- Home
- A-Z Publications
- Publications
Publications
Performance and Stability of a Critical Raw Materials-free Anion Exchange Membrane Electrolysis Cell
Feb 2023
Publication
A water electrolysis cell based on anion exchange membrane (AEM) and critical raw materials-free (CRM-free) electrocatalysts was developed. A NiFe-oxide electrocatalyst was used at the anode whereas a series of metallic electrocatalysts were investigated for the cathode such as Ni NiCu NiMo NiMo/KB. These were compared to a benchmark Pt/C cathode. CRMs-free anode and cathode catalysts were synthetized with a crystallite size of about 10 nm. The effect of recirculation through the cell of a diluted KOH solution was investigated. A concentration of 0.5–1 M KOH appeared necessary to achieve suitable performance at high current density. amongst the CRM-free cathodes the NiMo/KB catalyst showed the best performance in the AEM electrolysis cell achieving a current density of 1 A cm− 2 at about 1.7–1.8 V/cell when it was used in combination with a NiFe-oxide anode and a 50 µm thick Fumatech FAA-3–50® hydrocarbon membrane. Durability tests showed an initial decrease of cell voltage with time during 2000 h operation at 1 A cm− 2 until reaching a steady state performance with an energy efficiency close to 80%. An increase of reversible losses during start-up and shutdown cycles was observed. Appropriate stability was observed during cycled operation between 0.2 and 1 A cm− 2 ; however the voltage efficiency was slightly lower than in steady-state operation due to the occurrence of reversible losses during the cycles. Post operation analysis of electrocatalysts allowed getting a better comprehension of the phenomena occurring during the 2000 h durability test.
Ammonia as Hydrogen Carrier for Transportation; Investigation of the Ammonia Exhaust Gas Fuel Reforming
Jun 2013
Publication
In this paper we show for the first time the feasibility of ammonia exhaust gas reforming as a strategy for hydrogen production used in transportation. The application of the reforming process and the impact of the product on diesel combustion and emissions were evaluated. The research was started with an initial study of ammonia autothermal reforming (NH3 e ATR) that combined selective oxidation of ammonia (into nitrogen and water) and ammonia thermal decomposition over a ruthenium catalyst using air as the oxygen source. The air was later replaced by real diesel engine exhaust gas to provide the oxygen needed for the exothermic reactions to raise the temperature and promote the NH3 decomposition. The main parameters varied in the reforming experiments are O2/NH3 ratios NH3 concentration in feed gas and gas e hourly e space e velocity (GHSV). The O2/NH3 ratio and NH3 concentration were the key factors that dominated both the hydrogen production and the reforming process efficiencies: by applying an O2/NH3 ratio ranged from 0.04 to 0.175 2.5e3.2 l/min of gaseous H2 production was achieved using a fixed NH3 feed flow of 3 l/min. The reforming reactor products at different concentrations (H2 and unconverted NH3) were then added into a diesel engine intake. The addition of considerably small amount of carbon e free reformate i.e. represented by 5% of primary diesel replacement reduced quite effectively the engine carbon emissions including CO2 CO and total hydrocarbons.
Cross-regional Electricity and Hydrogen Deployment Research Based on Coordinated Optimization: Towards Carbon Neutrality in China
Sep 2022
Publication
In order to achieve carbon neutrality in a few decades the clean energy proportion in power mix of China will significantly rise to over 90%. A consensus has been reached recently that it will be of great significance to promote hydrogen energy that is produced by variable renewable energy power generation as a mainstay energy form in view of its potential value on achieving carbon neutrality. This is because hydrogen energy is capable of complementing the power system and realizing further electrification especially in the section that cannot be easily replaced by electric energy. Power system related planning model is commonly used for mid-term and long-term planning implemented through power installation and interconnection capacity expansion optimization. In consideration of the high importance of hydrogen and its close relationship with electricity an inclusive perspective which contains both kinds of the foresaid energy is required to deal with planning problems. In this study a joint model is established by coupling hydrogen energy model in the chronological operation power planning model to realize coordinated optimization on energy production transportation and storage. By taking the carbon neutrality scenario of China as an example the author applies this joint model to deploy a scheme research on power generation and hydrogen production inter-regional energy transportation capacity and hydrogen storage among various regions. Next by taking the technology progress and cost decrease prediction uncertainty into account the main technical– economic parameters are employed as variables to carry out sensitivity analysis research with a hope that the quantitative calculation and results discussion could provide suggestion and reference to energy-related companies policy-makers and institute researchers in formulating strategies on related energy development.
In the Green? Perceptions of Hydrogen Production Methods Among the Norwegian Public
Feb 2023
Publication
This article presents findings from a representative survey fielded through the Norwegian Citizen Panel examining public perceptions of hydrogen fuel and its different production methods. Although several countries including Norway have strategies to increase the production of hydrogen fuel our results indicate that hydrogen as an energy carrier and its different production methods are still unknown to a large part of the public. A common misunderstanding seems to be confusing ‘hydrogen fuel’ in general with environmentally friendly ‘green hydrogen’. Results from a survey experiment (N = 1906) show that production method is important for public acceptance. On a five-point acceptance scale respondents score on average 3.9 for ‘green’ hydrogen which is produced from renewable energy sources. The level of acceptance is significantly lower for ‘blue’ (3.2) and ‘grey’ (2.3) hydrogen when respondents are informed that these are produced from coal oil or natural gas. Public support for hydrogen fuel in general as well as the different production methods is also related to their level of worry about climate change gender and political affiliation. Widespread misunderstandings regarding ‘green’ hydrogen production could potentially fuel public resistance as new ‘blue’ or ‘grey’ projects develop. Our results indicate a need for clearer communication from the government and developers regarding production methods to avoid distrust and potential public backfire.
Self-Sustaining Control Strategy for Proton-Exchange Membrane Electrolysis Devices Based on Gradient-Disturbance Observation Method
Mar 2023
Publication
This paper proposes a self-sustaining control model for proton-exchange membrane (PEM) electrolysis devices aiming to maintain the temperature of their internal operating environment and thus improve the electrolysis efficiency and hydrogen production rate. Based on the analysis of energy–substance balance and electrochemical reaction characteristics an electrothermal-coupling dynamic model for PEM electrolysis devices was constructed. Considering the influence of the input energy–substance and the output hydrogen and oxygen of PEM electrolysis devices on the whole dynamic equilibrium process the required electrical energy and water molar flow rate are dynamically adjusted so that the temperature of the cathode and the anode is maintained near 338.15 K. The analytical results show that the hydrogen production rate and electrolysis efficiency are increased by 0.275 mol/min and 3.9% respectively by linearly stacking 100 PEM electrolysis devices to form a hydrogen production system with constant cathode and anode operating temperatures around 338.15 K in the self-sustaining controlled mode
Opportunities for Low-carbon Generation and Storage Technologies to Decarbonise the Future Power System
Feb 2023
Publication
Alternatives to cope with the challenges of high shares of renewable electricity in power systems have been addressed from different approaches such as energy storage and low-carbon technologies. However no model has previously considered integrating these technologies under stability requirements and different climate conditions. In this study we include this approach to analyse the role of new technologies to decarbonise the power system. The Spanish power system is modelled to provide insights for future applications in other regions. After including storage and low-carbon technologies (currently available and under development) batteries and hydrogen fuel cells have low penetration and the derived emission reduction is negligible in all scenarios. Compressed air storage would have a limited role in the short term but its performance improves in the long term. Flexible generation technologies based on hydrogen turbines and long-duration storage would allow the greatest decarbonisation providing stability and covering up to 11–14 % of demand in the short and long term. The hydrogen storage requirement is equivalent to 18 days of average demand (well below the theoretical storage potential in the region). When these solutions are considered decarbonising the electricity system (achieving Paris targets) is possible without a significant increase in system costs (< € 114/MWh).
Exploring Supply Chain Design and Expansion Planning of China's Green Ammonia Production with an Optimization-based Simulation Approach
Aug 2021
Publication
Green ammonia production as an important application for propelling the upcoming hydrogen economy has not been paid much attention by China the world's largest ammonia producer. As a result related studies are limited. This paper explores potential supply chain design and planning strategies of green ammonia production in the next decade of China with a case study in Inner Mongolia. A hybrid optimization-based simulation approach is applied considering traditional optimization approaches are insufficient to address uncertainties and dynamics in a long-term energy transition. Results show that the production cost of green ammonia will be at least twice that of the current level due to higher costs of hydrogen supply. Production accounts for the largest share of the total expense of green hydrogen (~80 %). The decline of electricity and electrolyser prices are key in driving down the overall costs. In addition by-product oxygen is also considered in the model to assess its economic benefits. We found that by-product oxygen sales could partly reduce the total expense of green hydrogen (~12 % at a price of USD 85/t) but it also should be noted that the volatile price of oxygen may pose uncertainties and risks to the effectiveness of the offset. Since the case study may represent the favourable conditions in China due to the abundant renewable energy resources and large-scale ammonia industry in this region we propose to take a moderate step towards green ammonia production and policies should be focused on reducing the electricity price and capital investments in green hydrogen production. We assume the findings and implications are informative to planning future green ammonia production in China.
Society, Materials, and the Environment: The Case of Steel
Mar 2020
Publication
This paper reviews the relationship between the production of steel and the environment as it stands today. It deals with raw material issues (availability scarcity) energy resources and generation of by-products i.e. the circular economy the anthropogenic iron mine and the energy transition. The paper also deals with emissions to air (dust Particulate Matter heavy metals Persistant Organics Pollutants) water and soil i.e. with toxicity ecotoxicity epidemiology and health issues but also greenhouse gas emissions i.e. climate change. The loss of biodiversity is also mentioned. All these topics are analyzed with historical hindsight and the present understanding of their physics and chemistry is discussed stressing areas where knowledge is still lacking. In the face of all these issues technological solutions were sought to alleviate their effects: many areas are presently satisfactorily handled (the circular economy—a historical’ practice in the case of steel energy conservation air/water/soil emissions) and in line with present environmental regulations; on the other hand there are important hanging issues such as the generation of mine tailings (and tailings dam failures) the emissions of greenhouse gases (the steel industry plans to become carbon-neutral by 2050 at least in the EU) and the emission of fine PM which WHO correlates with premature deaths. Moreover present regulatory levels of emissions will necessarily become much stricter.
EU Harmonised Terminology for Hydrogen Generated by Electrolysis
Jul 2021
Publication
The objective of this pre-normative research (PNR) document entitled EU harmonised terminology for hydrogen generated by electrolysis is to present an open and comprehensive compendium of harmonised terminology for electrolysis applications. This report is prepared under the FWC between JRC and FCH2JU as the result of a collaborative effort between European partners from industry research and development (R&D) organisations and academia participating to FCH2JU funded R&D projects6 in electrolysis applications.7 The commonly accepted definitions of terms may be used in RD&D project documents test and measurement methods test procedures and test protocols scientific publications and technical documentation. This compendium is primarily intended for use by those involved in conducting RD&D as well as in drafting and evaluating R&I programme. The terms and definitions presented cover many aspects of electrolysis including materials research modelling design & engineering analysis characterisation measurements laboratory testing prototype development field tests and demonstration as well as quality assurance (QA). Also it contains information useful for others e. g. auditors manufacturer designers system integrators testing centres service providers and educators. In future it may be expanded to account for possible power-to-hydrogen (P2H2) developments in energy storage (ES) particularly electrical energy storage (EES) hydrogen-to-power (H2P) hydrogen-to-industry (H2I) and hydrogen-to-substance (H2X) applications.
The More the Merrier? Actors and Ideas in the Evolution of Germany Hydrogen Policy Discourse
Feb 2023
Publication
Hydrogen has set high hopes for decarbonization due to its flexibility and ability to decarbonize sectors of the economy where direct electrification appears unviable. Broad hydrogen policies have therefore started to emerge. Nevertheless it is still a rather niche technology not integrated or adopted at scale and not regulated through particular policy provisions. The involved stakeholders are thus still rushing to set the agenda over the issue. All this plays out publicly and shapes the public discourse. This paper explores how the composition of stakeholders their positions and the overall discourse structure have developed and accompanied the political agenda-setting in the early public debate on hydrogen in Germany. We use discourse network analysis of media where stakeholders' claims-making is documented and their positions can be tracked over time. The public discourse on hydrogen in Germany shows the expected evolution of statements in connection with the two milestones chosen for the analyses the initiation of the Gas 2030 Dialogue and the publication of the National Hydrogen Strategy. Interestingly the discourse was comparatively feeble in the immediate aftermath of the respective milestones but intensified in a consolidation phase around half a year later. Sequencing the discourse and contextualizing its content relative to political societal and economic conditions in a diachronic way is essential because it helps to avoid misinterpreting the development of stakeholders' standpoints as conflict-driven rather than mere repositioning. Thus we observed no discourse “polarization” even though potentially polarizing issues were already present in the debate.
Gas Goes Green: Hydrogen Blending Capacity Maps
Jan 2022
Publication
Britain's gas networks are ready for hydrogen blending. Learn more about Britain's hydrogen blending capacity in the National Transmission System and Distribution Networks.
Effects of Hydrogen Mixture Ratio and Scavenging Air Temperature on Combustion and Emission Characteristics of a 2-stroke Marine Engine
Nov 2022
Publication
A numerical study was conducted to investigate the effects of hydrogen and scavenging air temperature (SAT) on the combustion and emission characteristics of a 2-stroke heavy-duty dual-fuel (DF) marine engine at full load. The engine had a 700 mm bore fuelled with hydrogen–methane (H2-CH4) mixtures. Three-dimensional simulations of the combustion and emission formation inside the engine cylinder with various H2 contents in the H2-CH4 mixture were performed. ANSYS FLUENT simulation software was used to analyse the engine performance in-cylinder pressure temperature and emission characteristics. The CFD models were validated against the measured data recorded from the engine experiments. The results showed that an increase in the in-cylinder peak pressure increased the engine power when the H2 content in the H2-CH4 mixture increased. Notably CO2 and soot emissions decreased (up to more than 65%) when the H2 content in the gaseous mixture increased to 50%. Specific NO emissions in the DF modes were lower than that of the diesel mode when the H2 content in the gaseous mixture was lower than 40%. However they increased compared to the diesel mode when the H2 content continued to increase. This limits the H2 amount that should be used in a gaseous mixture creating NO emissions. The results also showed that the SAT cooling method can further reduce emission problems while enhancing engine power. In particular reducing the SAT to 28 ◦C in the gaseous mixture with 10% H2 ensured that the DF mode emitted the lowest NO emissions compared to the diesel mode. This reduced NO emissions by 37.92% compared to the measured NO emissions of the research engine (a Tier II marine engine). This study successfully analysed the benefits of using an H2-CH4 mixture as the primary fuel and the SAT cooling method in a 2-stroke ME-GI heavy-duty marine engine.
Model Predictive Control of an Off-sire Green Hydrogen Production and Refuelling Station
Jan 2023
Publication
The expected increase of hydrogen fuel cell vehicles has motivated the emergence of a significant number of studies on Hydrogen Refuelling Stations (HRS). Some of the main HRS topics are sizing location design optimization and optimal operation. On-site green HRS where hydrogen is produced locally from green renewable energy sources have received special attention due to their contribution to decarbonization. This kind of HRS are complex systems whose hydraulic and electric linked topologies include renewable energy sources electrolyzers buffer hydrogen tanks compressors and batteries among other components. This paper develops a linear model of a real on-site green HRS that is set to be built in Zaragoza Spain. This plant can produce hydrogen either from solar energy or from the utility grid and is designed for three different types of services: light-duty and heavy-duty fuel cell vehicles and gas containers. In the literature there is a lack of online control solutions developed for HRS even more in the form of optimal online control. Hence for the HRS operation a Model Predictive Controller (MPC) is designed to solve a weighted multi-objective online optimization problem taking into account the plant dynamics and constraints as well as the disturbances prediction. Performance is analysed throughout 210 individual month-long simulations and the effect of the multi-objective weighting prediction horizon and hydrogen selling price is discussed. With the simulation results this work shows the suitability of MPC for HRS control and its significant economic advantage compared to the rule-based control solution. In all simulations the MPC operation fulfils all required services. Moreover results show that a seven-day prediction horizon can improve profits by 57% relative to a one-day prediction horizon; that the battery is under-sized; or that the MPC operation strategy is more resolutive for low hydrogen selling prices.
Hydrogen Strategy Update to the Market: December 2022
Dec 2022
Publication
The Government is committed to developing the UK’s low carbon hydrogen economy: hydrogen is considered critical to delivering energy security and our decarbonisation targets and presents a significant growth opportunity. It can play a pivotal role in our transition to a future based on renewable and nuclear energy while ensuring that natural gas used during this transition is from reliable sources including our own North Sea production and can provide clean energy for use in industry power transport and potentially home heating. In the UK Hydrogen Strategy we included the commitment to regularly summarise our policy development to keep industry apprised. Since publication of the Hydrogen Strategy we have doubled our low carbon hydrogen production capacity ambition to up to 10GW by 2030 (with at least half from electrolytic hydrogen) in the British Energy Security Strategy provided greater clarity to investors through the Hydrogen Investment Package and made substantial policy and funding strides across the hydrogen value chain. We summarised these ambitions commitments and actions in the first Hydrogen Strategy update to the market in July 2022. This was published alongside other key elements of our policy support which also included the launch of the first Electrolytic Hydrogen Allocation Round – offering joint Net Zero Hydrogen Fund (NZHF) and Hydrogen Production Business Model (HPBM) support – and our Hydrogen Sector Development Action Plan and the appointment of a UK Hydrogen Champion. Hydrogen is closely integrated into Government’s wider policy development on energy security and the energy transition both domestically and internationally with hydrogen policy previously announced through the Net Zero Strategy and the Breakthrough Agenda at COP26. This December 2022 Hydrogen Strategy update to the market summarises the extensive activity across Government since July to develop new hydrogen policy at pace and to design and deliver funding support. This includes announcements on shortlisted hydrogen projects in the Cluster Sequencing Process the launch of a consultation on hydrogen transport and storage (T&S) infrastructure the publication of the HPBM Heads of Terms and an update on the ongoing first Electrolytic Hydrogen Allocation Round. The hydrogen policy development presented here underlines the Government’s approach to promote every aspect of the UK hydrogen economy in collaboration with industry investors and international partners to create a strong globally competitive UK hydrogen sector.
Color-Coded Hydrogen: Production and Storage in Maritime Sector
Dec 2022
Publication
To reduce pollution from ships in coastal and international navigation shipping companies are turning to various technological solutions mostly based on electrification and the use of alternative fuels with a lower carbon footprint. One of the alternatives to traditional diesel fuel is the use of hydrogen as a fuel or hydrogen fuel cells as a power source. Their application on ships is still in the experimental phase and is limited to smaller ships which serve as a kind of platform for evaluating the applicability of different technological solutions. However the use of hydrogen on a large scale as a primary energy source on coastal and ocean-going vessels also requires an infrastructure for the production and safe storage of hydrogen. This paper provides an overview of color-based hydrogen classification as one of the main methods for describing hydrogen types based on currently available production technologies as well as the principles and safety aspects of hydrogen storage. The advantages and disadvantages of the production technologies with respect to their application in the maritime sector are discussed. Problems and obstacles that must be overcome for the successful use of hydrogen as a fuel on ships are also identified. The issues presented can be used to determine long-term indicators of the global warming potential of using hydrogen as a fuel in the shipping industry and to select an appropriate cost-effective and environmentally sustainable production and storage method in light of the technological capabilities and resources of a particular area.
A Comparative Study of Energy Consumption and Recovery of Autonomous Fuel-Cell Hydrogen–Electric Vehicles Using Different Powertrains Based on Regenerative Braking and Electronic Stability Control System
Mar 2021
Publication
Today with the increasing transition to electric vehicles (EVs) the design of highly energy-efficient vehicle architectures has taken precedence for many car manufacturers. To this end the energy consumption and recovery rates of different powertrain vehicle architectures need to be investigated comprehensively. In this study six different powertrain architectures—four independent in-wheel motors with regenerative electronic stability control (RESC) and without an RESC one-stage gear (1G) transmission two-stage gear (2G) transmission continuously variable transmission (CVT) and downsized electric motor with CVT—were mathematically modeled and analyzed under real road conditions using nonlinear models of an autonomous hydrogen fuel-cell electric vehicle (HFCEV). The aims of this paper were twofold: first to compare the energy consumption performance of powertrain architectures by analyzing the effects of the regenerative electronic stability control (RESC) system and secondly to investigate the usability of a downsized electrical motor for an HFCEV. For this purpose all the numerical simulations were conducted for the well-known FTP75 and NEDC urban drive cycles. The obtained results demonstrate that the minimum energy consumption can be achieved by a 2G-based powertrain using the same motor; however when an RESC system is used the energy recovery/consumption rate can be increased. Moreover the results of the article show that it is possible to use a downsized electric motor due to the CVT and this powertrain significantly reduces the energy consumption of the HFCEV as compared to all the other systems. The results of this paper present highly significant implications for automotive manufacturers for designing and developing a cleaner electrical vehicle energy consumption and recovery system.
A Review on Ports' Readiness to Facilitate International Hydrogen Trade
Jan 2023
Publication
The existing literature on the hydrogen supply chains has knowledge gaps. Most studies focus on hydrogen production storage transport and utilisation but neglect ports which are nexuses in the supply chains. To fill the gap this paper focuses on ports' readiness for the upcoming hydrogen international trade. Potential hydrogen exporting and importing ports are screened. Ports' readiness for hydrogen export and import are reviewed from perspectives of infrastructure risk management public acceptance regulations and standards and education and training. The main findings are: (1) liquid hydrogen ammonia methanol and LOHCs are suitable forms for hydrogen international trade; (2) twenty ports are identified that could be first movers; among them twelve are exporting ports and eight are importing ports; (3) ports’ readiness for hydrogen international trade is still in its infancy and the infrastructure construction or renovation risk management measures establishment of regulations and standards education and training all require further efforts.
A Green Hydrogen Energy System: Optimal Control Strategies for Integrated Hydrogen Storage and Power Generation with Wind Energy
Jul 2022
Publication
The intermittent nature of renewable energy resources such as wind and solar causes the energy supply to be less predictable leading to possible mismatches in the power network. To this end hydrogen production and storage can provide a solution by increasing flexibility within the system. Stored hydrogen as compressed gas can either be converted back to electricity or it can be used as feed-stock for industry heating for built environment and as fuel for vehicles. This research is the first to examine optimal strategies for operating integrated energy systems consisting of renewable energy production and hydrogen storage with direct gas-based use-cases for hydrogen. Using Markov decision process theory we construct optimal policies for day-to-day decisions on how much energy to store as hydrogen or buy from or sell to the electricity market and on how much hydrogen to sell for use as gas. We pay special emphasis to practical settings such as contractually binding power purchase agreements varying electricity prices different distribution channels green hydrogen offtake agreements and hydrogen market price uncertainties. Extensive experiments and analysis are performed in the context of Northern Netherlands where Europe’s first Hydrogen Valley is being formed. Results show that gains in operational revenues of up to 51% are possible by introducing hydrogen storage units and competitive hydrogen market-prices. This amounts to a e126000 increase in revenues per turbine per year for a 4.5 MW wind turbine. Moreover our results indicate that hydrogen offtake agreements will be crucial in keeping the energy transition on track.
Prioritization and Optimal Location of Hydrogen Fueling Stations in Seoul: Using Multi-Standard Decision-Making and ILP Optimization
Mar 2023
Publication
Thus far the adoption of hydrogen fuel cell vehicles (HCEVs) has been hampered by the lack of hydrogen fueling infrastructure. This study aimed to determine the optimal location and prioritization of hydrogen fueling stations (HFSs) in Seoul by utilizing a multi-standard decision making approach and optimization method. HFS candidate sites were evaluated with respect to relevant laws and regulations. Key factors such as safety economy convenience and demand for HCEVs were considered. Data were obtained through a survey of experts in the fields of HCEV and fuel cells and the Analytic Hierarchy Process method was applied to prioritize candidate sites. The optimal quantity and placement of HFSs was then obtained using optimization software based on the acceptable travel time from intersections of popular roads in Seoul. Our findings suggest that compliance with legal safety regulations is the most important factor when constructing HFSs. Furthermore sensitivity analysis revealed that the hydrogen supply cost currently holds the same weight as other elements. The study highlights the importance of utilizing a multi-standard decision-making approach and optimization methods when determining the optimal location and prioritization of HFSs and can help develop a systematic plan for the nationwide construction of HFSs in South Korea.
Next for Net Zero Podcast: Transporting to a Greener World
Oct 2022
Publication
Decarbonisation will need a significant societal shift. The when why and how we travel is going to look very different within a decade. Joining us is Florentine Roy – a leading expert on electric vehicles and Innovation Project Lead at UK Power Networks and Matt Hindle - Head of Net Zero and Sustainability at Wales and West Utilities. Let’s talk about the energy system implications of this massive undertaking and how it can be enabled by innovation in a fair and just way.
The podcast can be found here.
The podcast can be found here.
No more items...