energy plants.
Towards Net-zero Compatible Hydrogen from Steam Reformation - Techno-economic Analysis of Process Design Options
Dec 2022
Publication
Increased consumption of low-carbon hydrogen is prominent in the decarbonisation strategies of many jurisdictions. Yet prior studies assessing the current most prevalent production method steam reformation of natural gas (SRNG) have not sufficiently evaluated how process design decisions affect life cycle greenhouse gas (GHG) emissions. This techno-economic case study assesses cradle-to-gate emissions of hydrogen produced from SRNG with CO2 capture and storage (CCS) in British Columbia Canada. Four process configurations with amine-based CCS using existing technology and novel process designs are evaluated. We find that cradle-to-gate GHG emission intensity ranges from 0.7 to 2.7 kgCO2e/kgH2 – significantly lower than previous studies of SRNG with CCS and similar to the range of published estimates for hydrogen produced from renewable-powered electrolysis. The levelized cost of hydrogen (LCOH) in this study (US$1.1–1.3/kgH2) is significantly lower than published estimates for renewable-powered electrolysis.
Low Carbon Scenario Analysis of a Hydrogen-Based Energy Transition for On-Road Transportation in California
Nov 2021
Publication
Fuel cell electric vehicles (FCEV) are emerging as one of the prominent zero emission vehicle technologies. This study follows a deterministic modeling approach to project two scenarios of FCEV adoption and the resulting hydrogen demand (low and high) up to 2050 in California using a transportation transition model. The study then estimates the number of hydrogen production and refueling facilities required to meet demand. The impact of system scale-up and learning rates on hydrogen price is evaluated using standalone supply chain models: H2A HDSAM HRSAM and HDRSAM. A sensitivity analysis explores key factors that affect hydrogen prices. In the high scenario light and heavy-duty fuel cell vehicle stocks reach 12.5 million and 1 million by 2050 respectively. The resulting annual hydrogen demand is 3.9 billion kg making hydrogen the dominant transportation fuel. Satisfying such high future demands will require rapid increases in infrastructure investments starting now but especially after 2030 when there is an exponential increase in the number of production plants and refueling stations. In the long term electrolytic hydrogen delivered using dedicated hydrogen pipelines to larger stations offers substantial cost savings. Feedstock prices size of the hydrogen market and station utilization are the prominent parameters that affect hydrogen price.
Going Offshore or Not: Where to Generate Hydrogen in Future Integrated Energy Systems?
Jan 2023
Publication
Hydrogen can be key in the energy system transition. We investigate the role of offshore hydrogen generation in a future integrated energy system. By performing energy system optimisation in a model application of the Northern-central European energy system and the North Sea offshore grid towards 2050 we find that offshore hydrogen generation may likely only play a limited role and that offshore wind energy has higher value when sent to shore in the form of electricity. Forcing all hydrogen generation offshore would lead to increased energy system costs. Under the assumed scenario conditions which result in deep decarbonisation of the energy system towards 2050 hydrogen generation – both onshore and offshore – follows solar PV generation patterns. Combined with hydrogen storage this is the most cost-effective solution to satisfy future hydrogen demand. Overall we find that the role of future offshore hydrogen generation should not simply be derived from minimising costs for the offshore sub-system but by also considering the economic value that such generation would create for the whole integrated energy system. We find as a no-regret option to enable and promote the integration of offshore wind in onshore energy markets via electrical connections.
Development and Comparison of the Test Methods Proposed in the Chinese Test Specifications for Fuel Cell Electric Vehicles
Feb 2022
Publication
Fuel cell electric vehicles are generally considered to have broad development prospects due to their high efficiency and zero emissions. The governments of the United States Japan the European Union and China are taking action to promote the development of the industry. In 2020 China launched a fuel cell electric vehicle demonstration project and there will be 30∼50 thousand FCEVs included in this project by the end of 2025. How to standardize the consistency of data and develop a unified and accurate evaluation method is an important topic. The difficulty is how to keep balance among scientificity neutrality and feasibility in the evaluation method. In order to evaluate the performance of vehicles in demonstration operation projects China has issued the "Fuel Cell Electric Vehicle Test Specifications" which is an important guide for the future development of fuel cell electric vehicles in China. This paper compares the test methods for critical parameters in this specifications with those used in the United States and Japan. It explains China’s technical considerations in detail including fuel cell system rated power the volume power density of the fuel cell stack fuel cell system specific power fuel cell system sub-zero cold start and fuel cell electric vehicle range contributed by hydrogen. For the volume power density of the fuel cell stack as an example both the US Department of Energy and Japan’s New Energy and Industrial Technology Development Organization have proposed technical goals. However the lack of specific and detailed test methods has confused the industry. We propose a new test method using bipolar plate measurement based on scientificity feasibility and neutrality This is the first time to define the measuring method of the volume and specific power density of the fuel cell stack. For sub-zero cold start we put forward a feasible scheme for sub-zero cold start at the system level. For range contributed by hydrogen we propose a new test method that can distinguish the contributing of electric and hydrogen energy. Furthermore a hydrogen-to-electric conversion formula is proposed to calculate the equivalent hydrogen consumption which makes it possible to compare the energy consumption between plug-in and non-plug-in vehicles. At the same time this approach is significant in helping fuel cell-related enterprises to understand the formulation of China’s “Fuel Cell Electric Vehicle Test Specifications”. It should also be helpful for guiding product design and predicting fuel cell electric vehicle policy direction in China.
Techno-Economic Analysis of Solar Thermal Hydrogen Production in the United Arab Emirates
Oct 2022
Publication
Solar thermal technology can provide the United Arab Emirates and the Middle East region with abundant clean electricity to mitigate the rising levels of carbon dioxide and satisfy future demand. Hydrogen can play a key role in the large-scale application of solar thermal technologies such as concentrated solar plants in the region by storing the surplus electricity and exporting it to needed countries for profit placing the Middle East and the United Arab Emirates as major future green hydrogen suppliers. However a hydrogen supply chain comparison between hydrogen from CSP and other renewable under the UAE’s technical and economic conditions for hydrogen export is yet to be fully considered. Therefore in this study we provide a techno-economic analysis for well-to-ship solar hydrogen supply chain that compares CSP and PV technologies with a solid oxide water electrolyzer for hydrogen production assuming four different hydrogen delivery pathways based on the location of electrolyzer and source of electricity assuming the SOEC can be coupled to the CSP plant when placed at the same site or provided with electric heaters when placed at PV plant site or port sites. The results show that the PV plant achieves a lower levelized cost of electricity than that of the CSP plant with 5.08 ¢/kWh and 8.6 ¢/kWh respectively. Hydrogen production results show that the scenario where SOEC is coupled to the CSP plant is the most competitive scenario as it achieves the payback period in the shortest period compared to the other scenarios and also provides higher revenues and a cheaper LCOH of 7.85 $/kgH2.
A Quantitative Study of Policy-driven Changes and Forecasts in the Development of the Hydrogen Transportation Industry
Feb 2022
Publication
Through data mining and analysis of the word frequency and occurrence position of industrial policy keywords the main policy parameters affecting industrial development are determined and the functional relationship between industrial policy and industrial development is obtained through multi-parameter non-linear regression: Yit−1 (y1 y2 y3 y4 y5) = β1it X1 + β2it ln X2 + β3it ln X3 + β4it X1it ∗ ln X3 + εit . The time series function of the industrial development index: Y (t) = 0.174 ∗ e (0.256∗t) is established and the industrial development under the influence of next year’s policy is predicted. It is concluded from the mathematical expression of the statistical model that there is a certain coupling effect between different policies and that industrial development is influenced by the joint effect on the parent and sub-industries. This ultimately proves that there is a clear correlation between policy and industry development.
Strategies for Hydrogen-Enriched Methane Flameless Combustion in a Quasi-Industrial Furnace
Jan 2020
Publication
In this present work simulations of 20 kW furnace were carried out with hydrogenenriched methane mixtures to identify optimal geometrical configurations and operating conditions to operate in flameless combustion regime. The objective of this work is to show the advantages of flameless combustion for hydrogen-enriched fuels and the limits of current typical industrial designs for these mixtures. The performances of a semi-industrial combustion chamber equipped with a self-recuperative flameless burner are evaluated with increasing H2 concentrations. For highly H2-enriched mixtures typical burners employed for methane appear to be inadequate to reach flameless conditions. In particular for a typical coaxial injector configuration an equimolar mixture of hydrogen and methane represents the limit for hydrogen enrichment. To achieve flameless conditions different injector geometries and configuration were tested. Fuel dilution with CO2 and H2O was also investigated. Dilution slows the mixing process consequently helping the transition to flameless conditions. CO2 and H2O are typical products of hydrogen generation processes therefore their use in fuel dilution is convenient for industrial applications. Dilution thus allows the use of greater hydrogen percentages in the mixture.
Energy and Environmental Assessment of Hydrogen from Biomass Sources: Challenges and Perspectives
Aug 2022
Publication
Hydrogen is considered as one of the pillars of the European decarbonisation strategy boosting a novel concept of the energy system in line with the EU’s commitment to achieve clean energy transition and reach the European Green Deal carbon neutrality goals by 2050. Hydrogen from biomass sources can significantly contribute to integrate the renewable hydrogen supply through electrolysis at large-scale production. Specifically it can cover the non-continuous production of green hydrogen coming from solar and wind energy to offer an alternative solution to such industrial sectors necessitating of stable supply. Biomass-derived hydrogen can be produced either from thermochemical pathways (i.e. pyrolysis liquefaction and gasification) or from biological routes (i.e. direct or indirect-biophotolysis biological water–gas shift reaction photo- and dark-fermentation). The paper reviews several production pathways to produce hydrogen from biomass or biomass-derived sources (biogas liquid bio-intermediates sugars) and provides an exhaustive review of the most promising technologies towards commercialisation. While some pathways are still at low technology readiness level others such as the steam bio-methane reforming and biomass gasification are ready for an immediate market uptake. The various production pathways are evaluated in terms of energy and environmental performances highlighting the limits and barriers of the available LCA studies. The paper shows that hydrogen production technologies from biomass appears today to be an interesting option almost ready to constitute a complementing option to electrolysis.
Dynamic Modeling of a PEM Fuel Cell Power Plant for Flexibility Optimization and Grid Support
Jun 2022
Publication
The transition toward high shares of non-programmable renewable energy sources in the power grid requires an increase in the grid flexibility to guarantee grid reliability and stability. This work developed within the EU project Grasshopper identifies hydrogen Fuel Cell (FC) power plants based on low temperature PEM cells as a source of flexibility for the power grid. A dynamic numerical model of the flexible FC system is developed and tested against experimental data from a 100-kW pilot plant built within the Grasshopper project. The model is then applied to assess the flexible performance of a 1 MW system in order to optimize the scale-up of the pilot plant to the MW-size. Simulations of load-following operation show the flexibility of the plant which can ramp up and down with a ramp rate depending only on an externally imposed limit. Warm-up simulations allow proposing solutions to limit the warm-up time. Of main importance are the minimization of the water inventory in the system and the construction of a compact system which minimizes the distance between the components.
Quantitive Risk Assessment of the Model Representing Latest Japanese Hydrogen Refuelling Stations
Sep 2021
Publication
Current safety codes and technical standards related to Japanese hydrogen refueling stations (HRSs) have been established based on qualitative risk assessment and quantitative effectiveness validation of safety measures for more than ten years. In the last decade there has been significant development in the technologies and significant increment in operational experience related to HRSs. We performed a quantitative risk assessment (QRA) of the HRS model representing Japanese HRSs with the latest information in the previous study. The QRA results were obtained by summing risk contours derived from each process unit. They showed that the risk contours of 10-3 and 10-4 per year were confined within the HRS boundaries whereas those of 10-5 and 10-6 per year are still present outside the HRS boundaries. Therefore we analyzed the summation of risk contours derived from each unit and identified the largest risk scenarios outside the station. The HRS model in the previous study did not consider fire and blast protection walls which could reduce the risks outside the station. Therefore we conducted a detailed risk analysis of the identified scenarios using 3D structure modeling. The heat radiation and temperature rise of jet fire scenarios that pose the greatest risk to the physical surroundings in the HRS model were estimated in detail based on computational fluid dynamics with 3D structures including fire protection walls. Results show that the risks spreading outside the north- west- and east-side station boundaries are expected to be acceptable by incorporating the fire protection wall into the Japanese HRS model.
No more items...