- Home
- A-Z Publications
- Publications
Publications
Flexibility in Great Britain
May 2021
Publication
The Flexibility in Great Britain project analysed the system-level value of deploying flexibility across the heat transport industry and power sectors in Great Britain to provide a robust evidence-base on the role and value of flexibility in a net zero system.
Overview
Findings from this groundbreaking analysis of the future net zero energy system in Great Britain are expected to have profound implications for policymakers households and the wider energy sector across Great Britain.
Key findings include:
Read the Full Report here on the Carbon Trust Website
View the interactive analysis here at the Carbon Trust Website
Watch an accompanying video here at the Carbon Trust Youtube channel
Overview
Findings from this groundbreaking analysis of the future net zero energy system in Great Britain are expected to have profound implications for policymakers households and the wider energy sector across Great Britain.
Key findings include:
- Embedding greater flexibility across the entire energy system will reduce the cost of achieving net zero for all consumers while assuring energy security.
- Investing in flexibility is a no-regrets decision as it has the potential to deliver material net savings of up to £16.7bn per annum across all scenarios analysed in 2050.
- A more flexible system will accelerate the benefits of decarbonisation supported by decentralisation and digitalisation.
- To maximise the benefits of flexibility households and businesses should play an active role in the development and operation of the country’s future energy system as energy use for transport heat and appliances becomes more integrated.
- Policymakers should preserve existing flexibility options and act now to maximise future flexibility such as by building it into ‘smart’ appliances or building standards.
Read the Full Report here on the Carbon Trust Website
View the interactive analysis here at the Carbon Trust Website
Watch an accompanying video here at the Carbon Trust Youtube channel
Loss of Integrity of Hydrogen Technologies: A Critical Review
Jul 2020
Publication
Hydrogen is one of the main candidates in replacing fossil fuels in the forthcoming years. However hydrogen technologies must deal with safety aspects due to the specific substance properties. This study aims to provide an overview on the loss of integrity (LOI) of hydrogen equipment which may lead to serious consequences such as fires and explosions. Substantial information regarding the hydrogen lifecycle its properties and safety related aspects has gathered. Furthermore focus has placed on the phenomena responsible for the LOI (e.g. hydrogen embrittlement) and material selection for hydrogen services. Moreover a systematic review on the hydrogen LOI topic has conducted to identify and connect the most relevant and active research group within the topic. In conclusion a significant dearth of knowledge in material behaviour of hydrogen technologies has highlighted. It is thought that is possible to bridge this gap by strengthening the collaborations between scientists from different research fields.
Health-Conscious Optimization of Long-Term Operation for Hybrid PEMFC Ship Propulsion Systems
Jun 2021
Publication
The need to decarbonize the shipping sector is leading to a growing interest in fuel cell-based propulsion systems. While Polymer Electrolyte Membrane Fuel Cells (PEMFC) represent one of the most promising and mature technologies for onboard implementation they are still prone to remarkable degradation. The same problem is also affecting Lithium-ion batteries (LIB) which are usually coupled with PEMFC in hybrid powertrains. By including the combined degradation effects in an optimization strategy the best compromise between costs and PEMFC/LIB lifetime could be determined. However this is still a challenging yet crucial aspect rarely addressed in the literature and rarely yet explored. To fill this gap a health-conscious optimization is here proposed for the long-term minimization of costs and PEMFC/LIB degradation. Results show that a holistic multi-objective optimization allows a 185% increase of PEMFC/LIB lifetime with respect to a fuel-consumption-minimization-only approach. With the progressive ageing of PEMFC/LIB the hybrid propulsion system modifies the energy management strategy to limit the increase of the daily operation cost. Comparing the optimization results at the beginning and the end of the plant lifetime daily operation costs are increased by 73% and hydrogen consumption by 29%. The proposed methodology is believed to be a useful tool able to give insights into the effective costs involved in the long-term operation of this new type of propulsion system.
Alberta Hydrogen Roadmap
Nov 2021
Publication
Alberta is preparing for a lower emission future. The Hydrogen Roadmap is a key part of that future and Alberta's Recovery Plan. The roadmap is our path to building a provincial hydrogen economy and accessing global markets. It contains several policy actions that will be introduced in the coming months and years and it provides support to the sector as technology and markets develop.<br/>Alberta is already the largest hydrogen producer in Canada. We have all the resources expertise and technology needed to quickly become a global supplier of clean low-cost hydrogen. With a worldwide market estimated to be worth over $2.5 trillion a year by 2050 hydrogen can be the next great energy export that fuels jobs investment and economic opportunity across our province.
Faraday’s Efficiency Modeling of a Proton Exchange Membrane Electrolyzer Based on Experimental Data
Sep 2020
Publication
In electrolyzers Faraday’s efficiency is a relevant parameter to assess the amount of hydrogen generated according to the input energy and energy efficiency. Faraday’s efficiency expresses the faradaic losses due to the gas crossover current. The thickness of the membrane and operating conditions (i.e. temperature gas pressure) may affect the Faraday’s efficiency. The developed models in the literature are mainly focused on alkaline electrolyzers and based on the current and temperature change. However the modeling of the effect of gas pressure on Faraday’s efficiency remains a major concern. In proton exchange membrane (PEM) electrolyzers the thickness of the used membranes is very thin enabling decreasing ohmic losses and the membrane to operate at high pressure because of its high mechanical resistance. Nowadays high-pressure hydrogen production is mandatory to make its storage easier and to avoid the use of an external compressor. However when increasing the hydrogen pressure the hydrogen crossover currents rise particularly at low current densities. Therefore faradaic losses due to the hydrogen crossover increase. In this article experiments are performed on a commercial PEM electrolyzer to investigate Faraday’s efficiency based on the current and hydrogen pressure change. The obtained results have allowed modeling the effects of Faraday’s efficiency by a simple empirical model valid for the studied PEM electrolyzer stack. The comparison between the experiments and the model shows very good accuracy in replicating Faraday’s efficiency.
Extremely Halophilic Biohydrogen Producing Microbial Communities from High-Salinity Soil and Salt Evaporation Pond
Jun 2021
Publication
Extreme halophiles offer the advantage to save on the costs of sterilization and water for biohydrogen production from lignocellulosic waste after the pretreatment process with their ability to withstand extreme salt concentrations. This study identifies the dominant hydrogen-producing genera and species among the acclimatized extremely halotolerant microbial communities taken from two salt-damaged soil locations in Khon Kaen and one location from the salt evaporation pond in Samut Sakhon Thailand. The microbial communities’ V3–V4 regions of 16srRNA were analyzed using high-throughput amplicon sequencing. A total of 345 operational taxonomic units were obtained and the high-throughput sequencing confirmed that Firmicutes was the dominant phyla of the three communities. Halanaerobium fermentans and Halanaerobacter lacunarum were the dominant hydrogen-producing species of the communities. Spatial proximity was not found to be a determining factor for similarities between these extremely halophilic microbial communities. Through the study of the microbial communities strategies can be developed to increase biohydrogen molar yield.
Hydrogen vs. Battery in the Long-term Operation. A Comparative Between Energy Management Strategies for Hybrid Renewable Microgrids
Apr 2020
Publication
The growth of the world’s energy demand over recent decades in relation to energy intensity and demography is clear. At the same time the use of renewable energy sources is pursued to address decarbonization targets but the stochasticity of renewable energy systems produces an increasing need for management systems to supply such energy volume while guaranteeing at the same time the security and reliability of the microgrids. Locally distributed energy storage systems (ESS) may provide the capacity to temporarily decouple production and demand. In this sense the most implemented ESS in local energy districts are small–medium-scale electrochemical batteries. However hydrogen systems are viable for storing larger energy quantities thanks to its intrinsic high mass-energy density. To match generation demand and storage energy management systems (EMSs) become crucial. This paper compares two strategies for an energy management system based on hydrogen-priority vs. battery-priority for the operation of a hybrid renewable microgrid. The overall performance of the two mentioned strategies is compared in the long-term operation via a set of evaluation parameters defined by the unmet load storage efficiency operating hours and cumulative energy. The results show that the hydrogen-priority strategy allows the microgrid to be led towards island operation because it saves a higher amount of energy while the battery-priority strategy reduces the energy efficiency in the storage round trip. The main contribution of this work lies in the demonstration that conventional EMS for microgrids’ operation based on battery-priority strategy should turn into hydrogen-priority to keep the reliability and independence of the microgrid in the long-term operation.
Modeling and Statistical Analysis of the Three-side Membrane Reactor for the Optimization of Hydrocarbon Production from CO2 Hydrogenation
Feb 2020
Publication
Direct CO2 hydrogenation to hydrocarbons is a promising method of reducing CO2 emissions along with producing value-added products. However reactor design and performance have remained a challenging issue because of low olefin efficiency and high water production as a by-product. Accordingly a one-dimensional non-isothermal mathematical model is proposed to predict the membrane reactor performance and statistical analysis is used to assess the effects of important variables such as temperatures of reactor (Tr:A) shell (Ts:B) and tube (Tt:C) as well as sweep ratio (θ:D) and pressure ratio (φ:E) and their interactions on the products yields. In addition the optimized operating conditions are also obtained to achieve maximum olefin yields. Results reveal that interacting effects comprising AB (TrTs) AC (TrTt) AE (Trφ) BC (TsTt) CE (Ttφ) CD (Ttθ) and DE (θφ) play important roles on the product yields. It is concluded that higher temperatures at low sweep and pressure ratios can maximize the yields of olefins while simultaneously the yields of paraffins are minimized. In this regard optimized values for Tr Ts Tt θ and φ are determined as 325 °C 306.96 °C 325 °C 1 and 1 respectively.
Prospects of Enhancing the Understanding of Material-hydrogen Interaction by Novel In-situ and In-operando Methods
Jan 2022
Publication
A main scientific and technical challenge facing the implementation of new and sustainable energy sources is the development and improvement of materials and components. In order to provide commercial viability of these applications an intensive research in material-hydrogen (H) interaction is required. This work provides an overview of recently developed in-situ and in-operando H-charging methods and their applicability to investigate mechanical properties H-absorption characteristics and H embrittlement (HE) susceptibility of a wide range of materials employed in H-related technologies such as subsea oil and gas applications nuclear fusion and fuel cells.
Optimal Hydrogen Production in a Wind-dominated Zero-emission Energy System
May 2021
Publication
The role of hydrogen in future energy systems is widely acknowledged: from fuel for difficult-to-decarbonize applications to feedstock for chemicals synthesis to energy storage for high penetration of undispatchable renewable electricity. While several literature studies investigate such energy systems the details of how electrolysers and renewable technologies optimally behave and interact remain an open question. With this work we study the interplay between (i) renewable electricity generation through wind and solar (ii) electricity storage in batteries (iii) electricity storage via Power-to-H2 and (iv) hydrogen commodity demand. We do so by designing a cost-optimal zero-emission energy system and use the Netherlands as a case study in a mixed integer linear model with hourly resolution for a time horizon of one year. To account for the significant role of wind we also provide an elaborate approach to model broad portfolios of wind turbines. The results show that if electrolyzers can operate flexibly batteries and power-to-H2-to-power are complementary with the latter using renewable power peaks and the former using lower renewable power outputs. If the operating modes of the power-to-H2-to-power system are limited - artificially or technically - the competitive advantage over batteries decreases. The preference of electrolyzers for power peaks also leads to an increase in renewable energy utilization for increased levels of operation flexibility highlighting the importance of capturing this feature both from a technical and a modeling perspective. When adding a commodity hydrogen demand the amount of hydrogen converted to electricity decreases hence decreasing its role as electricity storage medium.
A Model-based Parametric and Optimal Sizing of a Battery/Hydrogen Storage of a Real Hybrid Microgrid Supplying a Residential Load: Towards Island Operation
Jun 2021
Publication
In this study the optimal sizing of a hybrid battery/hydrogen Energy Storage System “ESS” is assessed via a model-based parametric analysis in the context of a real hybrid renewable microgrid located in Huelva Spain supplying a real-time monitored residential load (3.5 kW; 5.6 MWh/year) in island mode. Four storage configurations (battery-only H2-only hybrid battery priority and hybrid H2 priority) are assessed under different Energy Management Strategies analysing system performance parameters such as Loss of Load “LL” (kWh;%) Over Production “OP” (kWh;%) round-trip storage efficiency ESS (%) and total storage cost (€) depending on the ESS sizing characteristics. A parallel approach to the storage optimal sizing via both multi-dimensional sensitivity analysis and PSO is carried out in order to address both sub-optimal and optimal regions respectively. Results show that a hybridised ESS capacity is beneficial from an energy security and efficiency point of view but can represent a substantial additional total cost (between 100 and 300 k€) to the hybrid energy system especially for the H2 ESS which presents higher costs. Reaching 100% supply from renewables is challenging and introducing a LL threshold induces a substantial relaxation of the sizing and cost requirements. Increase in battery capacity is more beneficial for the LL abatement while increasing H2 capacity is more useful to absorb large quantities of excess energy. The optimal design via PSO technique is complemented to the parametric study.
Power to Hydrogen and Power to Water Using Wind Energy
May 2022
Publication
The need for energy and water security on islands has led to an increase in the use of wind power. However the intermittent nature of wind generation means it needs to be coupled with a storage system. Motivated by this two different models of surplus energy storage systems are investigated in this paper. In both models renewable wind energy is provided by a wind farm. In the first model a pumped hydro storage system (PHS) is used for surplus energy storage while in the second scenario a hybrid pumped hydrogen storage system (HPHS) is applied consisting of a PHS and a hydrogen storage system. The goal of this study is to compare the single and the hybrid storage system to fulfill the energy requirements of the island’s electricity load and desalination demands for domestic and irrigation water. The cost of energy (COE) is 0.287 EUR/kWh for PHS and 0.360 EUR/kWh for HPHS while the loss of load probability (LOLP) is 22.65% for PHS and 19.47% for HPHS. Sensitivity analysis shows that wind speed is the key parameter that most affects COE cost of water (COW) and LOLP indices while temperature affects the results the least.
Self-Supported High-Entropy Alloy Electrocatalyst for Highly Efficient H2 Evolution in Acid Condition
Jul 2020
Publication
Developing non-precious catalysts as Pt substitutes for electrochemical hydrogen evolution reaction (HER) with superior stability in acidic electrolyte is of critical importance for large-scale low-cost hydrogen production from water. Herein we report a CoCrFeNiAl high-entropy alloy (HEA) electrocatalyst with self-supported structure synthesized by mechanical alloying and spark plasma sintering (SPS) consolidation. The HEA after HF treatment and in situ electrochemical activation for 4000 cycles of cyclic voltammetry (HF-HEAa2) presents favourable activity with overpotential of 73 mV to reach a current density of 10 mA cm−2 and a Tafel slope of 39.7 mV dec−1. The alloy effect of Al/Cr with Co/Fe/Ni at atomic level high-temperature crystallization as well as consolidation by SPS endow CoCrFeNiAl HEA with high stability in 0.5 M H2SO4 solution. The superior performance of HF-HEAa2 is related with the presence of metal hydroxides/oxides groups on HEA.
Carbons Formed in Methane Thermal and Thermocatalytic Decomposition Processes: Properties and Applications
Jun 2021
Publication
The hydrogen economy will play a key role in future energy systems. Several thermal and catalytic methods for hydrogen production have been presented. In this review methane thermocatalytic and thermal decomposition into hydrogen gas and solid carbon are considered. These processes known as the thermal decomposition of methane (TDM) and thermocatalytic decomposition (TCD) of methane respectively appear to have the greatest potential for hydrogen production. In particular the focus is on the different types and properties of carbons formed during the decomposition processes. The applications for carbons are also investigated.
Materials for Hydrogen-based Energy Storage - Past, Recent Progress and Future Outlook
Dec 2019
Publication
Michael Hirscher,
Volodymyr A. Yartys,
Marcello Baricco,
José Bellosta von Colbe,
Didier Blanchard,
Robert C. Bowman Jr.,
Darren P. Broom,
Craig Buckley,
Fei Chang,
Ping Chen,
Young Whan Cho,
Jean-Claude Crivello,
Fermin Cuevas,
William I. F. David,
Petra E. de Jongh,
Roman V. Denys,
Martin Dornheim,
Michael Felderhoff,
Yaroslav Filinchuk,
George E. Froudakis,
David M. Grant,
Evan MacA. Gray,
Bjørn Christian Hauback,
Teng He,
Terry D. Humphries,
Torben R. Jensen,
Sangryun Kim,
Yoshitsugu Kojima,
Michel Latroche,
Hai-wen Li,
Mykhaylo V. Lototskyy,
Joshua W. Makepeace,
Kasper T. Møller,
Lubna Naheed,
Peter Ngene,
Dag Noreus,
Magnus Moe Nygård,
Shin-ichi Orimo,
Mark Paskevicius,
Luca Pasquini,
Dorthe B. Ravnsbæk,
M. Veronica Sofianos,
Terrence J. Udovic,
Tejs Vegge,
Gavin Walker,
Colin Webb,
Claudia Weidenthaler and
Claudia Zlotea
Globally the accelerating use of renewable energy sources enabled by increased efficiencies and reduced costs and driven by the need to mitigate the effects of climate change has significantly increased research in the areas of renewable energy production storage distribution and end-use. Central to this discussion is the use of hydrogen as a clean efficient energy vector for energy storage. This review by experts of Task 32 “Hydrogen-based Energy Storage” of the International Energy Agency Hydrogen TCP reports on the development over the last 6 years of hydrogen storage materials methods and techniques including electrochemical and thermal storage systems. An overview is given on the background to the various methods the current state of development and the future prospects. The following areas are covered; porous materials liquid hydrogen carriers complex hydrides intermetallic hydrides electro-chemical storage of energy thermal energy storage hydrogen energy systems and an outlook is presented for future prospects and research on hydrogen-based energy storage
Integration of Wind Energy, Hydrogen and Natural Gas Pipeline Systems to Meet Community and Transportation Energy Needs: A Parametric Study
Apr 2014
Publication
The potential benefits are examined of the “Power-to-Gas” (P2G) scheme to utilize excess wind power capacity by generating hydrogen (or potentially methane) for use in the natural gas distribution grid. A parametric analysis is used to determine the feasibility and size of systems producing hydrogen that would be injected into the natural gas grid. Specifically wind farms located in southwestern Ontario Canada are considered. Infrastructure requirements wind farm size pipeline capacity geographical dispersion hydrogen production rate capital and operating costs are used as performance measures. The model takes into account the potential production rate of hydrogen and the rate that it can be injected into the local gas grid. “Straw man” systems are examined centered on a wind farm size of 100 MW integrating a 16-MW capacity electrolysis system typically producing 4700 kg of hydrogen per day.
A Review of Heavy-Duty Vehicle Powertrain Technologies Diesel Engine Vehicles, Battery Electric Vehicles, and Hydrogen Fuel Cell Electric Vehicles
Jun 2021
Publication
Greenhouse gas emissions from the freight transportation sector are a significant contributor to climate change pollution and negative health impacts because of the common use of heavy-duty diesel vehicles (HDVs). Governments around the world are working to transition away from diesel HDVs and to electric HDVs to reduce emissions. Battery electric HDVs and hydrogen fuel cell HDVs are two available alternatives to diesel engines. Each diesel engine HDV battery-electric HDV and hydrogen fuel cell HDV powertrain has its own advantages and disadvantages. This work provides a comprehensive review to examine the working mechanism performance metrics and recent developments of the aforementioned HDV powertrain technologies. A detailed comparison between the three powertrain technologies highlighting the advantages and disadvantages of each is also presented along with future perspectives of the HDV sector. Overall diesel engine in HDVs will remain an important technology in the short-term future due to the existing infrastructure and lower costs despite their high emissions while battery-electric HDV technology and hydrogen fuel cell HDV technology will be slowly developed to eliminate their barriers including costs infrastructure and performance limitations to penetrate the HDV market.
Hydrogen as Energy Sources—Basic Concepts
Sep 2021
Publication
This paper covers the hydrogen technologies regarding the role of hydrogen as an energy carrier and the possibilities of its production and use. It is initially presented the modalities and the efficiency of the current technologies of obtaining hydrogen detailing its obtaining by the electrolysis of the water the electrochemical efficiency and the specific consumption of electricity as well as the thermodynamics of the electrochemical processes. The following paragraph addresses hydrogen conversion possibilities. This paragraph details the thermodynamic analysis of the fuel cell the external characteristic of the fuel cell and the types of fuel cell. The last paragraph addresses the possibilities of using the fuel cells for electrical vehicles and cogeneration systems for buildings.In this context the traditional transport and distribution grid will have to adapt to the new realities as they will need to actively participate in the internal energy market by the transformation of the traditional electricity grid in energy flow from unidirectional to bidirectional through the production of hydrogen offering the same facilities as the gas grid.
Gas Goes Green: Tomorrow's Heat, Today's Opportunity
Sep 2021
Publication
Cutting-edge world-leading energy network innovation is vital to ensuring that our economy can continue to access the energy it needs to safeguard jobs and to maintain our international competitiveness as the world goes through decarbonisation. In this report we build on the 2020 Gas Goes Green Zero Carbon Commitment to set out the scale of investment that Britain’s gas networks wish to deliver to hydrogen innovation projects and preparing the gas networks. This work will be focused over the next ten years creating highly-skilled high-tech green jobs through investment and ensuring that the impact of that innovation is felt in communities across the UK.
A Multiobjective Optimization of a Catalyst Distribution in a Methane/Steam Reforming Reactor Using a Genetic Algorithm
May 2020
Publication
The presented research focuses on an optimization design of a catalyst distribution inside a small-scale methane/steam reforming reactor. A genetic algorithm was used for the multiobjective optimization which included the search for an optimum of methane conversion rate and a minimum of the difference between highest and lowest temperatures in the reactor. For the sake of computational time the maximal number of the segment with different catalyst densities was set to be thirty in this study. During the entire optimization process every part of the reactor could be filled either with a catalyst material or non-catalytic metallic foam. In both cases the porosity and pore size was also specified. The impact of the porosity and pore size on the active reaction surface and permeability was incorporated using graph theory and three-dimensional digital material representation. Calculations start with the generation of a random set of possible reactors each with a different catalyst distribution. The algorithm calls reforming simulation over each of the reactors and after obtaining concentration and temperature fields the algorithms calculated fitness function. The properties of the best reactors are combined to generate a new population of solutions. The procedure is repeated and after meeting the coverage criteria the optimal catalyst distribution was proposed. The paper is summarized with the optimal catalyst distribution for the given size and working conditions of the system.
Worst Case Scenario for Delayed Explosion of Hydrogen Jets at a High Pressure: Ignition Position
Sep 2021
Publication
Delayed explosion of free field hydrogen releases at a high pressure is subject of multiple investigation performed by various authors in the past years. These studied considered various parameters such as pressures flow rates etc. and their influence on the resulting overpressure. However the influence of the ignition position on the maximum overpressure was not fully explored. Current investigation addressed by computational fluid dynamics (CFD) simulations and experimental measurement fills this gap. This work demonstrates that the ignition positions corresponding to 55%-65% of H2/air mixture give the maximum overpressure. This observation initially observed numerically and afterword confirmed experimentally. A simple model is also suggested.
The Role of Research and Innovation in Europe for the Decarbonisation of Waterborne Transport
Sep 2021
Publication
Waterborne transport contributes to around 14% of the overall greenhouse gas emissions of transport in the European Union and it is among the most efficient modes of transport. Nonetheless considering the aim of making the European Union carbon-neutral by 2050 and the fundamental role of waterborne transport within the European economy effort is needed to reduce its environmental impact. This paper provides an assessment of research and innovation measures aiming at decreasing waterborne transport’s CO2 emissions by assessing European projects based on the European Commission’s Transport Research and Innovation Monitoring and Information System (TRIMIS). Additionally it provides an outlook of the evolution of scientific publications and intellectual property activity in the area. The review of project findings suggests that there is no single measure which can be considered as a problem solver in the area of the reduction of waterborne CO2 emissions and only the combination of different innovations should enable reaching this goal. The highlighted potential innovations include further development of lightweight composite materials innovative hull repair methods wind assisted propulsion engine efficiency waste heat electrification hydrogen and alternative fuels. The assessment shows prevalence of funding allocated to technological measures; however non-technological ones like improved vessel navigation and allocation systems also show a great potential for the reduction of CO2 emissions and reduction of negative environmental impacts of waterborne transport.
An Overview of the Classification, Production and Utilization of Biofuels for Internal Combustion Engine Applications
Sep 2021
Publication
Biofuel a cost-effective safe and environmentally benign fuel produced from renewable sources has been accepted as a sustainable replacement and a panacea for the damaging effects of the exploration for and consumption of fossil-based fuels. The current work examines the classification generation and utilization of biofuels particularly in internal combustion engine (ICE) applications. Biofuels are classified according to their physical state technology maturity the generation of feedstock and the generation of products. The methods of production and the advantages of the application of biogas bioalcohol and hydrogen in spark ignition engines as well as biodiesel Fischer– Tropsch fuel and dimethyl ether in compression ignition engines in terms of engine performance and emission are highlighted. The generation of biofuels from waste helps in waste minimization proper waste disposal and sanitation. The utilization of biofuels in ICEs improves engine performance and mitigates the emission of poisonous gases. There is a need for appropriate policy frameworks to promote commercial production and seamless deployment of these biofuels for transportation applications with a view to guaranteeing energy security.
Interfacial Fracture Strength Property of Micro-scale SiN/Cu Components
Jul 2016
Publication
The strength against fracture nucleation from an interface free-edge of silicon-nitride (SiN)/copper (Cu) micro-components is evaluated. A special technique that combines a nano-indenter specimen holder and an environmental transmission electron microscope (E-TEM) is employed. The critical load at the onset of fracture nucleation from a wedge-shaped free-edge (opening angle: 90°) is measured both in a vacuum and in a hydrogen (H2) environment and the critical stress distribution is evaluated by the finite element method (FEM). It is found that the fracture nucleation is dominated by the near-edge elastic singular stress field that extends about a few tens of nanometers from the edge. The fracture nucleation strength expressed in terms of the stress intensity factor (K) is found to be eminently reduced in a H2 environment.
Hydrogen and Oxygen Production via Water Splitting in a Solar-Powered Membrane Reactor—A Conceptual Study
Jan 2021
Publication
Among the processes for producing hydrogen and oxygen from water via the use of solar energy water splitting has the advantage of being carried out in onestep. According to thermodynamics this process exhibits conversions of practical interest at very high temperatures and needs efficient separation systems in order to separate the reaction products hydrogen and oxygen. In this conceptual work the behaviour of a membrane reactor that uses two membranes perm-selective to hydrogen and oxygen is investigated in the temperature range 2000–2500 °C of interest for coupling this device with solar receivers. The effect of the reaction pressure has been evaluated at 0.5 and 1 bar while the permeate pressure has been fixed at 100 Pa. As a first result the use of the membrane perm-selective to oxygen in addition to the hydrogen one has improved significantly the reaction conversion that for instance at 0.5 bar and 2000 °C moves from 9.8% up to 18.8%. Based on these critical data a preliminary design of a membrane reactor consisting of a Ta tubular membrane separating the hydrogen and a hafnia camera separating the oxygen is presented: optimaloperating temperature of the reactor results in being around 2500 °C a value making impracticable its coupling with solar receivers even in view of an optimistic development of this technology. The study has verified that at 2000 °C with a water feed flow rate of 1000 kg h−1 about 200 and 100 m3 h−1 of hydrogen and oxygen are produced. In this case a surface of the hafnia membrane of the order of hundreds m2 is required: the design of such a membrane device may be feasible when considering special reactor configurations.
CFD Model Based Ann Prediction of Flammable Vapor Colour Formed by Liquid Hydrogen Spill
Sep 2021
Publication
Unintended releases can occur during the production storage transportation and filling of liquid hydrogen which may cause devastating consequences. In the present work liquid hydrogen leak is modeled in ANSYS Fluent with the numerical model validated using the liquid hydrogen spill test data. A three-layer artificial neural network (ANN) model is built in which the wind speed ground temperature leakage time and leakage rate are taken as the inputs the horizontal diffusion distance and vertical diffusion distance of combustible gas as the outputs of the ANN. The representative sample data derived from the detailed calculation results of the numerical model are selected via the orthogonal experiment method to train and verify the back propagation (BP) neural network. Comparing the calculation results of the formula fitting with the sample data the results show that the established ANN model can quickly and accurately predict the horizontal and vertical diffusion distance of flammable vapor cloud relatively. The influences of four parameters on the horizontal hazard distance as well as vertical hazard height are predicted and analyzed in the case of continuous overflow of liquid hydrogen using the ANN model.
Biomass Steam Gasification with In-Situ CO2 Capture for Enriched Hydrogen Gas Production: A Reaction Kinetics Modelling Approach
Aug 2010
Publication
Due to energy and environmental issues hydrogen has become a more attractive clean fuel. Furthermore there is high interest in producing hydrogen from biomass with a view to sustainability. The thermochemical process for hydrogen production i.e. gasification is the focus of this work. This paper discusses the mathematical modeling of hydrogen production process via biomass steam gasification with calcium oxide as sorbent in a gasifier. A modelling framework consisting of kinetics models for char gasification methanation Boudouard methane reforming water gas shift and carbonation reactions to represent the gasification and CO2 adsorption in the gasifier is developed and implemented in MATLAB. The scope of the work includes an investigation of the influence of the temperature steam/biomass ratio and sorbent/biomass ratio on the amount of hydrogen produced product gas compositions and carbon conversion. The importance of different reactions involved in the process is also discussed. It is observed that hydrogen production and carbon conversion increase with increasing temperature and steam/biomass ratio. The model predicts a maximum hydrogen mole fraction in the product gas of 0.81 occurring at 950 K steam/biomass ratio of 3.0 and sorbent/biomass ratio of 1.0. In addition at sorbent/biomass ratio of 1.52 purity of H2 can be increased to 0.98 mole fraction with all CO2 present in the system adsorbed.
Webinar to Launch New Hydrogen Economy - Hope or Hype?
Jun 2019
Publication
On 26 June the World Energy Council held a webinar presenting the results of its latest Innovation Insights Brief on hydrogen engaging three key experts on the topic:
Nigel Brandon Dean of the Faculty of Engineering Imperial College London
Craig Knight Director of Industrial Solutions Horizon Fuel Cell Technology
Dan Sadler H21 Project Manager for Equinor
During the webinar the experts answered a series of policy technical and safety questions from the audience. The webinar started with a poll to get a sense of which sectors attendees saw hydrogen playing a key role in 2040 - 77% chose industrial processes 54% mobility and 31% power generation. The questions ranged from the opportunities and limitations of blending hydrogen with natural gas to safety concerns surrounding hydrogen.
KEY HIGHLIGHTS:
How much hydrogen can be blended with natural gas depends on the rules and regulation of each country. The general consensus is that blending 10% by volume of hydrogen presents no safety concerns or specific difficulties. This would provide an opportunity to develop low hydrogen markets. Nevertheless blending should not be the end destination. It is not sufficient to meet carbon abatement targets.
Low carbon ammonia has a role to play in the new hydrogen economy. It is a proven and understood technology which is easier to move around the world and could be used directly as ammonia or cracked back into hydrogen.
One of the main focus today should be to replace grey hydrogen with green hydrogen in existing supply chains as there would be no efficiency losses in the process.
In China the push for hydrogen is transport-related. This is driven by air quality and energy independence concerns. In the next 10 years the full life cost of fuel cell electric vehicles (FCEVs) is expected to be lower than for internal combustion engines. This is due to the fact that FCEVs require less maintenance and that the residual value in the fuel cells is relatively high. At the end of life 95% of the platinum in fuel cells can be repurposed.
FCEVs should not be regarded as competing with battery electric vehicles they sit next to each other on product maps. FCEVs can benefit from the all of the advances in electric drive train systems and electric motors.
To close the webinar attendees were asked whether hydrogen was going through another hype cycle or if it was here to stay. 10% answered hype and 90% here to stay.
Nigel Brandon Dean of the Faculty of Engineering Imperial College London
Craig Knight Director of Industrial Solutions Horizon Fuel Cell Technology
Dan Sadler H21 Project Manager for Equinor
During the webinar the experts answered a series of policy technical and safety questions from the audience. The webinar started with a poll to get a sense of which sectors attendees saw hydrogen playing a key role in 2040 - 77% chose industrial processes 54% mobility and 31% power generation. The questions ranged from the opportunities and limitations of blending hydrogen with natural gas to safety concerns surrounding hydrogen.
KEY HIGHLIGHTS:
How much hydrogen can be blended with natural gas depends on the rules and regulation of each country. The general consensus is that blending 10% by volume of hydrogen presents no safety concerns or specific difficulties. This would provide an opportunity to develop low hydrogen markets. Nevertheless blending should not be the end destination. It is not sufficient to meet carbon abatement targets.
Low carbon ammonia has a role to play in the new hydrogen economy. It is a proven and understood technology which is easier to move around the world and could be used directly as ammonia or cracked back into hydrogen.
One of the main focus today should be to replace grey hydrogen with green hydrogen in existing supply chains as there would be no efficiency losses in the process.
In China the push for hydrogen is transport-related. This is driven by air quality and energy independence concerns. In the next 10 years the full life cost of fuel cell electric vehicles (FCEVs) is expected to be lower than for internal combustion engines. This is due to the fact that FCEVs require less maintenance and that the residual value in the fuel cells is relatively high. At the end of life 95% of the platinum in fuel cells can be repurposed.
FCEVs should not be regarded as competing with battery electric vehicles they sit next to each other on product maps. FCEVs can benefit from the all of the advances in electric drive train systems and electric motors.
To close the webinar attendees were asked whether hydrogen was going through another hype cycle or if it was here to stay. 10% answered hype and 90% here to stay.
Hydrogen Mobility Europe (H2ME): Vehicle and Hydrogen Refuelling Station Deployment Results
May 2018
Publication
Hydrogen Mobility Europe (H2ME 2015–2022) is the largest European Fuel Cells and Hydrogen Joint Undertaking (EU FCH JU)-funded hydrogen light vehicle and infrastructure demonstration. Up until April 2017 the 40 Daimler passenger car fuel cell electric vehicles (FCEVs) and 62 Symbio Fuel Cell-Range Extended Electric Vans (FC-REEV)-vans deployed by the project drove 625300 km and consumed a total of 7900 kg of hydrogen with no safety incidents. During its first year of operation (to April 2017) the NEL Hydrogen Fueling HRS (hydrogen refuelling station) in Kolding Denmark dispensed 900 kg of hydrogen and demonstrated excellent reliability (98.2% availability) with no safety incidents. The average hydrogen refuelling time for passenger cars is comparable to that for conventional vehicles (2–3 min).
Hydrogen Production During Direct Cellulose Fermentation by Mixed Bacterial Culture: The Relationship Between the Key Process Parameters Using Response Surface Methodology
Jun 2021
Publication
Dark fermentation is a promising method to produce hydrogen from lignocellulosic biomass. This study assessed the influence of temperature phosphate buffer concentration and substrate concentration on direct hydrogen production form cellulose using response surface methodology. Mixed bacterial culture was successfully enriched on cellulose and used as an inoculum for hydrogen production. The model indicated that the highest cumulative hydrogen production (CHP) of 2.14 L H2/Lmedium could be obtained at 13.5 gcellulose/L 79.5 mM buffer and 32.6 °C. However hydrogen yield is then only 0.58 mol H2/molhexose due to low substrate conversion efficiency (SCE). Simultaneous optimization of CHP and SCE with desirability function approach resulted in the H2 yield of 2.71 ± 0.1 mol H2/molhexose and 93.8 ± 1.8% SCE at 3.35 gcellulose/L 69 mM buffer and 32.9 °C. Phosphate concentration above 80 mM decreased H2 production but had positive effect on cellulose consumption. The bacterial community analysis showed that Ruminiclostridium papyrosolvens was responsible for cellulose hydrolysis. Lachnoclostridium sp. was positively correlated with ethanol production at high phosphate buffer concentration while Caproiciproducens sp. with caproate production at low buffer concentration. The obtained results opens the possibility of simultaneous hydrogen and caproate production from cellulosic substrates.
Artificial Neural Network Based Optimization of a Six-step Two-bed Pressure Swing Adsorption System for Hydrogen Purification
Apr 2021
Publication
The pressure swing adsorption (PSA) system is widely applied to separate and purify hydrogen from gaseous mixtures. The extended Langmuir equation fitted from the extended Langmuir-Freundlich isotherm has been used to predict the adsorption isothermal of hydrogen and methane on the zeolite 5A adsorbent bed. A six-step two-bed PSA model for hydrogen purification is developed and validated by comparing its simulation results with other works. The effects of the adsorption pressure the P/F ratio the adsorption step time and the pressure equalization time on the performance of the hydrogen purification system are studied. A four-step two-bed PSA model is taken into consideration and the six-step PSA system shows higher about 13% hydrogen recovery than the four-step PSA system. The performance of the vacuum pressure swing adsorption (VPSA) system is compared with that of the PSA system the VPSA system shows higher hydrogen purity than the PSA system. Based on the validated PSA model a dataset has been produced to train the artificial neural network (ANN) model. The effects of the number of neurons in the hidden layer and the number of samples used for training ANN model on the predicted performance of ANN model are investigated. Then the well-trained ANN model with 6 neurons in the hidden layer is applied to predict the performance of the PSA system for hydrogen purification. Multi-objective optimization of hydrogen purification system is performed based on the trained ANN model. The artificial neural network can be considered as a very effective method for predicting and optimizing the performance of the PSA system for hydrogen purification.
Impact of Hydrogen/Natural Gas Blends on Partially Premixed Combustion Equipment: NOx Emission and Operational Performance
Feb 2022
Publication
Several North American utilities are planning to blend hydrogen into gas grids as a short‐ term way of addressing the scalable demand for hydrogen and as a long‐term decarbonization strat‐ egy for ‘difficult‐to‐electrify’ end uses. This study documents the impact of 0–30% hydrogen blends by volume on the performance emissions and safety of unadjusted equipment in a simulated use environment focusing on prevalent partially premixed combustion designs. Following a thorough literature review the authors describe three sets of results: operating standard and “ultra‐low NOx” burners from common heating equipment in “simulators” with hydrogen/methane blends up to 30% by volume in situ testing of the same heating equipment and field sampling of a wider range of equipment with 0–10% hydrogen/natural gas blends at a utility‐owned training facility. The equipment was successfully operated with up to 30% hydrogen‐blended fuels with limited visual changes to flames and key trends emerged: (a) a decrease in the input rate from 0 to 30% H2 up to 11% often in excess of the Wobbe Index‐based predictions; (b) NOx and CO emissions are flat or decline (air‐free or energy‐adjusted basis) with increasing hydrogen blending; and (c) a minor de‐ crease (1.2%) or increase (0.9%) in efficiency from 0 to 30% hydrogen blends for standard versus ultra‐low NOx‐type water heaters respectively.
From Post-Combustion Carbon Capture to Sorption-Enhanced Hydrogen Production: A State-of-the-Art Review of Carbonate Looping Process Feasibility
Oct 2018
Publication
Carbon capture and storage is expected to play a pivotal role in achieving the emission reduction targets established by the Paris Agreement. However the most mature technologies have been shown to reduce the net efficiency of fossil fuel-fired power plants by at least 7% points increasing the electricity cost. Carbonate looping is a technology that may reduce these efficiency and economic penalties. Its maturity has increased significantly over the past twenty years mostly due to development of novel process configurations and sorbents for improved process performance. This review provides a comprehensive overview of the calcium looping concepts and statistically evaluates their techno-economic feasibility. It has been shown that the most commonly reported figures for the efficiency penalty associated with calcium looping retrofits were between 6 and 8% points. Furthermore the calcium-looping-based coal-fired power plants and sorption-enhanced hydrogen production systems integrated with combined cycles and/or fuel cells have been shown to achieve net efficiencies as high as 40% and 50–60% respectively. Importantly the performance of both retrofit and greenfield scenarios can be further improved by increasing the degree of heat integration as well as using advanced power cycles and enhanced sorbents. The assessment of the economic feasibility of calcium looping concepts has indicated that the cost of carbon dioxide avoided will be between 10 and 30 € per tonne of carbon dioxide and 10–50 € per tonne of carbon dioxide in the retrofit and greenfield scenarios respectively. However limited economic data have been presented in the current literature for the thermodynamic performance of calcium looping concepts.
Reliable Off-grid Power Supply Utilizing Green Hydrogen
Jun 2021
Publication
Green hydrogen produced from wind solar or hydro power is a suitable electricity storage medium. Hydrogen is typically employed as mid- to long-term energy storage whereas batteries cover short-term energy storage. Green hydrogen can be produced by any available electrolyser technology [alkaline electrolysis cell (AEC) polymer electrolyte membrane (PEM) anion exchange membrane (AEM) solid oxide electrolysis cell (SOEC)] if the electrolysis is fed by renewable electricity. If the electrolysis operates under elevated pressure the simplest way to store the gaseous hydrogen is to feed it directly into an ordinary pressure vessel without any external compression. The most efficient way to generate electricity from hydrogen is by utilizing a fuel cell. PEM fuel cells seem to be the most favourable way to do so. To increase the capacity factor of fuel cells and electrolysers both functionalities can be integrated into one device by using the same stack. Within this article different reversible technologies as well as their advantages and readiness levels are presented and their potential limitations are also discussed.
Decarbonization of Cement Production in a Hydrogen Economy
Apr 2022
Publication
The transition to net-zero emission energy systems creates synergistic opportunities across sectors. For example fuel hydrogen production from water electrolysis generates by-product oxygen that could be used to reduce the cost of carbon capture and storage (CCS) essential in the decarbonization of clinker production in cement making. To assess this opportunity a techno-economic assessment was carried out for the production of clinker using oxy-combustion in a natural gas-fueled plant coupled to CCS. Material and energy flows were assessed in a reference case for clinker production (oxygen from air no CCS) and compared to oxy-combustion clinker production from either an air separation unit (ASU 95% O2) or water electrolysis (100% O2) both coupled to CCS. Compared to the reference air-combusted clinker plant oxy-combustion increases thermal energy demand by 7% and electricity demand by 137% for ASU and 67% for electrolytic oxygen. The levelized cost of oxygen supply ranges from $49/tO2 for an on-site ASU to pipelined electrolytic O2 at $35/tO2 (200 km) or $13/t O2 (20 km). The cost of clinker for the reference plant without CCS increases linearly from $84/t clinker to $193/t clinker at a carbon price of $0/tCO2 to $150/tCO2 respectively. With oxy-combustion and CCS the clinker production cost ranges from $119 to $122/t clinker reflecting a breakeven carbon price of $39 to $53/tCO2 compared to the reference case. The lower cost for the electrolytic supply of by-product oxygen compared to ASU oxygen must be balanced against the reliability of supply the pipeline transport distance and the charges that may be added by the hydrogen producer.
At What Cost Can Renewable Hydrogen Offset Fossil Fuel Use in Ireland’s Gas Network?
Apr 2020
Publication
The results of a techno-economic model of distributed wind-hydrogen systems (WHS) located at each existing wind farm on the island of Ireland are presented in this paper. Hydrogen is produced by water electrolysis from wind energy and backed up by grid electricity compressed before temporarily stored then transported to the nearest injection location on the natural gas network. The model employs a novel correlation-based approach to select an optimum electrolyser capacity that generates a minimum levelised cost of hydrogen production (LCOH) for each WHS. Three scenarios of electrolyser operation are studied: (1) curtailed wind (2) available wind and (3) full capacity operations. Additionally two sets of input parameters are used: (1) current and (2) future techno-economic parameters. Additionally two electricity prices are considered: (1) low and (2) high prices. A closest facility algorithm in a geographic information system (GIS) package identifies the shortest routes from each WHS to its nearest injection point. By using current parameters results show that small wind farms are not suitable to run electrolysers under available wind operation. They must be run at full capacity to achieve sufficiently low LCOH. At full capacity the future average LCOH is 6–8 €/kg with total hydrogen production capacity of 49 kilotonnes per year or equivalent to nearly 3% of Irish natural gas consumption. This potential will increase significantly due to the projected expansion of installed wind capacity in Ireland from 5 GW in 2020 to 10 GW in 2030
Testing Programme for Hydrogen Tolerance Tests of Domestic and Commercial Natural Gas Appliances
Jan 2021
Publication
The THyGA project (‘Testing Hydrogen admixture for Gas Applications’) focusses on technical aspects and the regulatory framework concerning the potential operation of domestic and commercial end-user appliances with hydrogen / natural gas blends.<br/>The core of the project is a broad experimental campaign with the aim to conduct up to 100 hydrogen tolerance tests. In addition the technical status quo and present knowledge about hydrogen impact on domestic and commercial appliances are assessed and potential future developments of rules and standards are discussed. Also mitigation strategies for coping with high levels of hydrogen admixture will be developed. By this broad approach the project aims at investigating which levels of hydrogen blending impact the various appliance technologies and to which extent in order to identify the regime in which a safe efficient and low-polluting operation is possible.<br/>The series of public reports by the THyGA project starts with several publications from work package 2 which sets the basis for the upcoming results and discussion of the experimental campaign as well as mitigation and standardisation topics.<br/>This report D2.5 completes the series of public reports from work package 2. It explains the steps of development of the test programme for gas-fired appliance tests with hydrogen admixture and especially describes the exchange between the THyGA partners and the external stakeholders.<br/>The report also explains the process of acquisition of appliances to test and method of selecting appliances.
Moving Gas Turbine Package from Conventional Gas to Hydrogen Blend
Sep 2021
Publication
The current greatest challenge that all gas turbine manufactures and users have in front of them for the years to come is the energy transition while reducing CO2 footprint and to contrast climate change. To this aim the introduction of hydrogen as fuel gas (or its blend) is playing a very important role. The benefit from an environmental point of view is undisputed but the presence of hydrogen introduces a series of safety related aspects to be considered for the design of all systems of a gas turbine package. Most of the design standards developed and adopted in the past are based on conventional natural gas however physical properties of hydrogen require to analyze additional aspects or revise the current ones. In this context the design for safety is paramount as it is strongly impacted by the low energy ignition of hydrogen blend fuels. Baker Hughes has built its experience on several sites different Customers and applications currently installed. These gas turbines run with a variety of hydrogen blends with concentration as high as 100% hydrogen. Baker Hughes has achieved several milestones moving from design to experimental set up leveraging the internal infrastructures consolidating design assumptions. In this work the critical aspects such as material selection instrumentation electrical devices and components are discussed in the framework of package safety with the aim to evolve conventional design minimizing the impacts on package configurations.
Different Scenarios of Electric Mobility: Current Situation and Possible Future Developments of Fuel Cell Vehicles in Italy
Jan 2020
Publication
The diffusion of electric vehicles in Italy has started but some complications weight its spread. At present hybrid technology is the most followed by users due particularly to socioeconomic factors such as cost of investment and range anxiety. After a deep discussion of the Italian scenario the aim of the paper is to recognize whether fuel cell technology may be an enabling solution to overcome pollution problems and respect for the environment. The opportunity to use fuel cells to store electric energy is quite fascinating—the charging times will be shortened and heavy passenger transport should be effortless challenged. On the basis of the present history and by investigating the available information this work reports the current e-mobility state in Italy and forecasts the cities in which a fuel cell charging infrastructure should be more profitable with the intention of granting a measured outlook on the plausible development of this actual niche market.
Polymer–Ceramic Composite Membranes for Water Removal in Membrane Reactors
Jun 2021
Publication
Methanol can be obtained through CO2 hydrogenation in a membrane reactor with higher yield or lower pressure than in a conventional packed bed reactor. In this study we explore a new kind of membrane with the potential suitability for such membrane reactors. Silicone–ceramic composite membranes are synthetized and characterized for their capability to selectively remove water from a mixture containing hydrogen CO2 and water at temperatures typical for methanol synthesis. We show that this membrane can achieve selective permeation of water under such harsh conditions and thus is an alternative candidate for use in membrane reactors for processes where water is one of the products and the yield is limited by thermodynamic equilibrium.
Optimal Sizing of Storage Elements for a Vehicle Based on Fuel Cells, Supercapacitors, and Batteries
Mar 2019
Publication
To achieve a vehicle-efficient energy management system an architecture composed of a PEM fuel cell as the main energy source and a hybrid storage system based on battery banks and supercapacitors is proposed. This paper introduces a methodology for the optimal component sizing aiming at minimizing the total cost achieving a cheaper system that can achieve the requirements of the speed profiles. The chosen vehicle is an urban transport bus which must meet the Buenos Aires Driving Cycle and the Manhattan Driving Cycle. The combination of batteries and supercapacitors allows a better response to the vehicle’s power demand since it combines the high energy density of the batteries with the high power density of the supercapacitors allowing the best absorption of energy coming from braking. In this way we address the rapid changes in power without reducing the global efficiency of the system. Optimum use of storage systems and fuel cell is analyzed through dynamic programming.
Simulation of Coupled Power and Gas Systems with Hydrogen-Enriched Natural Gas
Nov 2021
Publication
Due to the increasing share of renewable energy sources in the electrical network the focus on decarbonization has extended into other energy sectors. The gas sector is of special interest because it can offer seasonal storage capacity and additional flexibility to the electricity sector. In this paper we present a new simulation method designed for hydrogen-enriched natural gas network simulation. It can handle different gas compositions and is thus able to accurately analyze the impact of hydrogen injections into natural gas pipelines. After describing the newly defined simulation method we demonstrate how the simulation tool can be used to analyze a hydrogen-enriched gas pipeline network. An exemplary co-simulation of coupled power and gas networks shows that hydrogen injections are severely constrained by the gas pipeline network highlighting the importance and necessity of considering different gas compositions in the simulation.
Safety Standard for Hydrogen and Hydrogen Systems Guidelines for Hydrogen System Design, Materials Selection, Operations, Storage and Transportation
Jan 1997
Publication
The NASA Safety Standard which establishes a uniform process for hydrogen system design materials selection operation storage and transportation is presented. The guidelines include suggestions for safely storing handling and using hydrogen in gaseous (GH2) liquid (LH2) or slush (SLH2) form whether used as a propellant or non-propellant. The handbook contains 9 chapters detailing properties and hazards facility design design of components materials compatibility detection and transportation. Chapter 10 serves as a reference and the appendices contained therein include: assessment examples; scaling laws explosions blast effects and fragmentation; codes standards and NASA directives; and relief devices along with a list of tables and figures abbreviations a glossary and an index for ease of use. The intent of the handbook is to provide enough information that it can be used alone but at the same time reference data sources that can provide much more detail if required.
Enhancing Energy Recovery in Form of Biogas, from Vegetable and Fruit Wholesale Markets By-Products and Wastes, with Pretreatments
Jun 2021
Publication
Residues and by-products from vegetables and fruit wholesale markets are suitable for recovery in the form of energy through anaerobic digestion allowing waste recovery and introducing them into the circular economy. This suitability is due to their composition structural characteristics and to the biogas generation process which is stable and without inhibition. However it has been observed that the proportion of methane and the level of degradation of the substrate is low. It is decided to study whether the effect of pretreatments on the substrate is beneficial. Freezing ultrafreezing and lyophilization pretreatments are studied. A characterization of the substrates has been performed the route of action of pretreatment determined and the digestion process studied to calculate the generation of biogas methane hydrogen and the proportions among these. Also a complete analysis of the process has been performed by processing the data with mathematical and statistical methods to obtain disintegration constants and levels of degradation. It has been observed that the three pretreatments have positive effects when increasing the solubility of the substrate increasing porosity and improving the accessibility of microorganisms to the substrate. Generation of gases are greatly increased reaching a methane enrichment of 59.751%. Freezing seems to be the best pretreatment as it increases the biodegradation level the speed of the process and the disintegration constant by 306%.
Enhanced Hydrogen Generation Efficiency of Methanol using Dielectric Barrier Discharge Plasma Methodology and Conducting Sea Water as an Electrode
Aug 2020
Publication
In this work methanol decomposition method has been discussed for the production of hydrogen gas with the application of plasma. A simple dielectric barrier discharge (DBD) plasma reactor was designed for this purpose with two types of electrode. The DBD plasma reactor was experimented by substituting one of the metal electrodes with feebly conducting sea water which yielded better efficiency in producing hydrogen gas. Experimental parameters such as; discharge voltage and time were varied by maintaining a discharge gap of 1.5 mm and the plasma discharge characteristics were studied. Filamentary type micro-discharges were found to be formed which was observed as numerous streamer clusters in the current waveform. Gas chromatographic study confirmed the production of hydrogen gas with residence time around 3.6 min. Although the concentration (%) of H2 was high (98.1 %) and consistent with copper electrode assembly the rate of formation and concentration was found to be the highest (98.7 %) for water electrode for specific discharge voltage. The energy efficiency was found to be 0.5 mol H2/kWh and 1.2 mol H2/kWh for metal (Cu) and water electrodes respectively. The electrode material significantly affects the plasma condition and hence the rate of hydrogen production. Compositional analysis of the water used as electrode showed a minimal change in the composition even after the completion of the experiment as compared to the untreated water. Methanol degradation study shows the presence of untreated methanol in the residue of the plasma reactor which has been confirmed from the absorption spectra.
The Role of the Argon and Helium Bath Gases on the Detonation Structure of H2/)2 Mixture
Sep 2021
Publication
Recent modeling efforts of non-equilibrium effects in detonations have suggested that hydrogen-based detonations may be affected by vibrational non-equilibrium of the hydrogen and oxygen molecules effects which could explain discrepancies of cell sizes measured experimentally and calculated without relaxation effects. The present study addresses the role of vibrational relaxation in 2H2/O2 detonations by considering two-bath gases argon and helium. These two gases have the same thermodynamic and kinetic effects when relaxation is neglected. However due to the bath gases differences in molecular weight and reduced mass differences which affect the molecular collisions relaxation rates can be changed by approximately 50-70%. Experiments were performed in a narrow channel in mixtures of 2H2/O2/7Ar and 2H2/O2/7He to evaluate the role of the bath gas on detonation cellular structures. The experiments showed differences in velocity deficits and cell sizes for experimental conditions keeping the induction zone length constant in each of the mixtures. These differences were negligible in sensitive mixtures but increased with the increase in velocity deficits while the cell sizes approaching the channel dimensions. Near the limits differences of cell size in two mixtures approached a factor of 2. These differences were however reconciled by accounting for the viscous losses to the tube walls evaluated using a modified version of Mirels' laminar boundary layer theory and generalized Chapman-Jouguet theory for eigenvalue detonations. The experiments suggest that there is an influence of relaxation effects on the cellular structure of detonations which is more sensitive to wall boundary conditions. However the previous works showed that the impact of vibrational non-equilibrium in a mixture of H2/Air is more visible due to the effects of N2 in the air slowest to relax. Previous discrepancies suggested to be indicative of relaxation effects should be reevaluated by the inclusion of wall loss effects.
Optimization of Geothermal- and Solar-driven Clean Electricity and Hydrogen Production Multi-generation Systems to Address the Energy Nexus
Jan 2022
Publication
Given the limited sources of fossil fuels mankind should find new ways to meet its energy demands. In this regard geothermal and solar energy are acknowledged as reliable safe promising and clean means for this purpose. In this research study a comparative analysis is applied on geothermal and solar-driven multi-generation systems for clean electricity and hydrogen production through energy and exergy assessments. The system consists of an organic Rankine cycle a proton electrolyte membrane electrolyzer and a thermoelectric generator subsystem. The Engineering Equation Solver software has been utilized in order to model the system and obtain the output contours sensitivity analysis and exergy destruction. The results were calculated considering the ambient temperature of Bandar Abbas city as a case study considering the geothermal system due to better performance in comparison to the solar system. According to the sensitivity analysis the turbine efficiency evaporator inlet temperature thermoelectric generator suitability criterion pump efficiency and evaporator inlet mass flow rate are the most influential parameters. Also the exergy analysis showed that the utmost system's exergy destruction is pertinent to the evaporator and the least is related to the pump. In addition the system produces 352816 kWh and 174.913 kg of electrical power and hydrogen during one year.
Scenario-Based Techno-Economic Analysis of Steam Methane Reforming Process for Hydrogen Production
Jun 2021
Publication
Steam methane reforming (SMR) process is regarded as a viable option to satisfy the growing demand for hydrogen mainly because of its capability for the mass production of hydrogen and the maturity of the technology. In this study an economically optimal process configuration of SMR is proposed by investigating six scenarios with different design and operating conditions including CO2 emission permits and CO2 capture and sale. Of the six scenarios the process configuration involving CO2 capture and sale is the most economical with an H2 production cost of $1.80/kg-H2. A wide range of economic analyses is performed to identify the tradeoffs and cost drivers of the SMR process in the economically optimal scenario. Depending on the CO2 selling price and the CO2 capture cost the economic feasibility of the SMR-based H2 production process can be further improved.
Metal‐Supported Biochar Catalysts for Sustainable Biorefinery, Electrocatalysis and Energy Storage Applications: A Review
Feb 2022
Publication
Biochar (BCH) is a carbon‐based bio‐material produced from thermochemical conversion of biomass. Several activation or functionalization methods are usually used to improve physicochemical and functional properties of BCHs. In the context of green and sustainable future development activated and functionalized biochars with abundant surface functional groups and large surface area can act as effective catalysts or catalyst supports for chemical transformation of a range of bioproducts in biorefineries. Above the well‐known BCH applications their use as adsorbents to remove pollutants are the mostly discussed although their potential as catalysts or catalyst supports for advanced (electro)catalytic processes has not been comprehensively explored. In this review the production/activation/functionalization of metal‐supported biochar (M‐BCH) are scrutinized giving special emphasis to the metal‐functionalized biochar‐based (electro)catalysts as promising catalysts for bioenergy and bioproducts production. Their performance in the fields of biorefinery processes and energy storage and conversion as electrode materials for oxygen and hydrogen evolutions oxygen reduction and supercapacitors are also reviewed and discussed.
Hollow CdS-Based Photocatalysts
Oct 2020
Publication
In recent years photocatalytic technology driven by solar energy has been extensively investigated to ease energy crisis and environmental pollution. Nevertheless efficiency and stability of photocatalysts are still unsatisfactory. To address these issues design of advanced photocatalysts is important. Cadmium sulphide (CdS) nanomaterials are one of the promising photocatalysts. Among them hollow-structured CdS featured with enhanced light absorption ability large surface area abundant active sites for redox reactions and reduced diffusion distance of photogenerated carriers reveals a broad application prospect. Herein main synthetic strategies and formation mechanism of hollow CdS photocatalysts are summarized. Besides we comprehensively discuss the current development of hollow-structured CdS nanomaterials in photocatalytic applications including H2 production CO2 reduction and pollutant degradation. Finally brief conclusions and perspectives on the challenges and future directions for hollow CdS photocatalysts are proposed.
No more items...