Skip to content
1900

Techno-economic Analysis of a Renewable-based Hybrid Energy system for Utility and Transportation Facilities in a Remote Community of Northern Alberta

Abstract

Many off-grid communities in Canada are dependent on diesel generators to fulfill their utility and transportation needs, causing destructive environmental impact. This study aims to optimize and investigate the technoeconomic feasibility of a hybrid renewable energy system to satisfy the 1.6 MWh/day electricity, 184.2 kWh/day thermal, and 428.38 kg/year hydrogen demand simultaneously, Trout Lake, a remote community of Northern Alberta. A novel hybrid energy system consisting of solar PV, wind turbine, electrolyzer, hydrogen tank, battery, fuel cell, hydrogen boiler, and thermal load controller has been proposed to generate electricity, heat, and hydrogen by renewables which reduce carbon emission utilizing the excess energy (EE). Five different scenarios were developed in HOMER Pro software, and the results were compared to identify the best combination of hybrid renewable energy systems. The results indicate that the fifth scenario is the optimal renewable energy system that provides a lower cost of energy (COE) at $0.675/kWh and can reduce 99.99% carbon emission compared to the diesel-based system. Additionally, the utilization of thermal load controller, battery, and fuel cell improved the system’s reliability, increasing renewable fraction (RF) (93.5%) and reducing EE (58.3%) significantly. In comparison to the diesel-based systems, it is also discovered that battery energy storage is the most affordable option, while fuel cells are the more expensive choice for remote community. Sensitivity analyses are performed to measure the impact of different dominating factors on COE, EE, and RF.

Related subjects: Applications & Pathways
Loading

Article metrics loading...

/content/journal7076
2023-06-02
2025-04-04
/content/journal7076
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error