- Home
- A-Z Publications
- Publications
Publications
Historical Analysis of FCH 2 JU Stationary Fuel Cell Projects
May 2021
Publication
As a part of its knowledge management activities the Fuel Cell and Hydrogen Joint Undertaking 2 (FCH 2 JU) has commissioned the Joint Research Centre (JRC) to perform a series of historical analyses by topic area to assess the impact of funded projects and the progression of its current Multi-Annual Work Plan (MAWP; 2014- 2020) towards its objectives. These historical analyses consider all relevant funded projects since the programme’s inception in 2008. This report considers the performance of projects against the overall FCH 2 JU programme targets for stationary Fuel Cells (FCs) using quantitative values of Key Performance Indicators (KPI) for assessment. The purpose of this exercise is to see whether and how the programme has enhanced the state of the art for stationary fuel cells and to identify potential Research & Innovation (R&I) gaps for the future. Therefore the report includes a review of the current State of the Art (SoA) of fuel cell technologies used in the stationary applications sector. The programme has defined KPIs for three different power output ranges and equivalent applications: (i) micro-scale Combined Heat and Power (mCHP) for single family homes and small buildings (0.3 - 5 kW); (ii) mid-sized installations for commercial and larger buildings (5 - 400 kW); (iii) large scale FC installations converting hydrogen and renewable methane into power in various applications (0.4 - 30 MW). Projects addressing stationary applications in these particular power ranges were identified and values for the achieved KPIs extracted from relevant sources of information such as final reports and the TRUST database (Technology Reporting Using Structured Templates). As much of this data is confidential a broad analysis of performance of the programme against its KPIs has been performed without disclosing confidential information. The results of this analysis are summarised within this report. The information obtained from this study will be used to suggest future modifications to the research programme and associated targets.
Effect of Carbon Concentration and Carbon Bonding Type on the Melting Characteristics of Hydrogen-reduced Iron Ore Pellets
Oct 2022
Publication
Decarbonization of the steel industry is one of the pathways towards a fossil-fuel-free environment. The steel industry is one of the top contributors to greenhouse gas emissions. Most of these emissions are directly linked to the use of a fossil-fuelbased reductant. Replacing the fossil-based reductant with green H2 enables the transition towards a fossil-free steel industry. The carbon-free iron produced will cause the refining and steelmaking operations to have a starting point far from today’s operations. In addition to carbon being an alloying element in steel production carbon addition controls the melting characteristics of the reduced iron. In the present study the effect of carbon content and form (cementite/graphite) in hydrogen-reduced iron ore pellets on their melting characteristics was examined by means of a differential thermal analyser and optical dilatometer. Carburized samples with a carbon content < 2 wt % did not show any initial melting at the eutectic temperature. At and above 2 wt % the carburized samples showed an initial melting at the eutectic temperature irrespective of the carbon content. However the absorbed heat varies with varied carbon content. The carbon form does not affect the initial melting temperature but it affects the melting progression. Carburized samples melt homogenously while melting of iron-graphite mixtures occurs locally at the interface between iron and carbon particles and when the time is not long enough melting might not occur to any significant extent. Therefore at any given carbon content > 2 wt % the molten fraction is higher in the case of carburized samples which is indicated by the amount of absorbed melting heat.
Hydrogen, the First Element Podcast - Episode 4: Reskill to Repower - Preparing the Hydrogen Workforce
Dec 2022
Publication
During her State of the Union Address the President of the European Commission Ursula Von der Leyen defined 2023 as the "European Year of Skills" highlighting the urgency to overcome the shortage of skilled workforce in Europe a challenge that affects the hydrogen sector as well. The rapid development of the European Hydrogen Value Chain over the coming years is expected to generate approximately 1 million highly skilled jobs by 2030 and up to 5.4 million by 2050. In the fourth episode titled "Reskill to Repower: Preparing the Hydrogen workforce" our Chief Technology & Market Officer Stephen Jackson discusses with Massimo Valsania VP of Engineering at EthosEnergy and Co-chair of Hydrogen Europe Skills Working Group. Starting off with Massimo's professional background and his current role in our association the two speakers discussed the skills needed in the hydrogen economy and the policies that should be put in place to attract new generations.
Impact of Fuel Production Technologies on Energy Consumption and GHG Emissions from Diesel and Electric–Hydrogen Hybrid Buses in Rio de Janeiro, Brazil
Apr 2023
Publication
In view of the GHG reduction targets to be met Brazilian researchers are looking for cleaner alternatives to energy sources. These alternatives are primarily to be applied in the transport sector which presents high energy consumption as well as high CO2 emissions. In this sense this research developed an LCI study considering two bus alternatives for the city of Rio de Janeiro: diesel-powered internal combustion buses (ICEB) and a hydrogen-powered polymer fuel cell hybrid bus (FCHB). For the FCHB three hydrogen production methods were also included: water electrolysis (WE) ethanol steam reforming (ESR) and natural gas steam reforming (NGSR). The research was aimed at estimating energy consumption including the percentage of energy that is renewable as well as CO2 emissions. The results show diesel as the energy source with the highest emissions as well as the highest fossil energy consumption. Regarding the alternatives for hydrogen production water electrolysis stood out with the lowest emissions.
Experimental Analysis of the Effects of Ship Motion on Hydrogen Dispersion in an Enclosed Area
Apr 2023
Publication
This study aims to experimentally quantify the hydrogen diffusion characteristics by ship motion. Hydrogen leakage experiments were conducted under various ship motion conditions and the corresponding hydrogen concentrations for each sensor were expressed by an equation. The experimental facility was a scale model of the hydrogen fuel storage room of a ship. An experiment was conducted by implementing the roll and pitch motions of the ship as well as motion direction using a ship simulator. In the equation describing the hydrogen concentration the minimum and maximum root mean square deviations were 0.987 and 0.707 respectively and the correlations were 0.000109 and 0.0012289. Although the results differed as per the sensor location the hydrogen concentration was affected by the motion period of the ship. The experimental results and prediction equations can be useful for sensor and vent location selection by predicting the concentration when hydrogen leaks in ships in motion.
Thermodynamic Analysis of Hydrogen Utilization as Alternative Fuel in Cement Production
Jul 2022
Publication
Growing attention to the environmental aspect has urged the effort to reduce CO2 emission as one of the greenhouse gases. The cement industry is one of the biggest CO2 emitters in this world. Alternative fuel is one of the challenging issues in cement production due to the limited fossil fuel resources and environmental concerns. Meanwhile hydrogen (H2) has been reported as a promising non-carbon fuel with ammonia (NH3) as the main candidate for chemical storage methods. In this work an integrated system of cement production with an alternative H2-based fuel is proposed consisting of the dehydrogenation process of NH3 and the H2 combustion to provide the required thermal energy for clinker production. Different catalysts are employed and evaluated to analyze the specific energy input (SEI). The result shows that the conversion rate strongly determines the SEI with minimum SEI (3829.8 MJ t-clinker-1 ) achieved by Ni-Pt-based catalyst at a reaction temperature of 600 ºC. Compared to the conventional fuel of coal the H2-based integrated cement production system shows a significant decrease of 44% in CO2 emission due to carbon-free combustion using H2 as the fuel. The current study on the proposed integrated system of H2-based cement production also provides an initial thermodynamic analysis and basic observation for the adoption of non-carbon-based H2 including the storage system of NH3 in the cement production process.
Safety Issues of a Hydrogen Refueling Station and a Prediction for an Overpressure Reduction by a Barrier Using OpenFOAM Software for an SRI Explosion Test in an Open Space
Oct 2022
Publication
Safety issues arising from a hydrogen explosion accident in Korea are discussed herein. In order to increase the safety of hydrogen refueling stations (HRSs) the Korea Gas Safety Corporation (KGS) decided to install a damage-mitigation wall also referred to as a barrier around the storage tanks at the HRSs after evaluating the consequences of hypothetical hydrogen explosion accidents based on the characteristics of each HRS. To propose a new regulation related to the barrier installation at the HRSs which can ensure a proper separation distance between the HRS and its surrounding protected facilities in a complex city KGS planned to test various barrier models under hypothetical hydrogen explosion accidents to develop a standard model of the barrier. A numerical simulation to investigate the effect of the recommended barrier during hypothetical hydrogen explosion accidents in the HRS will be performed before installing the barrier at the HRSs. A computational fluid dynamic (CFD) code based on the open-source software OpenFOAM will be developed for the numerical simulation of various accident scenarios. As the first step in the development of the CFD code we conducted a hydrogen vapor cloud explosion test with a barrier in an open space which was conducted by the Stanford Research Institute (SRI) using the modified XiFoam solver in OpenFOAMv1912. A vapor cloud explosion (VCE) accident may occur due to the leakage of gaseous hydrogen or liquefied hydrogen owing to a failure of piping connected to the storage tank in an HRS. The analysis results using the modified XiFoam predicted the peak overpressure variation from the near field to the far field of the explosion site through the barrier with an error range of approximately ±30% if a proper analysis methodology including the proper mesh distribution in the grid model is chosen. In addition we applied the proposed analysis methodology using the modified XiFoam to barrier shapes that varied from that used in the test to investigate its applicability to predict peak overpressure variations with various barrier shapes. Through the application analysis we concluded that the proposed analysis methodology is sufficient for evaluating the safety effect of the barrier which will be recommended through experimental research during VCE accidents at the HRSs.
Selection Criteria and Ranking for Sustainable Hydrogen Production Options
Aug 2022
Publication
This paper aims to holistically study hydrogen production options essential for a sustainable and carbon-free future. This study also outlines the benefits and challenges of hydrogen production methods to provide sustainable alternatives to fossil fuels by meeting the global energy demand and net-zero targets. In this study sixteen hydrogen production methods are selected for sustainability investigation based on seven different criteria. The criteria selected in the comparative evaluation cover various dimensions of hydrogen production in terms of economic technical environmental and thermodynamic aspects for better sustainability. The current study results show that steam methane reforming with carbon capture could provide sustainable hydrogen in the near future while the other technologies’ maturity levels increase and the costs decrease. In the medium- and long-terms photonic and thermal-based hydrogen production methods can be the key to sustainable hydrogen production.
Nuclear-Renewable Hybrid Energy System with Load Following for Fast Charging Stations
May 2023
Publication
The transportation sector is a significant source of greenhouse gas emissions. Electric vehicles (EVs) have gained popularity as a solution to reduce emissions but the high load of charging stations poses a challenge to the power grid. Nuclear-Renewable Hybrid Energy Systems (N-RHES) present a promising alternative to support fast charging stations reduce grid dependency and decrease emissions. However the intermittent problem of renewable energy sources (RESs) limits their application and the synergies among different technologies have not been fully exploited. This paper proposes a predictive and adaptive control strategy to optimize the energy management of N-RHES for fast charging stations considering the integration of nuclear photovoltaics and wind turbine energy with a hydrogen storage fuel cell system. The proposed dynamic model of a fast-charging station predicts electricity consumption behavior during charging processes generating probabilistic forecasting of electricity consumption time-series profiling. Key performance indicators and sensitivity analyses illustrate the practicability of the suggested system which offers a comprehensive solution to provide reliable sustainable and low-emission energy to fast-charging stations while reducing emissions and dependency on the power grid.
Nuclear Cogeneration: Civil Nuclear Energy in a Low-carbon Future
Oct 2020
Publication
This policy briefing considers how the use of nuclear energy could be expanded to make the most of the energy produced and also to have the flexibility to complement an energy system with a growing input of intermittent renewable energy.<br/>What is nuclear cogeneration?<br/>Nuclear cogeneration is where the heat generated by a nuclear power station is used not only to generate electricity but to address some of the ‘difficult to decarbonise’ energy demands such as domestic heating and hydrogen production. It also enables a nuclear plant to be used more flexibly by switching between electricity generation and cogeneration applications.<br/>Applications for nuclear cogeneration<br/>Heat generated by civil nuclear reactors can be extracted at two different points for applications requiring either low-temperature or high-temperature heat. Each application differs in many aspects of operation and have different challenges.<br/>Low-temperature cogeneration<br/>Applications for the lower temperature ‘waste’ heat include:<br/>District heating<br/>Seawater desalination<br/>Low-temperature industrial process heating<br/>High-temperature cogeneration<br/>Higher temperature heat can be accessed earlier and used for:<br/>High-temperature industrial process heating<br/>Hydrogen production<br/>Sustainable synthetic fuel production<br/>Direct air capture<br/>Thermal energy storage<br/>Challenges of cogeneration systems<br/>Whilst some nuclear cogeneration applications have been employed in many countries the economic benefit of widescale nuclear cogeneration needs to be determined. However if the construction cost reductions for small modular reactors (SMRs) can be realised and the regulation and licencing processes streamlined then the additional revenue benefits of cogeneration could be material for SMRs and for the future of nuclear generation in the UK.<br/>Other outstanding issues include the ownership of reactors the future demand for hydrogen and other cogeneration products at a regional national and international level and the cost of carbon and dependable power.
Redrawing the EU’s Energy Relations: Getting it Right with African Renewable Hydrogen
Oct 2022
Publication
In this paper we will explore the state of play with renewable hydrogen development in Africa through some case studies from AGHA members and the scope for growth moving forward. In so doing we will address some of the prevailing challenges to build out of a clean hydrogen economy that could be foreseen already at this early stage and look for potential solutions building on what is already in place in other sectors. We make the case that there should be four key areas of focus moving forward on African-EU hydrogen collaboration. Firstly (i) foreign direct investment (FDI) should be de-risked through offtake mechanisms and public-private partnerships (ii) flagship projects should lead the way (iii) large parts of the value chain should remain in Africa (iv) wider ‘democratisation’ and accessibility of the sector should be encouraged
2021 Standards Report
Jul 2021
Publication
Purpose: The standards module of the FCHO presents a large number of standards relevant for the deployment of hydrogen and fuel cells. The standards are categorized per application enhancing ease of access and findability. The development of sector-relevant standards facilitate and enhance economies of scale interoperability comparability safety and many other issues. https://www.fchobservatory.eu/observatory/Policy-and-RCS/Standards Scope: This report presents the developments in European and international standards for the year 2020.Standards from the following standards developing organizations are included: CEN CENELEC ISO IEC OIML. Key Findings: The development of sector relevant standards on an international level continued to grow in 2020; on a European level many standards are still in the process of being drafted. In 2020 12 new standards have been published mainly on the subject of fuel cell technologies. The recently established committee CEN-CLC JTC 6 (Hydrogen in energy systems) has not published standards yet but is working on drafting standards on for example Guarantees of Origin. Previous Reports The first report was published in September 2020. This report is the 2nd Annual report.
Experimental Study on the Cycle Variation Characteristics of Direct Injection Hydrogen Engine
Jun 2022
Publication
Hydrogen energy is an important technical route to achieve carbon peak and carbon neutrality. Direct injection hydrogen engine is one of the ways of hydrogen energy application. It has the advantages of high thermal efficiency and limit/reduce abnormal combustion phenomena. In order to explore the cycle characteristics of direct injection hydrogen engine based on a 2.0L direct injection hydrogen engine an experimental study on the cycle characteristics of direct injection hydrogen engine was carried out. The experimental results show that cycle variation increases from 0.67% to 1.02% with the increasing of engine speed. The cycle variation decreases from 1.52% to 0.64% with the increasing of engine load. As the equivalence ratio increases the cycle variation first decreases significantly from 2.52% to 0.35% and then stabilizes. The ignition advance angle has a better angle to minimize the cycle variation. An experimental study on the influence of the start of injection on the cycle variation was carried out. As the engine speed/engine load is 2000rpm/4bar the cycle variation increases from 0.72% to 2.42% with the start of injection changing from -280°CA to -180°CA; then rapidly decreases to 0.99% and then increases to 2.26% with the start of injection changing from -180°CA to -100°CA. The experimental results show that SOI could cause significant influence on cycle variation because of intake valve closing and shortening mixing time and both the process of intake valve closing and lagging the SOI could cause the cycle variation to increase. The SOI remarkably affects the cycle variation at low engine load/equivalence ratio and high engine speed. This study lays the foundation for the follow-up research of hydrogen engine performance matching of the cycle variation.
Investigation of Pre-cooling Strategies for Heavy-duty Hydrogen Refuelling
Mar 2024
Publication
Green hydrogen presents a promising solution for transitioning from fossil fuels to a clean energy future particularly with the application of fuel cell electric vehicles (FCEVs). However the hydrogen refuelling process for FCEVs requires extensive pre-cooling to achieve fast filling times. This study presents experiments and simulations of a hydrogen refuelling station equipped with an adaptable cold-fill unit aiming to maximize fuelling efficiencies. For this purpose we developed and experimentally validated simulation models for a hydrogen tank and an aluminium block heat exchanger. Different pre-cooling parameters affect the final tank temperatures during the parallel filling of three 350 L type IV tanks. The results indicate significant potential for optimizing the required cooling energy with achievable savings of over 50 % depending on the pre-cooling strategy. The optimized pre-cooling strategies and energy savings aid in advancing the refuelling process for FCEVs effectively contributing to the transition to clean energy.
Hydrogen Refueling Process: Theory, Modeling, and In-Force Applications
Mar 2023
Publication
Among the alternative fuels enabling the energy transition hydrogen-based transportation is a sustainable and efficient choice. It finds application both in light-duty and heavy-duty mobility. However hydrogen gas has unique qualities that must be taken into account when employed in such vehicles: high-pressure levels up to 900 bar storage in composite tanks with a temperature limit of 85 ◦C and a negative Joule–Thomson coefficient throughout a wide range of operational parameters. Moreover to perform a refueling procedure that is closer to the driver’s expectations a fast process that requires pre-cooling the gas to −40 ◦C is necessary. The purpose of this work is to examine the major phenomena that occur during the hydrogen refueling process by analyzing the relevant theory and existing modeling methodologies.
Boosting Hydrogen through a European Hydrogen Bank
Mar 2023
Publication
Hydrogen is indispensable to decarbonise European industry and reach the EU’s 2030 climate targets and 2050 climate neutrality. It is one of the key technologies of Europe’s Net Zero Industry Act. By scaling up its production we will reduce the use of fossil fuels in European industries and serve the needs of hard-to-electrify sectors.
Assessment of Hydrogen Based Long Term Electrical Storage in Residential Energy Systems
Oct 2022
Publication
Among the numerous envisioned applications for hydrogen in the decarbonization of the energy system seasonal energy storage is usually regarded as one of the most likely options. Although long-term energy storage is usually considered at grid-scale level given the increasing diffusion of distributed energy systems and the expected cost reduction in hydrogen related components some companies are starting to offer residential systems with PV modules and batteries that rely on hydrogen for seasonal storage of electrical energy. Such hydrogen storage systems are generally composed by water electrolysers hydrogen storage vessels and fuel cells.<br/>The aim of this work is to investigate such systems and their possible applications for different geographical conditions in Italy. On-grid and off-grid systems are considered and compared to systems without hydrogen in terms of self-consumption ratio size of components and economic investment. Each different option has been assessed from a techno-economic point of view via MESS (Multi Energy Systems Simulator) an analytical programming tool for the analysis of local energy systems.<br/>Results have identified the optimal sizing of the system's components and have shown how such systems are not in general economically competitive for a single dwelling although they can in some cases ensure energy independence.
Green Electricity and Medical Electrolytic Oxygen from Solar Energy - A Sustainable Solution for Rural Hospitals.
Oct 2022
Publication
The objective of this paper is to design and simulate for rural areas isolated from the electricity grid a system based on solar energy for the optimal supply of green electricity and medical oxygen to a hospital. The system sized to produce 20 Nm3 /day is constituted of a 37.46 kW photovoltaic farm a 15.47 kW electrolyzer and a 15.47 kW fuel cell. The simulation of the Photovoltaic system is performed using the single diode model solved with the Lambert function defined in MATLAB Software. The daily production of oxygen and hydrogen during the sunniest day of the month is respectively 20.81 Nm3 /day and 41.61 Nm3 /day. The daily energy that can be stored is relevant to the hydrogen production and an electricity storage capacity of 124.89 kWh is feasible. During the least sunny day of the least sunny month the daily production of oxygen and hydrogen is respectively 7.72 Nm3 /day and 15.44 Nm3 /day. The recorded values prove that the system sized can constitute a viable solution to ensure the permanent supply a green electricity and oxygen to the hospital with good energy storage capacity.
Review on COx-free Hydrogen from Methane Cracking: Catalysts, Solar Energy Integration and Applications
Oct 2021
Publication
Hydrogen fuel production from methane cracking is a sustainable process compared to the ones currently in practice due to minimal greenhouse gas emissions. Carbon black that is co-produced is a valuable product and can be marketed to other industries. As this is a high-temperature process using concentrated solar energy can further improve its sustainability. In this study a detailed review is conducted to study the advancements in methane cracking for hydrogen production using different catalysts. Various solar reactors developed for methane cracking are discussed. The application of hydrogen to produce other valuable chemicals are outlined. Hydrogen carriers such as methanol dimethyl ether ammonia and urea can efficiently store hydrogen energy and enable easier transportation. Further research in the field of methane cracking is required for reactor scale-up improved economics and to reduce the problems arising from carbon deposition leading to reactor clogging and catalyst deactivation.
Prospective Roles for Green Hydrogen as Part of Ireland's Decarbonisation Strategy
Mar 2023
Publication
In recent decades governments and society have been making increasing efforts to address and mitigate climate change by reducing emissions and decarbonising energy generation. Ireland has invested greatly in renewable electricity installing 4 GW of wind capacity since 2002 and has set assertive energy targets such as the aim to reduce overall emissions by 51% by 2030. Nonetheless considerable acceleration is needed in the decarbonisation of the country’s energy sector. This paper investigates the potential role hydrogen can play in Ireland’s energy transition proposing hydrogen as an energy vector and storage medium that may help the country achieve its targets and reduce greenhouse gas emissions. Through literature review research and from industry insights the current state of the Irish energy sector is analysed and recommendations are made as to how where and when hydrogen can be integrated into the decarbonisation of Ireland’s electricity heating and transport. It is concluded that; with significant effort from the government policymakers industry and organisations; the effective deployment of hydrogen technologies in Ireland could avoid up to 6.1 MtCO2eq of emissions annually reflecting a trend observed in many other developed countries in which hydrogen plays an important part in the path to a low-carbon future. Prospective roles for hydrogen in Ireland include renewable energy storage and grid balancing through the deployment of Power-to-Gas systems a replacement for fossil natural gas in the gas grid for backup electricity production as well as industry and heating requirements and the use of hydrogen as a fuel for heavy transport.
No more items...