United States
CFD Modeling and Consequence Analysis of an Accidental Hydrogen Release in a Large Scale Facility
Sep 2013
Publication
In this study the consequences of an accidental release of hydrogen within large scale (>15000 m3) facilities were modelled. To model the hydrogen release an LES Navier–Stokes CFD solver called fireFoam was used to calculate the dispersion and mixing of hydrogen within a large scale facility. The performance of the CFD modelling technique was evaluated through a validation study using experimental results from a 1/6 scale hydrogen release from the literature and a grid sensitivity study. Using the model a parametric study was performed varying release rates and enclosure sizes and examining the concentrations that develop. The hydrogen dispersion results were then used to calculate the corresponding pressure loads from hydrogen-air deflagrations in the facility.
Life-Cycle Greenhouse Gas Emissions Of Biomethane And Hydrogen Pathways In The European Union
Oct 2021
Publication
Gaseous fuels with low life-cycle emissions of greenhouse gases (GHG) play a prominent role in the European Union’s (EU) decarbonization plans. Renewable and low-GHG hydrogen are highlighted in the ambitious goals for a cross-sector hydrogen economy laid out in the European Commission’s Hydrogen Strategy. Renewable hydrogen and biomethane are given strong production incentives in the Commission’s proposed revision to the Renewable Energy Directive (REDII). The EU uses life-cycle analysis (LCA) to determine whether renewable gas pathways meet the GHG reduction thresholds for eligibility in the REDII. This study aims to support European policymakers with a better understanding of the uncertainties regarding gaseous fuels’ roles in meeting climate goals. Life-cycle GHG analysis is complex and differences in methodology as well as data inputs and assumptions can spell the difference between a renewable gas pathway qualifying or not for REDII eligibility at the 50% to 80% GHG reduction level. It is thus important for European policymakers to use robust LCA to ensure that policy only supports gas pathways consistent with a vision of deep decarbonization. For this purpose we conduct sensitivity analysis of the life-cycle GHG emissions of a number of low-GHG gas pathways including biomethane produced from four feedstocks: wastewater sludge manure landfill gas (LFG) and silage maize; and hydrogen produced from eight sources: natural gas combined with carbon capture and storage (CCS) coal with CCS biomass gasification renewable electricity 2030 EU grid electricity wastewater sludge biomethane manure biomethane and LFG biomethane. For each pathway we estimate the life-cycle GHG intensity using a default central case identify key parameters that strongly affect the fuel’s GHG intensity and conduct a sensitivity analysis by changing these key parameters according to the range of possible values collected from the literature. Figure ES1 summarizes the full range of possible GHG intensities for each gaseous pathway we analyzed in this study—biomethane is depicted in the top figure and hydrogen is shown in the bottom. The bars represent the GHG intensity of the central case and vertical error bars indicate the maximum and minimum GHG intensity of each pathway according to our sensitivity analysis. The dotted orange horizontal line illustrates the fossil comparator which is 94 grams of carbon dioxide equivalent per megajoule (gCO2e/MJ) for transport fuels in the REDII. The dotted yellow line represents the GHG intensity of a 65% GHG reduction goal for biomethane used in the transportation sector or 70% GHG reduction for hydrogen. Pathways are situated from left to right in increasing order of GHG intensity of the central case. Comparing the central cases of the four biomethane pathways the waste-based biomethane pathways generally have negative GHG intensity. However considering the uncertainty in these GHG intensities manure biomethane might have more limited carbon reduction potential in the 100-year timeframe if methane leakage from its production process is high. In contrast wastewater sludge biomethane and LFG biomethane even after accounting for uncertainties retain relatively low GHG emissions. On the other hand biomethane produced from silage maize can have much higher emissions; in the central case we find that silage maize biogas only reduces GHG emissions by 30% relative to the fossil comparator—the low carbon reduction potential is due to the significant emissions emerging from direct and indirect land use change involved in growing maize. Taking into account the variation in assumptions silage maize biomethane can be worse for the climate than fossil fuels.
Hydrogen Station Location Planning via Geodesign in Connecticut: Comparing Optimization Models and Structured Stakeholder Collaboration
Nov 2021
Publication
Geodesign is a participatory planning approach in which stakeholders use geographic information systems to develop and vet alternative design scenarios in a collaborative and iterative process. This study is based on a 2019 geodesign workshop in which 17 participants from industry government university and non-profit sectors worked together to design an initial network of hydrogen refueling stations in the Hartford Connecticut metropolitan area. The workshop involved identifying relevant location factors rapid prototyping of station network designs and developing consensus on a final design. The geodesign platform which was designed specifically for facility location problems enables breakout groups to add or delete stations with a simple point-and-click operation view and overlay different map layers compute performance metrics and compare their designs to those of other groups. By using these sources of information and their own expert local knowledge participants recommended six locations for hydrogen refueling stations over two distinct phases of station installation. We quantitatively and qualitatively compared workshop recommendations to solutions of three optimal station location models that have been used to recommend station locations which minimize travel times from stations to population and traffic or maximize trips that can be refueled on origin–destination routes. In a post-workshop survey participants rated the workshop highly for facilitating mutual understanding and information sharing among stakeholders. To our knowledge this workshop represents the first application of geodesign for hydrogen refueling station infrastructure planning.
Greenhouse Gas Emissions of Conventional and Alternative Vehicles: Predictions Based on Energy Policy Analysis in South Korea
Mar 2020
Publication
This paper compares the well-to-wheel (WTW) greenhouse gas (GHG) emissions of representative vehicle types–internal combustion engine vehicle (ICEV) hybrid electric vehicle (HEV) plug-in hybrid electric vehicle (PHEV) battery electric vehicle (BEV) and fuel cell electric vehicle (FCEV)–in the future (2030) based on a WTW analysis for the present (2017) and an analysis of various energy policies that could affect future emissions. South Korea was selected as the target region because it has detailed energy policies related to alternative vehicles. The WTW analysis for the present was performed based on three sets of subordinate analyses: (1) life cycle analyses of eight base fuels; (2) life cycle analyses of electricity and hydrogen; and (3) analyses of the fuel economies of seven vehicle types. From the WTW analysis for the present the national average WTW GHG emissions of ICEV-gasoline ICEV-diesel ICEV-liquefied petroleum gas HEV PHEV BEV and FCEV were calculated as 225 233 201 159 133 109 and 55 g-CO2-eq./km respectively. For calculating the WTW GHG emissions in the future two policies regarding electricity production and three policies regarding hydrogen production were analysed. Three cases with varying the degrees of improvements in fuel economies were considered. Six future scenarios were constructed and each scenario represented the case in which each energy policy is enacted. In the reference scenario for compact car the WTW GHG emissions of ICEVs-gasoline HEV PHEV BEV-200 mile FCEV were analysed as 161 110 97 86 and 91 g-CO2-eq./km respectively. The differences between ICEV/HEV and BEV were predicted to decrease in the future mainly due to larger improvements of ICEV/HEV in fuel economies compared to that of BEV. The future life cycle GHG emissions of electricity and hydrogen were calculated according to energy policy. Both two policies regarding power generation were confirmed to increase the benefits of utilizing BEVs but current energy policy regarding hydrogen production were confirmed to decrease the benefits of utilizing FCEVs. Based on the comprehensive results of this study a framework was proposed to evaluate the impacts of an energy policy regarding electricity and hydrogen production on the benefits of using BEVs and FCEVs compared to using HEVs and ICEVs. This framework can also be utilized in other countries when they assess and establish their energy policies.
Catalytic Hydrogen Production from Methane: A Review on Recent Progress and Prospect
Aug 2020
Publication
Natural gas (Methane) is currently the primary source of catalytic hydrogen production accounting for three quarters of the annual global dedicated hydrogen production (about 70 M tons). Steam–methane reforming (SMR) is the currently used industrial process for hydrogen production. However the SMR process suffers with insufficient catalytic activity low long-term stability and excessive energy input mostly due to the handling of large amount of CO2 coproduced. With the demand for anticipated hydrogen production to reach 122.5 M tons in 2024 novel and upgraded catalytic processes are desired for more effective utilization of precious natural resources. In this review we summarized the major descriptors of catalyst and reaction engineering of the SMR process and compared the SMR process with its derivative technologies such as dry reforming with CO2 (DRM) partial oxidation with O2 autothermal reforming with H2O and O2. Finally we discussed the new progresses of methane conversion: direct decomposition to hydrogen and solid carbon and selective oxidation in mild conditions to hydrogen containing liquid organics (i.e. methanol formic acid and acetic acid) which serve as alternative hydrogen carriers. We hope this review will help to achieve a whole picture of catalytic hydrogen production from methane.
Development of Liquid Hydrogen Leak Frequencies Using a Bayesian Update Process
Sep 2021
Publication
To quantify the risk of an accident in a liquid hydrogen system it is necessary to determine how often a leak may occur. To do this representative component leakage frequencies specific to liquid hydrogen can be determined as a function of the normalized leak size. Subsequently the system characteristics (e.g. system pressure) can be used to calculate accident consequences. Operating data (such as leak frequencies) for liquid hydrogen systems are very limited; rather than selecting a single leak frequency value from a literature source data from different sources can be combined using a Bayesian model. This approach provides leakage rates for different amounts of leakage distributions for leakage rates to propagate through risk assessment models to establish risk result uncertainty and a means for incorporating liquid hydrogen-specific leakage data with leakage frequencies from other fuels. Specifically other cryogenic fluids like liquefied natural gas are used as a baseline for the Bayesian analysis. This Bayesian update process is used to develop leak frequency distributions for different system component types and leak sizes. These leak frequencies can be refined as liquid hydrogen data becomes available and may then inform safety code requirements based on the likelihood of liquid hydrogen release for different systems.
Developing New Understanding of Photoelectrochemical Water Splitting Via In-situ Techniques: A Review on Recent Progress
Mar 2014
Publication
Photoelectrochemical (PEC) water splitting is a promising technology for solar hydrogen production to build a sustainable renewable and clean energy economy. Given the complexity of the PEC water splitting processes it is important to note that developing in-situ techniques for studying PEC water splitting presents a formidable challenge. This review is aimed at highlighting advantages and disadvantages of each technique while offering a pathway of potentially combining several techniques to address different aspects of interfacial processes in PEC water splitting. We reviewed recent progress in various techniques and approaches utilized to study PEC water splitting focusing on spectroscopic and scanning-probe methods.
Black TiO2 for Solar Hydrogen Conversion
Feb 2017
Publication
Titanium dioxide (TiO2 ) has been widely investigated for photocatalytic H2 evolution and photoelectrochemical (PEC) water splitting since 1972. However its wide bandgap (3.0–3.2 eV) limits the optical absorption of TiO2 for sufficient utilization of solar energy. Blackening TiO2 has been proposed as an effective strategy to enhance its solar absorption and thus the photocatalytic and PEC activities and aroused widespread research interest. In this article we reviewed the recent progress of black TiO2 for photocatalytic H2 evolution and PEC water splitting along with detailed introduction to its unique structural features optical property charge carrier transfer property and related theoretical calculations. As summarized in this review article black TiO2 could be a promising candidate for photoelectrocatalytic hydrogen generation via water splitting and continuous efforts are deserved for improving its solar hydrogen efficiency.
Road Map to a US Hydrogen Energy: Reducing Emissions and Driving Growth Across the Nation
Oct 2020
Publication
This US Hydrogen Road Map was created through the collaboration of executives and technical industry experts in hydrogen across a broad range of applications and sectors who are committed to improving the understanding of hydrogen and how to increase its adoption across many sectors of the economy. For the first time this coalition of industry leaders has convened to develop a targeted holistic approach for expanding the use of hydrogen as an energy carrier. Due to great variation among national and state policies infrastructure needs and community interests each state and region of the US will likely have its own specific policies and road maps for implementing hydrogen infrastructure. The West Coast for example has traditionally had progressive policies on reducing transportation emissions so it is likely that hydrogen will scale sooner for vehicles in this region especially California. Experts also acknowledge the role that hydrogen in combination with renewables can play in supplying microgrid-type power to communities with the highest risk of shut-offs during seasonal weather-related issues such as high temperatures or wildfire-related power interruptions. Some states have emphasized the need to decarbonize the gas grid so blending hydrogen in natural gas networks and using hydrogen as feedstock may advance more quickly in these regions. Other states are interested in hydrogen as a means to address power grid issues enable the deployment of renewables and support competitive nuclear power. The launch of hydrogen technologies in some states or regions will help to scale hydrogen in various applications across the country laying the foundation for energy security grid resiliency economic growth and the reduction of both greenhouse gas (GHG) emissions and air pollutants. This report outlines the benefits and impact of fuel cell technologies and hydrogen as a viable solution to the energy challenges facing the US through 2030 and beyond. As such it can serve as the latest comprehensive industry-driven national road map to accelerate and scale up hydrogen in the economy across North America
An Investigation of Mobile Hydrogen and Fuel Cell Technology Applications
Sep 2019
Publication
Safe practices in the production storage distribution and use of hydrogen are essential for the widespread acceptance of hydrogen and fuel cell technologies. A significant safety incident in any project could damage public perception of hydrogen and fuel cells. A recent incident involving a hydrogen mobile storage trailer in the United States has brought attention to the potential impacts of mobile hydrogen storage and transport. Road transport of bulk hydrogen presents unique hazards that can be very different from those for stationary equipment and new equipment developers may have less experience and expertise than seasoned gas providers. In response to the aforementioned incident and in support of hydrogen and fuel cell activities in California the Hydrogen Safety Panel (HSP) has investigated the safety of mobile hydrogen and fuel cell applications (mobile auxiliary/emergency fuel cell power units mobile fuellers multi-cylinder trailer transport unmanned aircraft power supplies and mobile hydrogen generators). The HSP examined the applications requirements and performance of mobile applications that are being used extensively outside of California to understand how safety considerations are applied. This paper discusses the results of the HSP’s evaluation of hydrogen and fuel cell mobile applications along with recommendations to address relevant safety issues.
Risk Assessment and Ventilation Modeling for Hydrogen Vehicle Repair Garages
Sep 2019
Publication
The availability of repair garage infrastructure for hydrogen fuel cell vehicles is becoming increasingly important for future industry growth. Ventilation requirements for hydrogen fuel cell vehicles can affect both retrofitted and purpose-built repair garages and the costs associated with these requirements can be significant. A hazard and operability (HAZOP) study was performed to identify key risk-significant scenarios related to hydrogen vehicles in a repair garage. Detailed simulations and modeling were performed using appropriate computational tools to estimate the location behaviour and severity of hydrogen release based on key HAZOP scenarios. This work compares current fire code requirements to an alternate ventilation strategy to further reduce potential hazardous conditions. It is shown that position direction and velocity of ventilation have a significant impact on the amount of flammable mass in the domain.
Hydrogen and Fuel Cell Vehicles UN Global Technical Regulation No. 13: Latest Updates Reflecting Heavy Duty Vehicles
Sep 2019
Publication
This paper provides a detailed technical description of the United Nations Global Technical Regulation No. 13 (UN GTR #13) 1998 Agreement and contracting party obligations phase 2 activity and safety provisions being discussed and developed for heavy duty hydrogen fuel cell vehicles.
Acid Acceleration of Hydrogen Generation Using Seawater as a Reactant
Jul 2016
Publication
The present study describes hydrogen generation from NaBH4 in the presence of acid accelerator boric oxide or B2O3 using seawater as a reactant. Reaction times and temperatures are adjusted using various delivery methods: bulk addition funnel and metering pump. It is found that the transition metal catalysts typically used to generate hydrogen gas are poisoned by seawater. B2O3 is not poisoned by seawater; in fact reaction times are considerably faster in seawater using B2O3. Reaction times and temperatures are compared for pure water and seawater for each delivery method. It is found that using B2O3 with pure water bulk addition is 97% complete in 3 min; pump metering provides a convenient method to extend the time to 27 min a factor of 9 increase above bulk addition. Using B2O3 with seawater as a reactant bulk addition is 97% complete in 1.35 min; pump metering extends the time to 23 min a factor of 17 increase above bulk. A second acid accelerator sodium bisulfate or NaHSO4 is investigated here for use with NaBH4 in seawater. Because it is non-reactive in seawater i.e. no spontaneous H2 generation NaHSO4 can be stored as a solution in seawater; because of its large solubility it is ready to be metered into NaBH4. With NaHSO4 in seawater pump metering increases the time to 97% completion from 3.4 min to 21 min. Metering allows the instantaneous flow rate of H2 and reaction times and temperatures to be tailored to a particular application. In one application the seawater hydrogen generator characterized here is ideal for supplying H2 gas directly to Proton Exchange Membrane fuel cells in sea surface or subsea environments where a reliable source of power is needed.
Hydrogen Technologies Safety Guide
Jan 2015
Publication
The purpose of this guide is to provide basic background information on hydrogen technologies. It is not intended to be a comprehensive collection of hydrogen technologies safety information. It is intended to provide project developers code officials and other interested parties the background information to be able to put hydrogen safety in context. For example code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen basic safety concerns and safety requirements.
Development of Risk Mitigation Guidance for Sensor Placement Inside Mechanically Ventilated Enclosures – Phase 1
Sep 2019
Publication
Guidance on Sensor Placement was identified as the top research priority for hydrogen sensors at the 2018 HySafe Research Priority Workshop on hydrogen safety in the category Mitigation Sensors Hazard Prevention and Risk Reduction. This paper discusses the initial steps (Phase 1) to develop such guidance for mechanically ventilated enclosures. This work was initiated as an international collaborative effort to respond to emerging market needs related to the design and deployment equipment for hydrogen infrastructure that is often installed in individual equipment cabinets or ventilated enclosures. The ultimate objective of this effort is to develop guidance for an optimal sensor placement such that when integrated into a facility design and operation will allow earlier detection at lower levels of incipient leaks leading to significant hazard reduction. Reliable and consistent early warning of hydrogen leaks will allow for the risk mitigation by reducing or even eliminating the probability of escalation of small leaks into large and uncontrolled events. To address this issue a study of a real-world mechanically ventilated enclosure containing GH2 equipment was conducted where CFD modelling of the hydrogen dispersion (performed by AVT and UQTR and independently by the JRC) was validated by the NREL Sensor laboratory using a Hydrogen Wide Area Monitor (HyWAM) consisting of a 10-point gas and temperature measurement analyzer. In the release test helium was used as a hydrogen surrogate. Expansion of indoor releases to other larger facilities (including parking structures vehicle maintenance facilities and potentially tunnels) and incorporation into QRA tools such as HyRAM is planned for Phase 2. It is anticipated that results of this work will be used to inform national and international standards such as NFPA 2 Hydrogen Technologies Code Canadian Hydrogen Installation Code (CHIC) and relevant ISO/TC 197 and CEN documents.
Carbon Negative Transportation Fuels - A Techno-Economic-Environmental Analysis of Biomass Pathways for Transportation
Feb 2022
Publication
Global warming and fossil fuel depletion have necessitated alternative sources of energy. Biomass is a promising fuel source because it is renewable and can be carbon negative even without carbon capture and storage. This study considers biomass as a clean renewable source for transportation fuels. An Aspen Plus process simulation model was built of a biomass gasification biorefinery with Fischer-Tropsch (FT) synthesis of liquid fuels. A GaBi life cycle assessment model was also built to determine the environmental impacts using a cradle-to-grave approach. Three different product pathways were considered: Fischer-Tropsch synthetic diesel hydrogen and electricity. An offgas autothermal reformer with a recycle loop was used to increase FT product yield. Different configurations and combinations of biorefinery products are considered. The thermal efficiency and cost of production of the FT liquid fuels are analyzed using the Aspen Plus process model. The greenhouse gas emissions profitability and mileage per kg biomass were compared. The mileage traveled per kilogram biomass was calculated using modern (2019-2021) diesel electric and hydrogen fuel cell vehicles. The overall thermal efficiency was found to be between 20-41% for FT fuels production between 58-61% for hydrogen production and around 25-26% for electricity production for this biorefinery. The lowest production costs were found to be $3.171/gal of FT diesel ($24.304/GJ) $1.860/kg of H2 ($15.779/GJ) and 13.332¢/kWh for electricity ($37.034/GJ). All configurations except one had net negative carbon emissions over the life cycle of the biomass. This is because carbon is absorbed in the trees initially and some of the carbon is sequestered in ash and unconverted char from the gasification process furthermore co-producing electricity while making transportation fuel offsets even more carbon emissions. Compared to current market rates for diesel hydrogen and electricity the most profitable biorefinery product is shown to be hydrogen while also having net negative carbon emissions. FT diesel can also be profitable but with a slimmer profit margin (not considering government credits) and still having net negative carbon emissions. However our biorefinery could not compete with current commercial electricity prices in the US. As oil hydrogen and electricity prices continue to change the economics of the biorefinery and the choice product will change as well. For our current biorefinery model hydrogen seems to be the most promising product choice for profit while staying carbon negative while FT diesel is the best choice for sequestering the most carbon and still being profitable. All code and data are given.
Numerical Prediction of Cryogenic Hydrogen Vertical Jets
Sep 2019
Publication
Comparison of Computational Fluid Dynamics (CFD) predictions with measurements is presented for cryo-compressed hydrogen vertical jets. The stagnation conditions of the experiments are characteristic of unintended leaks from pipe systems that connect cryogenic hydrogen storage tanks and could be encountered at a fuel cell refuelling station. Jets with pressure up to 5 bar and temperatures just above the saturation liquid temperature were examined. Comparisons are made to the centerline mass fraction and temperature decay rates the radial profiles of mass fraction and the contours of volume fraction. Two notional nozzle approaches are tested to model the under-expanded jet that was formed in the tests with pressures above 2 bar. In both approaches the mass and momentum balance from the throat to the notional nozzle are solved while the temperature at the notional nozzle was assumed equal to the nozzle temperature in the first approach and was calculated by an energy balance in the second approach. The two approaches gave identical results. Satisfactory agreement with the measurements was found in terms of centerline mass fraction and temperature. However for test with 3 and 4 bar release the concentration was overpredicted. Furthermore a wider radial spread was observed in the predictions possibly revealing higher degree of diffusion using the k-ε turbulence model. An integral model for cryogenic jets was also developed and provided good results. Finally a test simulation was performed with an ambient temperature jet and compared to the cold jet showing that warm jets decay faster than cold jets.
Dispersion of Cryogenic Hydrogen Through High-aspect Ratio Nozzles
Sep 2019
Publication
Liquid hydrogen is increasingly being used as a delivery and storage medium for stations that provide compressed gaseous hydrogen for fuel cell electric vehicles. In efforts to provide scientific justification for separation distances for liquid hydrogen infrastructure in fire codes the dispersion characteristics of cryogenic hydrogen jets (50–64 K) from high aspect ratio nozzles have been measured at 3 and 5 barabs stagnation pressures. These nozzles are more characteristic of unintended leaks which would be expected to be cracks rather than conventional round nozzles. Spontaneous Raman scattering was used to measure the concentration and temperature field along the major and minor axes. Within the field of interrogation the axis-switching phenomena was not observed but rather a self-similar Gaussian-profile flow regime similar to room temperature or cryogenic hydrogen releases through round nozzles. The concentration decay rate and half-widths for the planar cryogenic jets were found to be nominally equivalent to that of round nozzle cryogenic hydrogen jets indicating a similar flammable envelope. The results from these experiments will be used to validate models for cryogenic hydrogen dispersion that will be used for simulations of alternative scenarios and quantitative risk assessment
A Comparative Technoeconomic Analysis of Renewable Hydrogen Production Using Solar Energy
May 2016
Publication
A technoeconomic analysis of photoelectrochemical (PEC) and photovoltaic-electrolytic (PV-E) solar-hydrogen production of 10 000 kg H2 day−1 (3.65 kilotons per year) was performed to assess the economics of each technology and to provide a basis for comparison between these technologies as well as within the broader energy landscape. Two PEC systems differentiated primarily by the extent of solar concentration (unconcentrated and 10× concentrated) and two PV-E systems differentiated by the degree of grid connectivity (unconnected and grid supplemented) were analyzed. In each case a base-case system that used established designs and materials was compared to prospective systems that might be envisioned and developed in the future with the goal of achieving substantially lower overall system costs. With identical overall plant efficiencies of 9.8% the unconcentrated PEC and non-grid connected PV-E system base-case capital expenses for the rated capacity of 3.65 kilotons H2 per year were $205 MM ($293 per m2 of solar collection area (mS−2) $14.7 WH2P−1) and $260 MM ($371 mS−2 $18.8 WH2P−1) respectively. The untaxed plant-gate levelized costs for the hydrogen product (LCH) were $11.4 kg−1 and $12.1 kg−1 for the base-case PEC and PV-E systems respectively. The 10× concentrated PEC base-case system capital cost was $160 MM ($428 mS−2 $11.5 WH2P−1) and for an efficiency of 20% the LCH was $9.2 kg−1. Likewise the grid supplemented base-case PV-E system capital cost was $66 MM ($441 mS−2 $11.5 WH2P−1) and with solar-to-hydrogen and grid electrolysis system efficiencies of 9.8% and 61% respectively the LCH was $6.1 kg−1. As a benchmark a proton-exchange membrane (PEM) based grid-connected electrolysis system was analyzed. Assuming a system efficiency of 61% and a grid electricity cost of $0.07 kWh−1 the LCH was $5.5 kg−1. A sensitivity analysis indicated that relative to the base-case increases in the system efficiency could effect the greatest cost reductions for all systems due to the areal dependencies of many of the components. The balance-of-systems (BoS) costs were the largest factor in differentiating the PEC and PV-E systems. No single or combination of technical advancements based on currently demonstrated technology can provide sufficient cost reductions to allow solar hydrogen to directly compete on a levelized cost basis with hydrogen produced from fossil energy. Specifically a cost of CO2 greater than ∼$800 (ton CO2)−1 was estimated to be necessary for base-case PEC hydrogen to reach price parity with hydrogen derived from steam reforming of methane priced at $12 GJ−1 ($1.39 (kg H2)−1). A comparison with low CO2 and CO2-neutral energy sources indicated that base-case PEC hydrogen is not currently cost-competitive with electrolysis using electricity supplied by nuclear power or from fossil-fuels in conjunction with carbon capture and storage. Solar electricity production and storage using either batteries or PEC hydrogen technologies are currently an order of magnitude greater in cost than electricity prices with no clear advantage to either battery or hydrogen storage as of yet. Significant advances in PEC technology performance and system cost reductions are necessary to enable cost-effective PEC-derived solar hydrogen for use in scalable grid-storage applications as well as for use as a chemical feedstock precursor to CO2-neutral high energy-density transportation fuels. Hence such applications are an opportunity for foundational research to contribute to the development of disruptive approaches to solar fuels generation systems that can offer higher performance at much lower cost than is provided by current embodiments of solar fuels generators. Efforts to directly reduce CO2 photoelectrochemically or electrochemically could potentially produce products with higher value than hydrogen but many as yet unmet challenges include catalytic efficiency and selectivity and CO2 mass transport rates and feedstock cost. Major breakthroughs are required to obtain viable economic costs for solar hydrogen production but the barriers to achieve cost-competitiveness with existing large-scale thermochemical processes for CO2 reduction are even greater.
Achieving High-rate Hydrogen Recovery from Wastewater Using Customizable Alginate Polymer Gel Matrices Encapsulating Biomass
Jul 2018
Publication
In addition to methane gas higher-value resources such as hydrogen gas are produced during anaerobic wastewater treatment. They are however immediately consumed by other organisms. To recover these high-value resources not only do the desired phenotypes need to be retained in the anaerobic reactor but the undesired ones need to be washed out. In this study a well-established alginate-based polymer gel with and without a coating layer was used to selectively encapsulate hydrogen-producing biomass in beads to achieve high-rate recovery of hydrogen during anaerobic wastewater treatment. The effect of cross-linking agents Ca2+ Sr2+ and Ba2+ as well as a composite coating on the beads consisting of alternating layers of polyethylenimine and silica hydrogel were investigated with respect to their performance specifically their mass transfer characteristics and their differential ability to retain the encapsulated biomass. Although the coating reduced the escape rate of encapsulated biomass from the beads all alginate polymer matrices without coating effectively retained biomass. Fast diffusion of dissolved organic carbon (DOC) through the polymer gel was observed in both Ca-alginate and Sr-alginate without coating. The coating however decreased either the diffusivity or the permeability of the DOC depending on whether the DOC was from synthetic wastewater (more lipids and proteins) or real brewery wastewater (more sugars). Consequently the encapsulation system with coating became diffusion limited when brewery wastewater with high chemical oxygen demand was fed resulting in a lower hydrogen production rate than the uncoated encapsulation systems. In all cases the encapsulated biomass was able to produce hydrogen even at a hydraulic residence time of 45 min. Although there are limitations to this system the used of encapsulated biomass for resource recovery from wastewater shows promise particularly for high-rate systems in which the retention of specific phenotypes is desired.
Lessons Learned from Safety Events
Sep 2011
Publication
The Hydrogen Incident Reporting and Lessons Learned website (www.h2incidents.org) was launched in 2006 as a database-driven resource for sharing lessons learned from hydrogen-related safety events to raise safety awareness and encourage knowledge-sharing. The development of this database its first uses and subsequent enhancements have been described at the Second and Third International Conferences on Hydrogen Safety [1] [2]. Since 2009 continuing work has not only highlighted the value of safety lessons learned but enhanced how the database provides access to another safety knowledge tool Hydrogen Safety Best Practices (http://h2bestpractices.org). Collaborations with the International Energy Agency (IEA) Hydrogen Implementing Agreement (HIA) Task 19 – Hydrogen Safety and others have enabled the database to capture safety event learning’s from around the world. This paper updates recent progress highlights the new “Lessons Learned Corner” as one means for knowledge-sharing and examines the broader potential for collecting analyzing and using safety event information.
Introduction to Hydrogen Safety Engineering
Sep 2011
Publication
The viability and public acceptance of the hydrogen and fuel cell (HFC) systems and infrastructure depends on their robust safety engineering design education and training of the workforce regulators and other stakeholders in the state-of-the-art in the field. This can be provided only through building up and maturity of the hydrogen safety engineering (HSE) profession. HSE is defined as an application of scientific and engineering principles to the protection of life property and environment from adverse effects of incidents/accidents involving hydrogen. This paper describes a design framework and overviews a structure and contents of technical sub-systems for carrying out HSE. The approach is similar to British standard BS7974 for application of fire safety engineering to the design of buildings and expanded to reflect on specific for hydrogen safety related phenomena including but not limited to high pressure under-expanded leaks and dispersion spontaneous ignition of sudden hydrogen releases to air deflagrations and detonations etc. The HSE process includes three main steps. Firstly a qualitative design review is undertaken by a team that can incorporate owner hydrogen safety engineer architect representatives of authorities having jurisdiction e.g. fire services and other stakeholders. The team defines accident scenarios suggests trial safety designs and formulates acceptance criteria. Secondly a quantitative safety analysis of selected scenarios and trial designs is carried out by qualified hydrogen safety engineer(s) using the state-of-the-art knowledge in hydrogen safety science and engineering and validated models and tools. Finally the performance of a HFC system and/or infrastructure under the trial safety designs is assessed against predefined by the team acceptance criteria. This performance-based methodology offers the flexibility to assess trial safety designs using separately or simultaneously three approaches: deterministic comparative or combined probabilistic/deterministic.
Test Methodologies for Hydrogen Sensor Performance Assessment: Chamber vs. Flow-through Test Apparatus
Sep 2017
Publication
Certification of hydrogen sensors to meet standards often prescribes using large-volume test chambers. However feedback from stakeholders such as sensor manufacturers and end-users indicates that chamber test methods are often viewed as too slow and expensive for routine assessment. Flow-through test methods are potentially an efficient and cost-effective alternative for sensor performance assessment. A large number of sensors can be simultaneously tested in series or in parallel with an appropriate flow-through test fixture. The recent development of sensors with response times of less than 1s mandates improvements in equipment and methodology to properly capture the performance of this new generation of fast sensors; flow methods are a viable approach for accurate response and recovery time determinations but there are potential drawbacks. According to ISO 26142 flow-through test methods may not properly simulate ambient applications. In chamber test methods gas transport to the sensor is dominated by diffusion which is viewed by some users as mimicking deployment in rooms and other confined spaces. Conversely in flow-through methods forced flow transports the gas to the sensing element. The advective flow dynamics may induce changes in the sensor behaviour relative to the quasi-quiescent condition that may prevail in chamber test methods. The aim of the current activity in the JRC and NREL sensor laboratories is to develop a validated flow-through apparatus and methods for hydrogen sensor performance testing. In addition to minimizing the impact on sensor behaviour induced by differences in flow dynamics challenges associated with flow-through methods include the ability to control environmental parameters (humidity pressure and temperature) during the test and changes in the test gas composition induced by chemical reactions with upstream sensors. Guidelines on flow-through test apparatus design and protocols for the evaluation of hydrogen sensor performance have been developed. Various commercial sensor platforms (e.g. thermal conductivity catalytic and metal semiconductor) were used to demonstrate the advantages and issues with the flow-through methodology.
Great Expectations: Asia, Australia and Europe Leading Emerging Green Hydrogen Economy, but Project Delays Likely
Aug 2020
Publication
In July 2020 the European Union unveiled its new Hydrogen Strategy a visionary plan to accelerate the adoption of green hydrogen to meet the EU’s net-zero emissions goal by 2050. Combined with smaller-scale plans in South Korea and Japan IEEFA believes this could form the beginnings of a global green hydrogen economy.
Green hydrogen produced exclusively with renewable energy has been acclaimed for decades but ever lower solar electricity costs mean this time really is different.
We expect the EU’s initiative to find strong support as the proposed investment of €430bn by 2030 places it in pole position to develop a world-class green energy manufacturing industry and provides a vital bridge for energy transition by repurposing existing ‘natural’ gas pipelines and fossil-fuel dependent ports.
In the past year numerous green hydrogen projects have been proposed primarily in Asia Europe Australia.
We estimate there are 50 viable projects globally announced in the past year with a total hydrogen production capacity of 4 million tons per annum and renewable power capacity of 50 gigawatts (GW) requiring capex of US$75bn.
The paper can be download on the IEEFA website
Green hydrogen produced exclusively with renewable energy has been acclaimed for decades but ever lower solar electricity costs mean this time really is different.
We expect the EU’s initiative to find strong support as the proposed investment of €430bn by 2030 places it in pole position to develop a world-class green energy manufacturing industry and provides a vital bridge for energy transition by repurposing existing ‘natural’ gas pipelines and fossil-fuel dependent ports.
In the past year numerous green hydrogen projects have been proposed primarily in Asia Europe Australia.
We estimate there are 50 viable projects globally announced in the past year with a total hydrogen production capacity of 4 million tons per annum and renewable power capacity of 50 gigawatts (GW) requiring capex of US$75bn.
The paper can be download on the IEEFA website
Numerical Simulations of Cryogenic Hydrogen Cooling in Vortex Tubes with Smooth Transitions
Mar 2021
Publication
Improving efficiency of hydrogen cooling in cryogenic conditions is important for the wider applications of hydrogen energy systems. The approach investigated in this study is based on a Ranque-Hilsch vortex tube (RHVT) that generates temperature separation in a working fluid. The simplicity of RHVT is also a valuable characteristic for cryogenic systems. In the present work novel shapes of RHVT are computationally investigated with the goal to raise efficiency of the cooling process. Specifically a smooth transition is arranged between a vortex chamber where compressed gas is injected and the main tube with two exit ports at the tube ends. Flow simulations have been carried out using STAR-CCM+ software with the real-gas Redlich-Kwong model for hydrogen at temperatures near 70 K. It is determined that a vortex tube with a smooth transition of moderate size manifests about 7% improvement of the cooling efficiency when compared vortex tubes that use traditional vortex chambers with stepped transitions and a no-chamber setup with direct gas injection.
Metastable Metal Hydrides for Hydrogen Storage
Oct 2012
Publication
The possibility of using hydrogen as a reliable energy carrier for both stationary and mobile applications has gained renewed interest in recent years due to improvements in high temperature fuel cells and a reduction in hydrogen production costs. However a number of challenges remain and new media are needed that are capable of safely storing hydrogen with high gravimetric and volumetric densities. Metal hydrides and complex metal hydrides offer some hope of overcoming these challenges; however many of the high capacity “reversible” hydrides exhibit a large endothermic decomposition enthalpy making it difficult to release the hydrogen at low temperatures. On the other hand the metastable hydrides are characterized by a low reaction enthalpy and a decomposition reaction that is thermodynamically favorable under ambient conditions. The rapid low temperature hydrogen evolution rates that can be achieved with these materials offer much promise for mobile PEM fuel cell applications. However a critical challenge exists to develop new methods to regenerate these hydrides directly from the reactants and hydrogen gas. This spotlight paper presents an overview of some of the metastable metal hydrides for hydrogen storage and a few new approaches being investigated to address the key challenges associated with these materials.
Localized Plasticity and Associated Cracking in Stable and Metastable High-Entropy Alloys Pre-Charged with Hydrogen
Dec 2018
Publication
We investigated hydrogen embrittlement in Fe20Mn20Ni20Cr20Co and Fe30Mn10Cr10Co (at.%) alloys pre-charged with 100 MPa hydrogen gas by tensile testing at three initial strain rates of 10−4 10−3 and 10−2 s−1 at ambient temperature. The alloys are classified as stable and metastable austenite-based high-entropy alloys (HEAs) respectively. Both HEAs showed the characteristic hydrogen-induced degradation of tensile ductility. Electron backscatter diffraction analysis indicated that the reduction in ductility by hydrogen pre-charging was associated with localized plasticity-assisted intergranular crack initiation. It should be noted as an important finding that hydrogen-assisted cracking of the metastable HEA occurred not through a brittle mechanism but through localized plastic deformation in both the austenite and ε-martensite phases.
H-Mat Hydrogen Compatibility of Polymers and Elastomers
Sep 2019
Publication
The H2@Scale program of the U.S. Department of Energy (DOE) Fuel Cell Technologies Office is supporting work on the hydrogen compatibility of polymers to improve the durability and reliability of materials for hydrogen infrastructure. The hydrogen compatibility program (H-Mat) seeks “to address the challenges of hydrogen degradation by elucidating the mechanisms of hydrogen-materials interactions with the goal of providing science-based strategies to design materials (micro)structures and morphology with improved resistance to hydrogen degradation.” This research has found hydrogen and pressure interactions with model rubber-material compounds demonstrating volume change and compression-set differences in the materials. The research leverages state-of-the-art capabilities of the DOE national labs. The materials were investigated using helium-ion microscopy which revealed significant morphological changes in the plasticizer incorporating compounds after exposure as evidenced by time-of-flight secondary ion mass spectrometry. Additional studies using transmission electron microscopy and nuclear magnetic resonance revealed that nanosized inclusions developed after gas decompression in rubber- and plasticizer-only materials; this is an indication of void formation at the nanometer level.
Experimental Investigation of Nozzle Aspect Ratio Effects on Under Expanded Hydrogen Jet Release Characteristics
Sep 2013
Publication
Most experimental investigations of underexpanded hydrogen jets have been limited to circular nozzles in an attempt to better understand the fundamental jet-exit flow physics and model this behaviour with pseudo source models. However realistic compressed storage leak exit geometries are not always expected to be circular. In the present study jet dispersion characteristics from rectangular slot nozzles with aspect ratios from 2 to 8 were investigated and compared with an equivalent circular nozzle. Schlieren imaging was used to observe the jet-exit shock structure while quantitative Planar Laser Rayleigh Scattering was used to measure downstream dispersion characteristics. These results provide physical insight and much needed model validation data for model development.
Opportunities and Challenges of Low-Carbon Hydrogen via Metallic Membranes
Jun 2020
Publication
Today electricity & heat generation transportation and industrial sectors together produce more than 80% of energy-related CO2 emissions. Hydrogen may be used as an energy carrier and an alternative fuel in the industrial residential and transportation sectors for either heating energy production from fuel cells or direct fueling of vehicles. In particular the use of hydrogen fuel cell vehicles (HFCVs) has the potential to virtually eliminate CO2 emissions from tailpipes and considerably reduce overall emissions from the transportation sector. Although steam methane reforming (SMR) is the dominant industrial process for hydrogen production environmental concerns associated with CO2 emissions along with the process intensification and energy optimization are areas that still require improvement. Metallic membrane reactors (MRs) have the potential to address both challenges. MRs operate at significantly lower pressures and temperatures compared with the conventional reactors. Hence the capital and operating expenses could be considerably lower compared with the conventional reactors. Moreover metallic membranes specifically Pd and its alloys inherently allow for only hydrogen permeation making it possible to produce a stream of up to 99.999+% purity.
For smaller and emerging hydrogen markets such as the semiconductor and fuel cell industries Pd-based membranes may be an appropriate technology based on the scales and purity requirements. In particular at lower hydrogen production rates in small-scale plants MRs with CCUS could be competitive compared to centralized H2 production. On-site hydrogen production would also provide a self-sufficient supply and further circumvent delivery delays as well as issues with storage safety. In addition hydrogen-producing MRs are a potential avenue to alleviate carbon emissions. However material availability Pd cost and scale-up potential on the order of 1.5 million m3/day may be limiting factors preventing wider application of Pd-based membranes.
Regarding the economic production of hydrogen the benchmark by the year 2020 has been determined and set in place by the U.S. DOE at less than $2.00 per kg of produced hydrogen. While the established SMR process can easily meet the set limit by DOE other carbon-free processes such as water electrolysis electron beam radiolysis and gliding arc technologies do not presently meet this requirement. In particular it is expected that the cost of hydrogen produced from natural gas without CCUS will remain the lowest among all of the technologies while the hydrogen cost produced from an SMR plant with solvent-based carbon capture could be twice as expensive as the conventional SMR without carbon capture. Pd-based MRs have the potential to produce hydrogen at competitive prices with SMR plants equipped with carbon capture.
Despite the significant improvements in the electrolysis technologies the cost of hydrogen produced by electrolysis may remain significantly higher in most geographical locations compared with the hydrogen produced from fossil fuels. The cost of hydrogen via electrolysis may vary up to a factor of ten depending on the location and the electricity source. Nevertheless due to its modular nature the electrolysis process will likely play a significant role in the hydrogen economy when implemented in suitable geographical locations and powered by renewable electricity.
This review provides a critical overview of the opportunities and challenges associated with the use of the MRs to produce high-purity hydrogen with low carbon emissions. Moreover a technoeconomic review of the potential methods for hydrogen production is provided and the drawbacks and advantages of each method are presented and discussed.
For smaller and emerging hydrogen markets such as the semiconductor and fuel cell industries Pd-based membranes may be an appropriate technology based on the scales and purity requirements. In particular at lower hydrogen production rates in small-scale plants MRs with CCUS could be competitive compared to centralized H2 production. On-site hydrogen production would also provide a self-sufficient supply and further circumvent delivery delays as well as issues with storage safety. In addition hydrogen-producing MRs are a potential avenue to alleviate carbon emissions. However material availability Pd cost and scale-up potential on the order of 1.5 million m3/day may be limiting factors preventing wider application of Pd-based membranes.
Regarding the economic production of hydrogen the benchmark by the year 2020 has been determined and set in place by the U.S. DOE at less than $2.00 per kg of produced hydrogen. While the established SMR process can easily meet the set limit by DOE other carbon-free processes such as water electrolysis electron beam radiolysis and gliding arc technologies do not presently meet this requirement. In particular it is expected that the cost of hydrogen produced from natural gas without CCUS will remain the lowest among all of the technologies while the hydrogen cost produced from an SMR plant with solvent-based carbon capture could be twice as expensive as the conventional SMR without carbon capture. Pd-based MRs have the potential to produce hydrogen at competitive prices with SMR plants equipped with carbon capture.
Despite the significant improvements in the electrolysis technologies the cost of hydrogen produced by electrolysis may remain significantly higher in most geographical locations compared with the hydrogen produced from fossil fuels. The cost of hydrogen via electrolysis may vary up to a factor of ten depending on the location and the electricity source. Nevertheless due to its modular nature the electrolysis process will likely play a significant role in the hydrogen economy when implemented in suitable geographical locations and powered by renewable electricity.
This review provides a critical overview of the opportunities and challenges associated with the use of the MRs to produce high-purity hydrogen with low carbon emissions. Moreover a technoeconomic review of the potential methods for hydrogen production is provided and the drawbacks and advantages of each method are presented and discussed.
Hydrogen or Batteries for Grid Storage? A Net Energy Analysis
Apr 2015
Publication
Energy storage is a promising approach to address the challenge of intermittent generation from renewables on the electric grid. In this work we evaluate energy storage with a regenerative hydrogen fuel cell (RHFC) using net energy analysis. We examine the most widely installed RHFC configuration containing an alkaline water electrolyzer and a PEM fuel cell. To compare RHFC's to other storage technologies we use two energy return ratios: the electrical energy stored on invested (ESOIe) ratio (the ratio of electrical energy returned by the device over its lifetime to the electrical-equivalent energy required to build the device) and the overall energy efficiency (the ratio of electrical energy returned by the device over its lifetime to total lifetime electrical-equivalent energy input into the system). In our reference scenario the RHFC system has an ESOIeratio of 59 more favorable than the best battery technology available today (Li-ion ESOIe= 35). (In the reference scenario RHFC the alkaline electrolyzer is 70% efficient and has a stack lifetime of 100 000 h; the PEM fuel cell is 47% efficient and has a stack lifetime of 10 000 h; and the round-trip efficiency is 30%.) The ESOIe ratio of storage in hydrogen exceeds that of batteries because of the low energy cost of the materials required to store compressed hydrogen and the high energy cost of the materials required to store electric charge in a battery. However the low round-trip efficiency of a RHFC energy storage system results in very high energy costs during operation and a much lower overall energy efficiency than lithium ion batteries (0.30 for RHFC vs. 0.83 for lithium ion batteries). RHFC's represent an attractive investment of manufacturing energy to provide storage. On the other hand their round-trip efficiency must improve dramatically before they can offer the same overall energy efficiency as batteries which have round-trip efficiencies of 75–90%. One application of energy storage that illustrates the trade-off between these different aspects of energy performance is capturing overgeneration (spilled power) for later use during times of peak output from renewables. We quantify the relative energetic benefit of adding different types of energy storage to a renewable generating facility using [EROI]grid. Even with 30% round-trip efficiency RHFC storage achieves the same [EROI]grid as batteries when storing overgeneration from wind turbines because its high ESOIeratio and the high EROI of wind generation offset the low round-trip efficiency.
Large Transition State Stabilization From a Weak Hydrogen Bond
Jul 2020
Publication
A series of molecular rotors was designed to study and measure the rate accelerating effects of an intramolecular hydrogen bond. The rotors form a weak neutral O–H⋯O[double bond length as m-dash]C hydrogen bond in the planar transition state (TS) of the bond rotation process. The rotational barrier of the hydrogen bonding rotors was dramatically lower (9.9 kcal mol−1) than control rotors which could not form hydrogen bonds. The magnitude of the stabilization was significantly larger than predicted based on the independently measured strength of a similar O–H⋯O[double bond length as m-dash]C hydrogen bond (1.5 kcal mol−1). The origins of the large transition state stabilization were studied via experimental substituent effect and computational perturbation analyses. Energy decomposition analysis of the hydrogen bonding interaction revealed a significant reduction in the repulsive component of the hydrogen bonding interaction. The rigid framework of the molecular rotors positions and preorganizes the interacting groups in the transition state. This study demonstrates that with proper design a single hydrogen bond can lead to a TS stabilization that is greater than the intrinsic interaction energy which has applications in catalyst design and in the study of enzyme mechanisms.
Validation of Leading Point Concept in RANS Simulations of Highly Turbulent Lean Syngas-air Flames with Well-pronounced Diffusional-thermal Effects
Jan 2021
Publication
While significant increase in turbulent burning rate in lean premixed flames of hydrogen or hydrogen-containing fuel blends is well documented in various experiments and can be explained by highlighting local diffusional-thermal effects capabilities of the vast majority of available models of turbulent combustion for predicting this increase have not yet been documented in numerical simulations. To fill this knowledge gap a well-validated Turbulent Flame Closure (TFC) model of the influence of turbulence on premixed combustion which however does not address the diffusional-thermal effects is combined with the leading point concept which highlights strongly perturbed leading flame kernels whose local structure and burning rate are significantly affected by the diffusional-thermal effects. More specifically within the framework of the leading point concept local consumption velocity is computed in extremely strained laminar flames by adopting detailed combustion chemistry and subsequently the computed velocity is used as an input parameter of the TFC model. The combined model is tested in RANS simulations of highly turbulent lean syngas-air flames that were experimentally investigated at Georgia Tech. The tests are performed for four different values of the inlet rms turbulent velocities different turbulence length scales normal and elevated (up to 10 atm) pressures various H2/CO ratios ranging from 30/70 to 90/10 and various equivalence ratios ranging from 0.40 to 0.80. All in all the performed 33 tests indicate that the studied combination of the leading point concept and the TFC model can predict well-pronounced diffusional-thermal effects in lean highly turbulent syngas-air flames with these results being obtained using the same value of a single constant of the combined model in all cases. In particular the model well predicts a significant increase in the bulk turbulent consumption velocity when increasing the H2/CO ratio but retaining the same value of the laminar flame speed.
Carbon Capture and Storage (CCS): The Way Forward
Mar 2018
Publication
Mai Bui,
Claire S. Adjiman,
André Bardow,
Edward J. Anthony,
Andy Boston,
Solomon Brown,
Paul Fennell,
Sabine Fuss,
Amparo Galindo,
Leigh A. Hackett,
Jason P. Hallett,
Howard J. Herzog,
George Jackson,
Jasmin Kemper,
Samuel Krevor,
Geoffrey C. Maitland,
Michael Matuszewski,
Ian Metcalfe,
Camille Petit,
Graeme Puxty,
Jeffrey Reimer,
David M. Reiner,
Edward S. Rubin,
Stuart A. Scott,
Nilay Shah,
Berend Smit,
J. P. Martin Trusler,
Paul Webley,
Jennifer Wilcox and
Niall Mac Dowell
Carbon capture and storage (CCS) is broadly recognised as having the potential to play a key role in meeting climate change targets delivering low carbon heat and power decarbonising industry and more recently its ability to facilitate the net removal of CO2 from the atmosphere. However despite this broad consensus and its technical maturity CCS has not yet been deployed on a scale commensurate with the ambitions articulated a decade ago. Thus in this paper we review the current state-of-the-art of CO2 capture transport utilisation and storage from a multi-scale perspective moving from the global to molecular scales. In light of the COP21 commitments to limit warming to less than 2 °C we extend the remit of this study to include the key negative emissions technologies (NETs) of bioenergy with CCS (BECCS) and direct air capture (DAC). Cognisant of the non-technical barriers to deploying CCS we reflect on recent experience from the UK's CCS commercialisation programme and consider the commercial and political barriers to the large-scale deployment of CCS. In all areas we focus on identifying and clearly articulating the key research challenges that could usefully be addressed in the coming decade.
Effect of Wind on Cryogenic Hydrogen Dispersion from Vent Stacks
Sep 2021
Publication
Liquid hydrogen vent stacks often release hydrogen for example due to pressure relief from an underutilized tank boiling off hydrogen or after hydrogen delivery and transfer (trucks often depressurize through the tank vent stack to meet pressure regulations for on-road transport).<br/>A rapid release of cryogenic hydrogen through a vent stack will condense moisture from the entrained air forming a visible cloud. It is often assumed that the extent of the cold hydrogen is concurrent with the cloud. In this work a laser-based Raman scattering diagnostic was used to map out the hydrogen location during a series of vent stack release experiments. A description of the diagnostic instrument is given followed by a comparison of hydrogen signals to the visible cloud for releases through a liquid hydrogen vent stack. A liquid hydrogen pump was used to vary the flowrate of hydrogen through the vent stack and tests were performed under low and high wind conditions as well as low and high humidity conditions. The hydrogen was observed only where the condensed moisture was located regardless of the humidity level or wind. These measurements are being used to validate models such as those included in Sanda’s HyRAM toolkit and inform safety codes and standards.
Polymer Electrolyte Membrane Fuel Cell and Hydrogen Station Networks for Automobiles: Status, Technology, and Perspectives
Feb 2021
Publication
The U.S. transportation sector accounts for 37% of total energy consumption. Automobiles are a primary application of polymer electrolyte membrane (PEM) fuel cells which operate under low temperature and high efficiency to reduce fossil fuel consumption and CO2 emissions. Using hydrogen fuel PEM fuel cells can reach a practical efficiency as high as 65% with water as the only byproduct. Almost all the major automakers are involved in fuel cell electric vehicle (FCEV) development. Toyota and Hyundai introduced FCEVs (the Mirai and NEXO respectively) to consumers in recent years with a driving range between 312 and 402 miles and cold-start capacity from -30 °C. About 50 fuel cell electric buses (FCEB) are operating in California and most of them have achieved the durability target i.e. 25000 h in real-world driving conditions. As of September 2020 over 8573 FCEVs have been sold or leased in the U.S. More than 3521 FCEVs and 22 FCEBs have been sold or leased in Japan as of September 2019. An extensive hydrogen station network is required for the successful deployment of FCEVs and FCEBs. The U.S. currently has over 44 hydrogen fuelling stations (HFSs) nearly all located in California. Europe has over 139 HFSs with ~1500 more stations planned by 2025. This review has three primary objectives: 1) to present the current status of FCEV/FCEB commercialization and HFS development; 2) to describe the PEM fuel cell research/development in automobile applications and the significance of HFS networks; and 3) to outline major challenges and opportunities.
Boosting Photocatalytic Hydrogen Production from Water by Photothermally Induced Biphase Systems
Feb 2021
Publication
Solar-driven hydrogen production from water using particulate photocatalysts is considered the most economical and effective approach to produce hydrogen fuel with little environmental concern. However the efficiency of hydrogen production from water in particulate photocatalysis systems is still low. Here we propose an efficient biphase photocatalytic system composed of integrated photothermal–photocatalytic materials that use charred wood substrates to convert liquid water to water steam simultaneously splitting hydrogen under light illumination without additional energy. The photothermal–photocatalytic system exhibits biphase interfaces of photothermally-generated steam/photocatalyst/hydrogen which significantly reduce the interface barrier and drastically lower the transport resistance of the hydrogen gas by nearly two orders of magnitude. In this work an impressive hydrogen production rate up to 220.74 μmol h−1 cm−2 in the particulate photocatalytic systems has been achieved based on the wood/CoO system demonstrating that the photothermal–photocatalytic biphase system is cost-effective and greatly advantageous for practical applications.
Development of a Turnkey Hydrogen Fuelling Station
Jul 2010
Publication
The transition to hydrogen as a fuel source presents several challenges. One of the major hurdles is the cost-effective production of hydrogen in small quantities (less than 1MMscf/month). In the early demonstration phase hydrogen can be provided by bulk distribution of liquid or compressed gas from central production plants; however the next phase to fostering the hydrogen economy will likely include onsite generation and extensive pipeline networks to help effect a pervasive infrastructure. Providing inexpensive hydrogen at a fleet operator’s garage or local fuelling station is a key enabling technology for direct hydrogen Fuel Cell Vehicles (FCVs). The objective of this project was to develop a comprehensive turnkey stand-alone commercial hydrogen fuelling station for FCVs with state-of-the-art technology that is cost-competitive with current hydrocarbon fuels. Such a station would promote the advent of the hydrogen fuel economy for buses fleet vehicles and ultimately personal vehicles. Air Products partnering with the U.S. Department of Energy (DOE) The Pennsylvania State University Harvest Energy Technology and QuestAir developed a turnkey hydrogen fuelling station on the Penn State campus. Air Products aimed at designing a station that would have 65% overall station efficiency 82% PSA (pressure swing adsorption) efficiency and the capability of producing hydrogen at $3.00/kg (gge) H2 at mass production rates. Air Products designed a fuelling station at Penn State from the ground up. This project was implemented in three phases. The first phase evaluated the various technologies available in hydrogen generation compression storage and gas dispensing. In the second phase Air Products designed the components chosen from the technologies examined. Finally phase three entailed a several-month period of data collection full-scale operation maintenance of the station and optimization of system reliability and performance. Based on field data analysis it was determined by a proprietary hydrogen-analysis model that hydrogen produced from the station at a rate of 1500 kg/day and when produced at 1000 stations per year would be able to deliver hydrogen at a price of $3.03/kg (gge) H2. The station’s efficiency was measured to be 65.1% and the PSA was tested and ran at an efficiency of 82.1% thus meeting the project targets. From the study it was determined that more research was needed in the area of hydrogen fuelling. The overall cost of the hydrogen energy station when combined with the required plot size for scaled-up hydrogen demands demonstrated that a station using steam methane reforming technology as a means to produce on–site hydrogen would have limited utility in the marketplace. Alternative hydrogen supplies such as liquid or pipeline delivery to a refuelling station need to be included in the exploration of alternative energy site layouts. These avenues need to be explored before a definitive refuelling station configuration and commercialization pathway can be determined.
Self-sustainable Protonic Ceramic Electrochemical cells Using a Triple Conducting Electrode for Hydrogen and Power Production
Apr 2020
Publication
The protonic ceramic electrochemical cell (PCEC) is an emerging and attractive technology that converts energy between power and hydrogen using solid oxide proton conductors at intermediate temperatures. To achieve efficient electrochemical hydrogen and power production with stable operation highly robust and durable electrodes are urgently desired to facilitate water oxidation and oxygen reduction reactions which are the critical steps for both electrolysis and fuel cell operation especially at reduced temperatures. In this study a triple conducting oxide of PrNi0.5Co0.5O3-δ perovskite is developed as an oxygen electrode presenting superior electrochemical performance at 400~600 °C. More importantly the self-sustainable and reversible operation is successfully demonstrated by converting the generated hydrogen in electrolysis mode to electricity without any hydrogen addition. The excellent electrocatalytic activity is attributed to the considerable proton conduction as confirmed by hydrogen permeation experiment remarkable hydration behavior and computations.
Hydrogen Refuelling Reference Station Lot Size Analysis for Urban Sites
Mar 2020
Publication
Hydrogen Fuelling Infrastructure Research and Station Technology (H2FIRST) is a project initiated by the DOE in 2015 and executed by Sandia National Laboratories and the National Renewable Energy Laboratory to address R&D barriers to the deployment of hydrogen fuelling infrastructure. One key barrier to the deployment of fuelling stations is the land area they require (i.e. ""footprint""). Space is particularly a constraint in dense urban areas where hydrogen demand is high but space for fuelling stations is limited. This work presents current fire code requirements that inform station footprint then identifies and quantifies opportunities to reduce footprint without altering the safety profile of fuelling stations. Opportunities analyzed include potential new methods of hydrogen delivery as well as alternative placements of station technologies (i.e. rooftop/underground fuel storage). As interest in heavy-duty fuelling stations and other markets for hydrogen grows this study can inform techniques to reduce the footprint of heavy-duty stations as well.
This work characterizes generic designs for stations with a capacity of 600 kg/day hydrogen dispensed and 4 dispenser hoses. Three base case designs (delivered gas delivered liquid and on-site electrolysis production) have been modified in 5 different ways to study the impacts of recently released fire code changes colocation with gasoline refuelling alternate delivery assumptions underground storage of hydrogen and rooftop storage of hydrogen resulting in a total of 32 different station designs. The footprints of the base case stations range from 13000 to 21000 ft2.
A significant focus of this study is the NFPA 2 requirements especially the prescribed setback distances for bulk gaseous or liquid hydrogen storage. While the prescribed distances are large in some cases these setback distances are found to have a nuanced impact on station lot size; considerations of the delivery truck path traffic flow parking and convenience store location are also important. Station designs that utilize underground and rooftop storage can reduce footprint but may not be practical or economical. For example burying hydrogen storage tanks underground can reduce footprint but the cost savings they enable depend on the cost of burial and the cost land. Siting and economic analysis of station lot sizes illustrate the benefit of smaller station footprints in the flexibility and cost savings they can provide. This study can be used as a reference that provides examples of the key design differences that fuelling stations can incorporate the approximate sizes of generic station lots and considerations that might be unique to particular designs.
This work characterizes generic designs for stations with a capacity of 600 kg/day hydrogen dispensed and 4 dispenser hoses. Three base case designs (delivered gas delivered liquid and on-site electrolysis production) have been modified in 5 different ways to study the impacts of recently released fire code changes colocation with gasoline refuelling alternate delivery assumptions underground storage of hydrogen and rooftop storage of hydrogen resulting in a total of 32 different station designs. The footprints of the base case stations range from 13000 to 21000 ft2.
A significant focus of this study is the NFPA 2 requirements especially the prescribed setback distances for bulk gaseous or liquid hydrogen storage. While the prescribed distances are large in some cases these setback distances are found to have a nuanced impact on station lot size; considerations of the delivery truck path traffic flow parking and convenience store location are also important. Station designs that utilize underground and rooftop storage can reduce footprint but may not be practical or economical. For example burying hydrogen storage tanks underground can reduce footprint but the cost savings they enable depend on the cost of burial and the cost land. Siting and economic analysis of station lot sizes illustrate the benefit of smaller station footprints in the flexibility and cost savings they can provide. This study can be used as a reference that provides examples of the key design differences that fuelling stations can incorporate the approximate sizes of generic station lots and considerations that might be unique to particular designs.
The Technical and Economic Potential of the H2@Scale Concept within the United States
Oct 2020
Publication
The U.S. energy system is evolving as society and technologies change. Renewable electricity generation—especially from wind and solar—is growing rapidly and alternative energy sources are being developed and implemented across the residential commercial transportation and industrial sectors to take advantage of their cost security and health benefits. Systemic changes present numerous challenges to grid resiliency and energy affordability creating a need for synergistic solutions that satisfy multiple applications while yielding system-wide cost and emissions benefits. One such solution is an integrated hydrogen energy system (Figure ES-1). This is the focus of H2@Scale—a U.S. Department of Energy (DOE) initiative led by the Office of Energy Efficiency and Renewable Energy’s Hydrogen and Fuel Technologies Office. H2@Scale brings together stakeholders to advance affordable hydrogen production transport storage and utilization in multiple energy sectors. The H2@Scale concept involves hydrogen as an energy intermediate. Hydrogen can be produced from various conventional and renewable energy sources including as a responsive load on the electric grid. Hydrogen has many current applications and many more potential applications such as energy for transportation—used directly in fuel cell electric vehicles (FCEVs) as a feedstock for synthetic fuels and to upgrade oil and biomass—feedstock for industry (e.g. for ammonia production metals refining and other end uses) heat for industry and buildings and electricity storage. Owing to its flexibility and fungibility a hydrogen intermediate could link energy sources that have surplus availability to markets that require energy or chemical feedstocks benefiting both. This document builds upon a growing body of analyses of hydrogen as an energy intermediate by reporting the results from our initial analysis of the potential impacts of the H2@Scale vision by the mid-21st century for the 48 contiguous U.S. states. Previous estimates have been based on expert elicitation and focused on hydrogen demands. We build upon them first by estimating hydrogen’s serviceable consumption potential for possible hydrogen applications and the technical potential for producing hydrogen from various resources. We define the serviceable consumption potential as the quantity of hydrogen that would be consumed to serve the portion of the market that could be captured without considering economics (i.e. if the price of hydrogen were $0/kg over an extended period); thus it can be considered an upper bound for the size of the market. We define the technical potential as the resource potential constrained by real-world geography and system performance but not by economics. We then compare the cumulative serviceable consumption potential with the technical potential of a number of possible sources. Second we estimate economic potential: the quantity of hydrogen at an equilibrium price at which suppliers are willing to sell and consumers are willing to buy the same quantity of hydrogen. We believe this method provides a deeper understanding than was available in the previous analyses. We develop economic potentials for multiple scenarios across various market and technology-advancement assumptions.
Mapping of Hydrogen Fuel Quality in Europe
Nov 2020
Publication
As part of FCH-JU funded HyCoRA project running from 2014 to 2017 28 gaseous and 13 particulate samples were collected from hydrogen refuelling stations in Europe. Samples were collected with commercial sampling instruments and analysis performed in compliance with prevailing fuel quality standards. Sampling was conducted with focus on diversity in feedstock as well as commissioning date of the HRS. Results indicate that the strategy for sampling was good. No evidence of impurity cross-over was observed. Parallel samples collected indicate some variation in analytical results. It was however found that fuel quality was generally good. Fourteen analytical results were in violation with the fuel tolerance limits. Therefore eight or 29% of the samples were in violation with the fuel quality requirements. Nitrogen oxygen and organics were the predominant impurities quantified. Particulate impurities were found to be within fuel quality specifications. No correlation between fuel quality and hydrogen feedstock or HRS commissioning date was found. Nitrogen to oxygen ratios gave no indication of samples being contaminated by air. A comparison of analytical results between two different laboratories were conducted. Some difference in analytical results were observed.
Understanding Composition–property Relationships in Ti–Cr–V–Mo Alloys for Optimisation of Hydrogen Storage in Pressurised Tanks
Jun 2014
Publication
The location of hydrogen within Ti–Cr–V–Mo alloys has been investigated during hydrogen absorption and desorption using in situ neutron powder diffraction and inelastic neutron scattering. Neutron powder diffraction identifies a low hydrogen equilibration pressure body-centred tetragonal phase that undergoes a martensitic phase transition to a face-centred cubic phase at high hydrogen equilibration pressures. The average location of the hydrogen in each phase has been identified from the neutron powder diffraction data although inelastic neutron scattering combined with density functional theory calculations show that the local structure is more complex than it appears from the average structure. Furthermore the origin of the change in dissociation pressure and hydrogen trapping on cycling in Ti–Cr–V–Mo alloys is discussed.
Significantly Enhanced Electrocatalytic Activity of Copper for Hydrogen Evolution Reaction Through Femtosecond Laser Blackening
Jan 2021
Publication
In this work we report on the creation of a black copper via femtosecond laser processing and its application as a novel electrode material. We show that the black copper exhibits an excellent electrocatalytic activity for hydrogen evolution reaction (HER) in alkaline solution. The laser processing results in a unique microstructure: microparticles covered by finer nanoparticles on top. Electrochemical measurements demonstrate that the kinetics of the HER is significantly accelerated after bare copper is treated and turned black. At −0.325 V (v.s. RHE) in 1 M KOH aqueous solution the calculated area-specific charge transfer resistance of the electrode decreases sharply from 159 Ω cm2 for the untreated copper to 1 Ω cm2 for the black copper. The electrochemical surface area of the black copper is measured to be only 2.4 times that of the untreated copper and therefore the significantly enhanced electrocatalytic activity of the black copper for HER is mostly a result of its unique microstructure that favors the formation and enrichment of protons on the surface of copper. This work provides a new strategy for developing high-efficient electrodes for hydrogen generation.
A New Design Concept for Prevention of Hydrogen-induced Mechanical Degradation: Viewpoints of Metastability and High Entropy
Dec 2018
Publication
‟How crack growth is prevented” is key to improve both fatigue and monotonic fracture resistances under an influence of hydrogen. Specifically the key points for the crack growth resistance are hydrogen diffusivity and local ductility. For instance type 304 austenitic steels show high hydrogen embrittlement susceptibility because of the high hydrogen diffusivity of bcc (α´) martensite. In contrast metastability in specific austenitic steels enables fcc (γ) to hcp (ε) martensitic transformation which decreases hydrogen diffusivity and increases strength simultaneously. As a result even if hydrogen-assisted cracking occurs during monotonic tensile deformation the ε-martensite acts to arrest micro-damage evolution when the amount of ε-martensite is limited. Thus the formation of ε-martensite can decrease hydrogen embrittlement susceptibility in austenitic steels. However a considerable amount of ε-martensite is required when we attempt to have drastic improvements of work hardening capability and strength level with respect to transformation-induced plasticity effect. Since the hcp structure contains a less number of slip systems than fcc and bcc the less stress accommodation capacity often causes brittle-like failure when the ε-martensite fraction is large. Therefore ductility of ε-martensite is another key when we maximize the positive effect of ε-martensitic transformation. In fact ε-martensite in a high entropy alloy was recently found to be extraordinary ductile. Consequently the metastable high entropy alloys showed low fatigue crack growth rates in a hydrogen atmosphere compared with conventional metastable austenitic steels with α´-martensitic transformation. We here present effects of metastability to ε-phase and configurational entropy on hydrogen-induced mechanical degradation including monotonic tension properties and fatigue crack growth resistance.
Decarbonization Synergies From Joint Planning of Electricity and Hydrogen Production: A Texas Case Study
Oct 2020
Publication
Hydrogen (H2) shows promise as an energy carrier in contributing to emissions reductions from sectors which have been difficult to decarbonize like industry and transportation. At the same time flexible H2 production via electrolysis can also support cost-effective integration of high shares of variable renewable energy (VRE) in the power system. In this work we develop a least-cost investment planning model to co-optimize investments in electricity and H2 infrastructure to serve electricity and H2 demands under various low-carbon scenarios. Applying the model to a case study of Texas in 2050 we find that H2 is produced in approximately equal amounts from electricity and natural gas under the least-cost expansion plan with a CO2 price of $30–60/tonne. An increasing CO2 price favors electrolysis while increasing H2 demand favors H2 production from Steam Methane Reforming (SMR) of natural gas. H2 production is found to be a cost effective solution to reduce emissions in the electric power system as it provides flexibility otherwise provided by natural gas power plants and enables high shares of VRE with less battery storage. Additionally the availability of flexible electricity demand via electrolysis makes carbon capture and storage (CCS) deployment for SMR cost-effective at lower CO2 prices ($90/tonne CO2) than for power generation ($180/tonne CO2 ). The total emissions attributable to H2 production is found to be dependent on the H2 demand. The marginal emissions from H2 production increase with the H2 demand for CO2 prices less than $90/tonne CO2 due to shift in supply from electrolysis to SMR. For a CO2 price of $60/tonne we estimate the production weighted-average H2 price to be between $1.30–1.66/kg across three H2 demand scenarios. These findings indicate the importance of joint planning of electricity and H2 infrastructure for cost-effective energy system decarbonization.
Corrosion Mechanisms of High-Mn Twinning-Induced Plasticity (TWIP) Steels: A Critical Review
Feb 2021
Publication
Twinning-induced plasticity (TWIP) steels have higher strength and ductility than conventional steels. Deformation mechanisms producing twins that prevent gliding and stacking of dislocations cause a higher ductility than that of steel grades with the same strength. TWIP steels are considered to be within the new generation of advanced high-strength steels (AHSS). However some aspects such as the corrosion resistance and performance in service of TWIP steel materials need more research. Application of TWIP steels in the automotive industry requires a proper investigation of corrosion behavior and corrosion mechanisms which would indicate the optimum degree of protection and the possible decrease in costs. In general Fe−Mn-based TWIP steel alloys can passivate in oxidizing acid neutral and basic solutions however they cannot passivate in reducing acid or active chloride solutions. TWIP steels have become as a potential material of interest for automotive applications due to their effectiveness impact resistance and negligible harm to the environment. The mechanical and corrosion performance of TWIP steels is subjected to the manufacturing and processing steps like forging and casting elemental composition and thermo-mechanical treatment. Corrosion of TWIP steels caused by both intrinsic and extrinsic factors has posed a serious problem for their use. Passivity breakdown caused by pitting and galvanic corrosion due to phase segregation are widely described and their critical mechanisms examined. Numerous studies have been performed to study corrosion behaviour and passivation of TWIP steel. Despite the large number of articles on corrosion few comprehensive reports have been published on this topic. The current trend for development of corrosion resistance TWIP steel is thoroughly studied and represented showing the key mechanisms and factors influencing corrosion processes and its consequences on TWIP steel. In addition suggestions for future works and gaps in the literature are considered.
Cross-regional Drivers for CCUS Deployment
Jul 2020
Publication
CO2 capture utilization and storage (CCUS) is recognized as a uniquely important option in global efforts to control anthropogenic greenhouse-gas (GHG) emissions. Despite significant progress globally in advancing the maturity of the various component technologies and their assembly into full-chain demonstrations a gap remains on the path to widespread deployment in many countries. In this paper we focus on the importance of business models adapted to the unique technical features and sociopolitical drivers in different regions as a necessary component of commercial scale-up and how lessons might be shared across borders. We identify three archetypes for CCUS development—resource recovery green growth and low-carbon grids—each with different near-term issues that if addressed will enhance the prospect of successful commercial deployment. These archetypes provide a framing mechanism that can help to translate experience in one region or context to other locations by clarifying the most important technical issues and policy requirements. Going forward the archetype framework also provides guidance on how different regions can converge on the most effective use of CCUS as part of global deep-decarbonization efforts over the long term.
Design of a Methanol Reformer for On-board Production of Hydrogen as Fuel for a 3 kW High-Temperature Proton Exchange Membrane Fuel Cell Power System
Sep 2020
Publication
The method of Computational Fluid Dynamics is used to predict the process parameters and select the optimum operating regime of a methanol reformer for on-board production of hydrogen as fuel for a 3 kW High-Temperature Proton Exchange Membrane Fuel Cell power system. The analysis uses a three reactions kinetics model for methanol steam reforming water gas shift and methanol decomposition reactions on Cu/ZnO/Al2O3 catalyst. Numerical simulations are performed at single channel level for a range of reformer operating temperatures and values of the molar flow rate of methanol per weight of catalyst at the reformer inlet. Two operating regimes of the fuel processor are selected which offer high methanol conversion rate and high hydrogen production while simultaneously result in a small reformer size and a reformate gas composition that can be tolerated by phosphoric acid-doped high temperature membrane electrode assemblies for proton exchange membrane fuel cells. Based on the results of the numerical simulations the reactor is sized and its design is optimized.
A New Model For Hydrogen-Induced Crack (HIC) Growth in Metal Alloy Pipelines Under Extreme Pressure
Dec 2020
Publication
Pipeline failure caused by Hydrogen-Induced Cracking (HIC) also known as Hydrogen Embrittlement (HE) is a pressing issue for the oil and natural gas industry. Bursts in pipelines are devastating and extremely costly. The explosive force of a bursting pipe can inflict fatal injuries to workers while the combined loss of product and effort to repair are highly costly to producers. Further pipeline failures due to HIC have a long lasting impact on the surrounding environment. Safe use and operation of such pipelines depend on a good understanding of the underlying forces that cause HIC. Specifically a reliable way to predict the growth rate of hydrogen-induced cracks is needed to establish a safe duration of service for each length of pipeline. Pipes that have exceeded or are near the end of their service life can then be retired before the risk of HIC-related failures becomes too high. However little is known about the mechanisms that drive HIC. To date no model has been put forth that accurately predicts the growth rate of fractures due to HIC under extreme pressures such as in the context of natural gas and petroleum pipelines. Herein a mathematical model for the growth of fractures by HIC under extreme pressures is presented. This model is derived from first principles and the results are compared with other models. The implications of these findings are discussed and a description of future work based on these findings is presented.
Direct Numerical Simulation of Hydrogen Combustion at Auto-ignitive Conditions Ignition, Stability and Turbulent Reaction-front Velocity
Mar 2021
Publication
Direct Numerical Simulations (DNS) are performed to investigate the process of spontaneous ignition of hydrogen flames at laminar turbulent adiabatic and non-adiabatic conditions. Mixtures of hydrogen and vitiated air at temperatures representing gas-turbine reheat combustion are considered. Adiabatic spontaneous ignition processes are investigated first providing a quantitative characterization of stable and unstable flames. Results indicate that in hydrogen reheat combustion compressibility effects play a key role in flame stability and that unstable ignition and combustion are consistently encountered for reactant temperatures close to the mixture’s characteristic crossover temperature. Furthermore it is also found that the characterization of the adiabatic processes is also valid in the presence of non-adiabaticity due to wall heat-loss. Finally a quantitative characterization of the instantaneous fuel consumption rate within the reaction front is obtained and of its ability at auto-ignitive conditions to advance against the approaching turbulent flow of the reactants for a range of different turbulence intensities temperatures and pressure levels.
Hydrogen Component Leak Rate Quantification for System Risk and Reliability Assessment through QRA and PHM Frameworks
Sep 2021
Publication
The National Renewable Energy Laboratory’s (NREL) Hydrogen Safety Research and Development (HSR&D) program in collaboration with the University of Maryland’s Systems Risk and Reliability Analysis Laboratory (SyRRA) are working to improve reliability and reduce risk in hydrogen systems. This approach strives to use quantitative data on component leaks and failures together with Prognosis and Health Management (PHM) and Quantitative Risk Assessment (QRA) to identify atrisk components reduce component failures and downtime and predict when components require maintenance. Hydrogen component failures increase facility maintenance cost facility downtime and reduce public acceptance of hydrogen technologies ultimately increasing facility size and cost because of conservative design requirements. Leaks are a predominant failure mode for hydrogen components. However uncertainties in the amount of hydrogen emitted from leaking components and the frequency of those failure events limit the understanding of the risks that they present under real-world operational conditions. NREL has deployed a test fixture the Leak Rate Quantification Apparatus (LRQA) to quantify the mass flow rate of leaking gases from medium and high-pressure components that have failed while in service. Quantitative hydrogen leak rate data from this system could ultimately be used to better inform risk assessment and Regulation Codes and Standards (RCS). Parallel activity explores the use of PHM and QRA techniques to assess and reduce risk thereby improving safety and reliability of hydrogen systems. The results of QRAs could further provide a systematic and science-based foundation for the design and implementation of RCS as in the latest versions of the NFPA 2 code for gaseous hydrogen stations. Alternatively data-driven techniques of PHM could provide new damage diagnosis and health-state prognosis tools. This research will help end users station owners and operators and regulatory bodies move towards risk-informed preventative maintenance versus emergency corrective maintenance reducing cost and improving reliability. Predictive modelling of failures could improve safety and affect RCS requirements such as setback distances at liquid hydrogen fueling sites. The combination of leak rate quantification research PHM and QRA can lead to better informed models enabling data-based decision to be made for hydrogen system safety improvements.
Solar Hydrogen Production via a Samarium Oxide-Based Thermochemical Water Splitting Cycle
Apr 2016
Publication
The computational thermodynamic analysis of a samarium oxide-based two-step solar thermochemical water splitting cycle is reported. The analysis is performed using HSC chemistry software and databases. The first (solar-based) step drives the thermal reduction of Sm2O3 into Sm and O2. The second (non-solar) step corresponds to the production of H2 via a water splitting reaction and the oxidation of Sm to Sm2O3. The equilibrium thermodynamic compositions related to the thermal reduction and water splitting steps are determined. The effect of oxygen partial pressure in the inert flushing gas on the thermal reduction temperature (TH) is examined. An analysis based on the second law of thermodynamics is performed to determine the cycle efficiency (ηcycle) and solar-to-fuel energy conversion efficiency (ηsolar´to´fuel) attainable with and without heat recuperation. The results indicate that ηcycle and ηsolar´to´fuel both increase with decreasing TH due to the reduction in oxygen partial pressure in the inert flushing gas. Furthermore the recuperation of heat for the operation of the cycle significantly improves the solar reactor efficiency. For instance in the case where TH = 2280 K ηcycle = 24.4% and ηsolar´to´fuel = 29.5% (without heat recuperation) while ηcycle = 31.3% and ηsolar´to´fuel = 37.8% (with 40% heat recuperation).
Decarbonization Roadmaps for ASEAN and their Implications
Apr 2022
Publication
The objective of this paper is to derive for the first time decarbonization roadmaps for the ten nations of ASEAN. This study first presents a regional view of ASEAN’s fossil and renewable energy usage and energy-related CO2 emission. Results show that renewable energies have been losing ground to fossil energies in the last two decades and fossil fuels will likely continue to be an important part of ASEAN’s energy mix for the next few decades. Therefore decarbonizing efforts should focus not only on increasing the share of renewable energies in electricity generation but also on technologies to reduce CO2 emission from fossil power and industrial plants. This study next performs a technology mapping exercise for all ten ASEAN countries to determine decarbonization technologies that have high impact and high readiness for individual countries. Besides installing more sustainable renewable energies common themes coming from these roadmaps include switching from coal to gas for power generation using carbon capture and storage (CCS) technologies to decarbonize fossil and industrial plants replacing internal combustion vehicles by electric vehicles and for countries that have coal and natural gas resources upgrading them to blue hydrogen by chemical processes and using CCS to mitigate the emitted CO2. Blue hydrogen can be used to decarbonize hard-to-decarbonize industries. Policy implications of these roadmaps include imposing a credible carbon tax establishing a national hydrogen strategy intergovernmental coordination to establish regional CCS corridors funding research and development to improve carbon capture efficiency on a plant level and resolving sustainability issues of hydropower and bioenergy in ASEAN.
Everything About Hydrogen Podcast: Highway to the Hydrogen Zone
May 2020
Publication
On this weeks episode the team discuss hydrogen for aviation with ZeroAvia. Val launched ZeroAvia to provide a genuinely zero emission flight proposition with two aircraft currently undergoing trials in California and the UK. The company is due to complete a 300 mile flight of its six seater aircraft from the Orkney islands to the Scottish mainland this summer 2020 with plans for twenty seat planes flying regional routes as early as 20205. On the show we discuss why Val set up ZeroAvia how the proposition stacks up against conventional alternatives infrastructure and plans for the future. All this and more on the show!
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Can CUTRIC Clean Canada?
Mar 2021
Publication
When the pandemic recedes lockdowns and restrictions are relaxed and eventually eliminated and millions of residents in cities across the world begin to return to their offices and workplaces public transit systems will once again be at the core of billions of commuters' daily activities. Urban transit systems are designed to move huge volumes of people through cities and communities quickly reliably and cost-efficiently (some systems accomplish these goals better than others!). The energy needed to run these networks of cars trains and buses is enormous and today most of it comes from fossil fuels. How can communities - both large and small - redesign their transit systems to eliminate operational carbon emissions in the future?
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: ITM Power
Sep 2019
Publication
On this weeks show we discuss with Graham Cooley the CEO of ITM Power how his company has expanded from a research company on AIM in the early 2000’s to one of the largest electrolyser manufacturers in the world. On the show we also ask Graham to talk about how the hydrogen market has evolved where he sees the potential growth trajectory for the industry and how ITM sees its role within this space.
The podcast can be found on their website
The podcast can be found on their website
Finding Synergy Between Renewables and Coal: Flexible Power and Hydrogen Production from Advanced IGCC Plants with Integrated CO2 Capture
Feb 2021
Publication
Variable renewable energy (VRE) has seen rapid growth in recent years. However VRE deployment requires a fleet of dispatchable power plants to supply electricity during periods with limited wind and sunlight. These plants will operate at reduced utilization rates that pose serious economic challenges. To address this challenge this paper presents the techno-economic assessment of flexible power and hydrogen production from integrated gasification combined cycles (IGCC) employing the gas switching combustion (GSC) technology for CO2 capture and membrane assisted water gas shift (MAWGS) reactors for hydrogen production. Three GSC-MAWGS-IGCC plants are evaluated based on different gasification technologies: Shell High Temperature Winkler and GE. These advanced plants are compared to two benchmark IGCC plants one without and one with CO2 capture. All plants utilize state-of-the-art H-class gas turbines and hot gas clean-up for maximum efficiency. Under baseload operation the GSC plants returned CO2 avoidance costs in the range of 24.9–36.9 €/ton compared to 44.3 €/ton for the benchmark. However the major advantage of these plants is evident in the more realistic mid-load scenario. Due to the ability to keep operating and sell hydrogen to the market during times of abundant wind and sun the best GSC plants offer a 6–11%-point higher annual rate of return than the benchmark plant with CO2 capture. This large economic advantage shows that the flexible GSC plants are a promising option for balancing VRE provided a market for the generated clean hydrogen exists.
Everything About Hydrogen Podcast: Hydrogen in the E-Mobility Sector
Oct 2021
Publication
Quantron AG was created in 2019 as a high-tech spin-off of the well-known Haller GmbH & Co. KG with the vision of paving the way for e-mobility in inner-city and regional passenger and cargo transportation. Quantron AG combines innovative ability and expertise in e-vans e-trucks and e-buses with the long-standing knowledge and experience of Haller GmbH & Co. KG in the commercial vehicle sector. The company's approach to e-Mobility is defined by its commitment to leveraging the most effective zero-emission vehicle technology for the use case which means Quantron is building both hydrogen fuel cell electric vehicles (FCEVs) and battery electric vehicles (BEVs) for its clients.
The podcast can be found on the website
The podcast can be found on the website
From Renewable Energy to Sustainable Protein Sources: Advancement, Challenges, and Future Roadmaps
Jan 2022
Publication
The concerns over food security and protein scarcity driven by population increase and higher standards of living have pushed scientists toward finding new protein sources. A considerable proportion of resources and agricultural lands are currently dedicated to proteinaceous feed production to raise livestock and poultry for human consumption. The 1st generation of microbial protein (MP) came into the market as land-independent proteinaceous feed for livestock and aquaculture. However MP may be a less sustainable alternative to conventional feeds such as soybean meal and fishmeal because this technology currently requires natural gas and synthetic chemicals. These challenges have directed researchers toward the production of 2nd generation MP by integrating renewable energies anaerobic digestion nutrient recovery biogas cleaning and upgrading carbon-capture technologies and fermentation. The fermentation of methane-oxidizing bacteria (MOB) and hydrogen-oxidizing bacteria (HOB) i.e. two protein rich microorganisms has shown a great potential on the one hand to upcycle effluents from anaerobic digestion into protein rich biomass and on the other hand to be coupled to renewable energy systems under the concept of Power-to-X. This work compares various production routes for 2nd generation MP by reviewing the latest studies conducted in this context and introducing the state-of-the-art technologies hoping that the findings can accelerate and facilitate upscaling of MP production. The results show that 2nd generation MP depends on the expansion of renewable energies. In countries with high penetration of renewable electricity such as Nordic countries off-peak surplus electricity can be used within MP-industry by supplying electrolytic H2 which is the driving factor for both MOB and HOB-based MP production. However nutrient recovery technologies are the heart of the 2nd generation MP industry as they determine the process costs and quality of the final product. Although huge attempts have been made to date in this context some bottlenecks such as immature nutrient recovery technologies less efficient fermenters with insufficient gas-to-liquid transfer and costly electrolytic hydrogen production and storage have hindered the scale up of MP production. Furthermore further research into techno-economic feasibility and life cycle assessment (LCA) of coupled technologies is still needed to identify key points for improvement and thereby secure a sustainable production system.
Everything About Hydrogen Podcast: Hydrogen, Net Zero and Circularity a Perfect Syzygy!
Jul 2020
Publication
On this week's show we speak with Trevor Best CEO of Syzygy Plasmonics a Houston area startup who is a pioneer in the field of photocatalytic based hydrogen production. The company has recently closed its series A funding round. We discuss with Trevor the potential applications of the Syzygy approach and where they are aiming to engage the market first as well as his view of the evolution of the hydrogen market today. All this and more on the show!
The podcast can be found on their website
The podcast can be found on their website
Modeling Hydrogen Refueling Infrastructure to Support Passenger Vehicles
May 2018
Publication
The year 2014 marked hydrogen fuel cell electric vehicles (FCEVs) first becoming commercially available in California where significant investments are being made to promote the adoption of alternative transportation fuels. A refueling infrastructure network that guarantees adequate coverage and expands in line with vehicle sales is required for FCEVs to be successfully adopted by private customers. In this paper we provide an overview of modelling methodologies used to project hydrogen refueling infrastructure requirements to support FCEV adoption and we describe in detail the National Renewable Energy Laboratory’s scenario evaluation and regionalization analysis (SERA) model. As an example we use SERA to explore two alternative scenarios of FCEV adoption: one in which FCEV deployment is limited to California and several major cities in the United States; and one in which FCEVs reach widespread adoption becoming a major option as passenger vehicles across the entire country. Such scenarios can provide guidance and insights for efforts required to deploy the infrastructure supporting transition toward different levels of hydrogen use as a transportation fuel for passenger vehicles in the United States.
Everything About Hydrogen Podcast: Storage for the Future!
Jan 2022
Publication
For our first episode of 2022 we invited Jørn Helge Dahl Global Director of Sales&Marketing at Hexagon Purus to talk about hydrogen storage with the EAH podcast and to explain the types of solutions available today Hexagon's history and plans for the future alongside some commentary on US hydrogen strategy from the gang.
The podcast can be found on their website
The podcast can be found on their website
Analysis of Trends and Emerging Technologies in Water Electrolysis Research Based on a Computational Method: A Comparison with Fuel Cell Research
Feb 2018
Publication
Water electrolysis for hydrogen production has received increasing attention especially for accumulating renewable energy. Here we comprehensively reviewed all water electrolysis research areas through computational analysis using a citation network to objectively detect emerging technologies and provide interdisciplinary data for forecasting trends. The results show that all research areas increase their publication counts per year and the following two areas are particularly increasing in terms of number of publications: “microbial electrolysis” and “catalysts in an alkaline water electrolyzer (AWE) and in a polymer electrolyte membrane water electrolyzer (PEME).”. Other research areas such as AWE and PEME systems solid oxide electrolysis and the whole renewable energy system have recently received several review papers although papers that focus on specific technologies and are cited frequently have not been published within the citation network. This indicates that these areas receive attention but there are no novel technologies that are the center of the citation network. Emerging technologies detected within these research areas are presented in this review. Furthermore a comparison with fuel cell research is conducted because water electrolysis is the reverse reaction to fuel cells and similar technologies are employed in both areas. Technologies that are not transferred between fuel cells and water electrolysis are introduced and future water electrolysis trends are discussed.
Fracture Properties of Welded 304L in Hydrogen Environments
Sep 2021
Publication
Austenitic stainless steels are used for hydrogen containment of high-pressure hydrogen gas due to their ability to retain high fracture properties despite the degradation due to hydrogen. Forging and other strain-hardening processes are desirable for austenitic stainless steels to increase the material strength and thus accommodate higher stresses and reduce material costs. Welding is often necessary for assembling components but it represents an area of concern in pressure containment structures due to the potential for defects more environmentally susceptible microstructure and reduced strength. Electron beam (EB) welding represent an advanced joining process which has advantages over traditional arc welding techniques through reduced input heat and reduced heat-affected zone (HAZ) microstructure and thus present a means to maintain high strength and improve weld performance in hydrogen gas containment. In this study fracture coupons were extracted from EB welds in forged 304L and subjected to thermal gaseous hydrogen precharging at select pressures to introduce different levels of internal hydrogen content. Fracture tests were then performed on hydrogen precharged coupons at temperatures of both 293 K and 223 K. It was observed that fracture resistance (JH) was dependent on internal hydrogen concentration; higher hydrogen concentrations resulted in lower fracture resistance in both the forged 304L base material and the 304L EB welds. This trend was also apparent at both temperatures: 293 K and 223 K. EB weld samples however maintain high fracture resistance comparable to the forged 304L base material. The role of weld microstructure solidification on fracture is discussed.
Everything About Hydrogen Podcast: Costs, Cost, Costs!
Aug 2020
Publication
On this week's episode of Everything About Hydrogen the team are celebrating the show's one year anniversary with Randy MacEwen the CEO of Ballard Power Systems. On the show the team ask Randy to explain the stunning rise of hydrogen over the last 12-24 months how the use cases for hydrogen are evolving and how the growing capitalisation of listed businesses like Ballard is driving a change in the investor base across the hydrogen & fuel cell sector. We also dive into the future for Ballard where the challenges and focuses for the business lie while the team reflect on what has been a very intense year for the show and the hydrogen industry. All this and more!
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Scaling Clean Hydrogen Production
Dec 2021
Publication
Today we are joined by our good friends from Enapter. The company is a leader in the clean hydrogen sector focused on AEM electrolyzer technology and innovative software solutions that make it possible to rapidly deploy and scale hydrogen production assets. For those who follow the hydrogen sector regularly it’s been hard not to hear Enapter-related news in 2021 and its impressive trajectory as they have gone public announced the plans for a brand new production facility in Germany (on which they have now begun construction) and most recently the announcement that Enapter was selected as the winner of the prestigious Earthshot prize. To do that we are absolutely delighted to have with us all the way from his home base in Thailand Thomas Chrometzka Chief Strategy Officer at Enapter and one of the people that we enjoy having on the show so much that we have brought him back again to fill us in on what he and Enapter are up to and what they have planned for the future of hydrogen.
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Envisioning the Hydrogen Revolution
May 2021
Publication
For our 40th episode of the Everything About Hydrogen podcast the gang are joined by hydrogen luminary Marco Alverà the CEO of Snam. Founded in 1941 and listed on the Italian stock exchange since 2001 Snam is a leader in the European gas market and operator of over 41000km of transport networks. Hailed as a visionary who has led the pivot of the world’s 2nd largest gas distribution company towards a clean gas trajectory Marco is widely recognized as a thought leader and a key figure driving the transition towards hydrogen. On the show the team discuss why Marco decided to lead Snam's pivot towards hydrogen what he sees as the role of hydrogen in the energy transition and how blue hydrogen can sit alongside green hydrogen as part of the solution to a decarbonized gas network.
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: What's Brewing in the UK Clean Hydrogen Sector?
Dec 2021
Publication
Chris Jackson is the Founder and CEO of Protium Green Solutions based in London. Protium is a hydrogen energy services company that designs develops finances owns and operates clean hydrogen solutions for clients to achieve net zero energy emissions at their industrial/manufacturing sites. Chris will talk to us about the Protium story and also give us some insight into a major project that Protium recently announced in conjunction Budweiser Brewing Group UK&Ireland to explore the deployment of zero emission green hydrogen at Magor brewery in South Wales one of the largest breweries in the UK. To that end in order to get the full story about this project we are delighted to say that we have yet another great guest on this episode. Tom Brewer who leads Global Environmental Sustainability efforts at AB InBev the parent company of Budweiser Brewing Group will join us for the final segment of the show to talk about how hydrogen fits into AB InBev’s vision of a sustainable future for the company.
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Commercial Trucking at the Speed of Hydrogen
Jun 2021
Publication
The transportation and mobility sector is vast complex unwieldy and most excitingly an obvious area of focus for hydrogen fuel cell technology applications. Hydrogen FCEVs allow vehicles to run in a wide range of environments with zero tailpipe emissions and can do so without the need for extremely heavy battery cells and can be refueled in the same amount of time as a modern ICE vehicle. This makes hydrogen FCEVs an ideal fit for the heavy commercial transportation industry and is why Hyzon Motors has jumped at the opportunity to revolutionize the industry. The company has grabbed headlines all over the world with its ambitious plans for rolling out its trucks in the United States and other major markets. It has also made news with its recent announcement that the company is going public and has attracted significant investor interest. The EAH team is joined on this episode by Hyzon's CEO Craig Knight to talk about how the company is tackling some of the most significant challenges in decarbonizing transport and how it can make trucking a zero-emission operation.
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Greening the Maritime Transport Sector
Nov 2021
Publication
We have been talking about the difficulties of decarbonizing the maritime sector since the beginning of the Everything About Hydrogen podcast. For this episode we finally bring on the experts who are looking to make the changes in maritime and marine operations a reality for a zero-carbon shipping future. The EAH Team sits down with Tomas Tronstad Head of Shipping and Technology for the New Energy Division at Wilhelmsen Group. Founded in Norway in 1861 Wilhelmsen is now a comprehensive global maritime group providing essential products and services to the merchant fleet along with supplying crew and technical management to the largest and most complex vessels ever to sail. Committed to shaping the maritime industry the company also seeks to develop new opportunities and collaborations in renewables zero-emission shipping and marine digitalization. Tomas is helping Wilhelmsen achieve its decarbonization ambitions and we are delighted to share our conversation with him with our listerners!
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Hydrogen News Roundup and Hydrogen Q&A
Jun 2020
Publication
This week on the show the team take a pause to review the current state of hydrogen and fuel cell affairs globally whilst taking time to go over all the excellent questions that our listeners have kindly shared with us over the last few months. We cover carbon capture the green new deal synthetic fuels hydrogenspiders green hydrogen in Australia and many more themes this week so don’t miss this episode!
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Back to a Hydrogen Future?
Mar 2020
Publication
On this weeks episode the team are talking all things hydrogen with Mark Neller Director at Arup. On the show we discuss the UK’s Hydrogen4Heat program where Arup has been leading the UK government’s work on the safety and practical considerations that are necessary to examine whether hydrogen could be a serious solutions for decarbonising UK residential commercial and industry heat. We also discuss the Nikola Badger the need for system wide planning when considering decarbonisation pathways for heat. All this and more on the show!
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Hydrogen from Waste
Mar 2021
Publication
On this episode of EAH the team is joined by Tim Yeo Chairman of Powerhouse Energy to talk about the work they are doing in the waste-to-energy space and how they see the sector evolving in the coming years.
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Masters of Scale: The World of SOFC & SOE Technologies
Oct 2020
Publication
On this week's episode the EAH team catches up with Mark Selby Chief Technology Officer at Ceres Power to dive into the world of solid oxide fuel cell (SOFC) and solid oxide electrolyzer (SOE) technologies. Ceres Power specializes in the design of SOFCs for applications in a diverse range of energy intensive sectors. Mark takes the time in this episode to walk the team through the details advantages and challenges of deploying SOFCs and low-carbon hydrogen solutions more broadly and discusses how consumer and customer awareness of these technologies varies widely across international markets. We cover a lot of ground this week so be sure not to miss out on our conversation with Mark!
The podcast can be found on their website
The podcast can be found on their website
Evaluation of Selectivity and Resistance to Poisons of Commercial Hydrogen Sensors
Sep 2013
Publication
The development of reliable hydrogen sensors is crucial for the safe use of hydrogen. One of the main concerns of end-users is sensor reliability in the presence of species other than the target gas which can lead to false alarms or undetected harmful situations. In order to assess the selectivity of commercial of the shelf (COTS) hydrogen sensors a number of sensors of different technology types were exposed to various interferent gas species. Cross-sensitivity tests were performed in accordance to the recommendations of ISO 26142:2010 using the hydrogen sensor testing facilities of NREL and JRC-IET. The results and conclusions arising from this study are presented.
Everything About Hydrogen Podcast: Giga-watt it Takes to Scale Green Hydrogen (and Ammonia)
Feb 2021
Publication
How do we get green hydrogen (and green ammonia) production to scale and make it cost competitive? It's a great question and we ask it all the time on the show. Well Alicia Eastman Co-founder & Managing Director of InterContinental Energy (ICE) may be one of the best authorities in the world on this topic and she joins us on this episode of EAH to tell the team all about her and ICE's work developing the Asian Renewable Energy Hub (AREH). Located in Western Australia the AREH when completed will be the largest renewable energy project by total generation capacity on the planet. At 26 GW it surpasses even the likes of the Three Gorges Dam and will act as a central production and distribution point for huge quantities of clean hydrogen and ammonia for offtakers and customers across APAC and beyond. The AREH is a truly massive project that has global implications for the global energy landscape of the future.
The podcast can be found on their website.
The podcast can be found on their website.
Everything About Hydrogen Podcast: Moving at the Speed of Hydrogen
Nov 2020
Publication
We spend a lot of time on the show talking about the interesting use cases and potential applications of hydrogen technologies as a means to decarbonize high-emissions sectors and that is the point! However moving hydrogen around the world (e.g. to remote areas without the capacity to produce it locally) presents a number of complexities and challenges that are unique to hydrogen itself or for which there are no traditionally established technologies to do so. On this episode the EAH team has a fascinating chat with Dr. Daniel Teichmann CEO and founder of Hydrogenious to learn more about liquid organic hydrogen carriers (LOHCs) and how they can help companies overcome some of the major hurdles that moving hydrogen around the globe presents.
The podcast can be found on their website
The podcast can be found on their website
Hydrogen Production in the Swedish Power Sector: Considering Operational Volatilities and Long-term Uncertainties
Nov 2020
Publication
With more renewables on the Swedish electricity market while decommissioning nuclear power plants electricity supply increasingly fluctuates and electricity prices are more volatile. There is hence a need for securing the electricity supply before energy storage solutions become widespread. Electricity price fluctuations moreover affect operating income of nuclear power plants due to their inherent operational inflexibility. Since the anticipated new applications of hydrogen in fuel cell vehicles and steel production producing hydrogen has become a potential source of income particularly when there is a surplus supply of electricity at low prices. The feasibility of investing in hydrogen production was investigated in a nuclear power plant applying Swedish energy policy as background. The analysis applies a system dynamics approach incorporating the stochastic feature of electricity supply and prices. The study revealed that hydrogen production brings alternative opportunities for large-scale electricity production facilities in Sweden. Factors such as hydrogen price will be influential and require in-depth investigation. This study provides guidelines for power sector policymakers and managers who plan to engage in hydrogen production for industrial applications. Although this study was focused upon nuclear power sources it can be extended to hydrogen production from renewable energy sources such as wind and solar.
Everything About Hydrogen Podcast: Financing the Hydrogen Revolution
Aug 2020
Publication
On this week's episode of Everything About Hydrogen the team are catching up with Astrid Behaghel the Energy Transition expert on hydrogen for BNP Paribas. On the show the team discuss how BNP Paribas see the emerging role of hydrogen in the energy transition how the financing of hydrogen projects differs for newer hydrogen initiatives and why BNP Paribas joined the Hydrogen Council. We also dive into the question of what role can (or even should) Banks play in the evolution and development of the emerging hydrogen market and BNPs plans to expand its activities in this sector. All this and more!
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Changing the Game in Hydrogen Compression
Oct 2021
Publication
In the second episode of EAH's Season 3 Patrick Andrew and Chris sit down with Maria Fennis CEO of HyET. HyET Hydrogen is a leading SME in the field of electrochemical hydrogen compression founded in 2008. HyET has introduced the first commercially viable Electrochemical Hydrogen Compressor (EHPC) the HCS 100 in 2017. HyET enters partnerships with key stakeholders to develop products with a focus on application. Maria is a leading voice in the compression arena and it is a pleasure to have her on the show!
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Catching up on the State of Scale in PEM Electrolysis
Feb 2022
Publication
This episode of EAH is a chance for the team to catch up with one of our early guests on the show Graham Cooley - CEO of ITM Power. For the past twenty years ITM Power PLC has been designing and manufacturing electrolyser systems that generate hydrogen based on proton exchange membrane (PEM) technology. As the first hydrogen related company to be listed on the London Stock Exchange ITM are globally recognised experts in the field of electrolysis. In 2021 the company opened its first Gigafactory in Bessemer Park Sheffield: the world’s largest electrolyser production factory.
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Why Generate Capital is Excited About the Prospects of Hydrogen
Dec 2019
Publication
On this weeks episode the team are talking all things hydrogen with Jigar Shah the President of Generate Capital and Co-host of the Energy Gang podcast. Jigar Shah has a well earned reputation as one of the most influential voices in the US clean energy market having pioneered no-money down solar with SunEdison and led the not for profit climate group the Carbon War Room. Since its founding in 2014 Generate Capital the company has provided $130 million of funds to a leading fuel cell provide Plug Power meanwhile in October 2019 Jigar declared hydrogen to be the ultimate clean electricity enabler. On the show we ask Jigar why he thinks Hydrogen is becoming interesting for investors today what business models he feels are exciting and offer the most attractive niches for hydrogen technology businesses whilst getting his side of the story on that time he met Chris at a conference…..All this and more on the show!
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Is Small the Perfect Answer for SMRs?
Jun 2020
Publication
On this week’s episode the team discuss the appeal of modular reforming of biogas and natural gas with Mo Vargas from Bayotech. The company use a proprietary modular reformer technology to help provide low cost decentralise hydrogen production units for onsite demand at various scales using biogas waste gases and natural gas with carbon capture. With large scale steam methane reforming accounting for 95% of hydrogen production in major markets like the US and Europe today the team dive into the good the bad and the unusual considerations behind the growing international demand for modular methane reforming technologies and how Bayotech see the transition from a CO2 intensive process today to a net zero emission future. All this and more on the show!
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: The year-end Round Up! 2020 in Review
Dec 2020
Publication
2020 has been a year for the history books! Some good most of it not so good; but 2020 has been a boom year for the future of hydrogen technologies. Patrick Chris and Andrew do their level best on this episode to talk about all the stories and the highlights of 2020 in under 50 minutes. Have a listen and let us know if we missed anything in our penultimate episode of 2020!
The podcast can be found on their website
The podcast can be found on their website
Thermochemical Recuperation to Enable Efficient Ammonia-Diesel Dual-Fuel Combustion in a Compression Ignition Engine
Nov 2021
Publication
A thermochemical recuperation (TCR) reactor was developed and experimentally evaluated with the objective to improve dual-fuel diesel–ammonia compression ignition engines. The novel system simultaneously decomposed ammonia into a hydrogen-containing mixture to allow high diesel fuel replacement ratios and oxidized unburned ammonia emissions in the exhaust overcoming two key shortcomings of ammonia combustion in engines from the previous literature. In the experimental work a multi-cylinder compression ignition engine was operated in dual-fuel mode using intake-fumigated ammonia and hydrogen mixtures as the secondary fuel. A full-scale catalytic TCR reactor was constructed and generated the fuel used in the engine experiments. The results show that up to 55% of the total fuel energy was provided by ammonia on a lower heating value basis. Overall engine brake thermal efficiency increased for modes with a high exhaust temperature where ammonia decomposition conversion in the TCR reactor was high but decreased for all other modes due to poor combustion efficiency. Hydrocarbon and soot emissions were shown to increase with the replacement ratio for all modes due to lower combustion temperatures and in-cylinder oxidation processes in the late part of heat release. Engine-out oxides of nitrogen (NOx) emissions decreased with increasing diesel replacement levels for all engine modes. A higher concentration of unburned ammonia was measured in the exhaust with increasing replacement ratios. This unburned ammonia predominantly oxidized to NOx species over the oxidation catalyst used within the TCR reactor. Ammonia substitution thus increased post-TCR reactor ammonia and NOx emissions in this work. The results show however that engine-out NH3 -to-NOx ratios were suitable for passive selective catalytic reduction thus demonstrating that both ammonia and NOx from the engine could be readily converted to N2 if the appropriate catalyst were used in the TCR reactor.
Converting Sewage Water into H2 Fuel Gas Using Cu/CuO Nanoporous Photocatalytic Electrodes
Feb 2022
Publication
This work reports on H2 fuel generation from sewage water using Cu/CuO nanoporous (NP) electrodes. This is a novel concept for converting contaminated water into H2 fuel. The preparation of Cu/CuO NP was achieved using a simple thermal combustion process of Cu metallic foil at 550 ◦C for 1 h. The Cu/CuO surface consists of island-like structures with an inter-distance of 100 nm. Each island has a highly porous surface with a pore diameter of about 250 nm. X-ray diffraction (XRD) confirmed the formation of monoclinic Cu/CuO NP material with a crystallite size of 89 nm. The prepared Cu/CuO photoelectrode was applied for H2 generation from sewage water achieving an incident to photon conversion efficiency (IPCE) of 14.6%. Further the effects of light intensity and wavelength on the photoelectrode performance were assessed. The current density (Jph) value increased from 2.17 to 4.7 mA·cm−2 upon raising the light power density from 50 to 100 mW·cm−2 . Moreover the enthalpy (∆H*) and entropy (∆S*) values of Cu/CuO electrode were determined as 9.519 KJ mol−1 and 180.4 JK−1 ·mol−1 respectively. The results obtained in the present study are very promising for solving the problem of energy in far regions by converting sewage water to H2 fuel.
Nuclear-Renewables Energy System for Hydrogen and Electricity Production
May 2011
Publication
In the future the world may have large stranded resources of low-cost wind and solar electricity. Renewable electricity production does not match demand and production is far from major cities. The coupling of nuclear energy with renewables may enable full utilization of nuclear and renewable facilities to meet local electricity demands and export pipeline hydrogen for liquid fuels fertilizer and metals production. Renewables would produce electricity at full capacity in large quantities. The base-load nuclear plants would match electricity production with demand by varying the steam used for electricity versus hydrogen production. High-temperature electrolysis (HTE) would produce hydrogen from water using (a) steam from nuclear plants and (b) electricity from nuclear plants and renewables. During times of peak electricity demand the HTE cells would operate in reverse fuel cell mode to produce power substituting for gas turbines that are used for very few hours per year and that thus have very high electricity costs. The important net hydrogen production would be shipped by pipeline to customers. Local hydrogen storage would enable full utilization of long-distance pipeline capacity with variable production. The electricity and hydrogen production were simulated with real load and wind data to understand under what conditions such systems are economic. The parametric case study uses a wind-nuclear system in North Dakota with hydrogen exported to the Chicago refinery market. North Dakota has some of the best wind conditions in the United States and thus potentially low-cost wind. The methodology allows assessments with different economic and technical assumptions - including what electrolyzer characteristics are most important for economic viability.
H-Mat Hydrogen Compatibility of NBR Elastomers
Sep 2021
Publication
The H2@Scale program of the U.S. Department of Energy (DOE) Hydrogen and Fuel Cell Technologies Office (HFTO) is supporting work on the hydrogen compatibility of polymers to improve the durability and reliability of materials for hydrogen infrastructure. The hydrogen compatibility program (H-Mat) seeks “to address the challenges of hydrogen degradation by elucidating the mechanisms of hydrogen-materials interactions with the goal of providing science-based strategies to design materials (micro)structures and morphology with improved resistance to hydrogen degradation.” Previous work on ethylene propylene diene indicated hydrogen interaction with plasticizer increased its migration to the surface and coalescing within the elastomer compound. New research on nitrile butadiene (NBR) has found hydrogen and pressure interactions with a series model rubber-material compounds to behave similarly in some compounds and improved in other compounds that is demonstrated through volume change and compression-set differences in the materials. Further studies were conducted using a helium-ion microscope (HeIM) which revealed significant morphological changes in the plasticizer-incorporating compounds after static exposure and pressure cycling as evidenced by time-of-flight secondary ion mass spectrometry. Additional studies using x-ray chromatography revealed that more micro-voids/-cracks developed after gas decompression in unfilled materials than in filled materials; transmission electron microscopy (TEM) probed at the nano-meter level showing change in filler distribution and morphology around Zinc-based particles.
Everything About Hydrogen Podcast: High-temperature Fuel Cells at High Altitudes
Jun 2021
Publication
HyPoint led by its CEO and co-founder Alex Ivanenko is at the cutting edge of the industry's efforts to find zero-emissions aircraft propulsion systems that do not sacrifice speed and power in the name of sustainability. HyPoint is a leading producer of high-temperature PEM fuel cells for aviation applications including for logistic drones air taxis electric vertical takeoff and landing vehicles (eVTOLs) and fixed-wing airplanes. On this episode of the EAH podcast the team speaks with Alex about the incredible pace of development and rapid innovation that he and his colleagues are driving in the hydrogen aviation space and how his company is leading the way in a highly complex and competitive race to decarbonize modern air travel.
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Toyota's global hydrogen ambitions
Feb 2020
Publication
On this weeks episode the team are talking all things hydrogen with Craig Scott the Group Manager for Toyota North America a global automotive giant and a recognised pioneer in the field of fuel cell mobility. On the show we get into the story of Toyota’s roll out of fuel cell mobility solutions in North America the challenges and opportunities that fuel cell vehicles can offer in the hydrogen market and the challenges around infrastructure. Importantly we also dive into the scaling up work that Toyota is undertaking and some of its plans for next steps on the mission to become the world’s leader in fuel cell mobility solutions. All this and more on the show!
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Flying Hy!
Feb 2021
Publication
Decarbonizing aviation is a big challenge. It is one of the most carbon intensive business sectors in the modern world and change comes slowly to the aviation industry. Hydrogen and fuel cell technologies offer a pathway to decarbonize regional flights in the not-so-distant future and big names are looking at potential solutions for long-haul flights in the longer term. But even if we build the aircraft that can use hydrogen as a fuel how do we get the fuel to them in a timely reliable and cost-efficient way?
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Building Hydrogen Infrastructure with Black & Veatch
Feb 2020
Publication
On this weeks episode the team are talking all things hydrogen with Maryline Daviaud Lewett Director of Business Development for Transformative Technologies at Black & Veatch (B&V). On the show we discuss the role that Engineering Procurement and Construction (EPC) firms are playing in developing hydrogen and fuel cell infrastructure as well as discussing the unique aspects of developing projects in North America. As the leading EPC for hydrogen refuelling stations in North America and a wealth of experience across electric vehicle charging and hydrogen Maryline brings a uniquely well rounded perspective to the discussion and shares a wealth of insights for how the market may evolve. All this and more on the show!
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: Building Europe's Hydrogen Mobility Network
Jan 2020
Publication
On this weeks episode the team are talking all things hydrogen with Jacob Krogsgaard the CEO of Everfuel a leading supplier of green hydrogen for mobility and industry in Europe. Since its establishment by Nel and a Consortium of parties and investors Everfuel has become a market leader in establishing green hydrogen solutions for mobility in Europe and has recently expanded into areas such as power-to-gas as well. The team catch up with Jacob on Everfuels business model the establishment of the H2Bus Consortium Jacob’s views on how the market for green hydrogen is evolving in Europe and where he sees the greatest early potential for scaling.…..All this and more on the show!
The podcast can be found on their website
The podcast can be found on their website
Everything About Hydrogen Podcast: A New Hope for Hydrogen?
Apr 2020
Publication
On this weeks episode the team discuss the Hydrogen Council the global stakeholder forum that has been at the forefront of efforts to advance the role of hydrogen and fuel cell technologies globally. We are excited to have as our guests Pierre-Etienne Franc Vice President for the Hydrogen Energy World Business Unit at Air Liquide and Stephan Herbst General Manager at Toyota Motor Europe. On the show we discuss why Air Liquide and Toyota decided to engage with the Council its strategy vision and perspective on the role that hydrogen can play in the energy transition and how companies can work with policymakers to enable this process. All this and more on the show!
The podcast can be found on their website
The podcast can be found on their website
Study of the Microstructural and First Hydrogenation Properties of TiFe Alloy with Zr, Mn and V as Additives
Jul 2021
Publication
In this paper we report the effect of adding Zr + V or Zr + V + Mn to TiFe alloy on microstructure and hydrogen storage properties. The addition of only V was not enough to produce a minimum amount of secondary phase and therefore the first hydrogenation at room temperature under a hydrogen pressure of 20 bars was impossible. When 2 wt.% Zr + 2 wt.% V or 2 wt.% Zr + 2 wt.% V + 2 wt.% Mn is added to TiFe the alloy shows a finely distributed Ti2Fe-like secondary phase. These alloys presented a fast first hydrogenation and a high capacity. The rate-limiting step was found to be 3D growth diffusion controlled with decreasing interface velocity. This is consistent with the hypothesis that the fast reaction is likely to be the presence of Ti2Fe-like secondary phases that act as a gateway for hydrogen.
Everything About Hydrogen Podcast: FCEV's "Down Under"
Dec 2020
Publication
On today's show the EAH team will be joined by Brendan Norman to talk about deployment of sustainable FCEV technologies across many different segments of the transport sector and utility vehicles. Brendan is the CEO of H2X a new vehicle manufacturing company based in Sydney with a manufacturing facility in Port Kembla will deliver its first hydrogen FCEVs to market beginning in 2022 before expanding its vehicle offerings in subsequent years. Brendan joined the EAH team via SquadCast from Kuala Lumpur to talk fuel cells with us and you don't want to miss the excellent discussion that we had on this week's episode.
The podcast can be found on their website
The podcast can be found on their website
Is Hydrogen the Future of Nuclear Energy?
Jan 2008
Publication
The traditionally held belief is that the future of nuclear energy is electricity production. However another possible future exists: nuclear energy used primarily for the production of hydrogen. The hydrogen in turn would be used to meet our demands for transport fuels (including liquid fuels) materials such as steel and fertilizer and peak-load electricity production. Hydrogen would become the replacement for fossil fuels in these applications that consume more than half the world’s energy. Such a future would follow from several factors: (a) concerns about climatic change that limit the use of fossil fuels (b) the fundamental technological differences between hydrogen and electricity that may preferentially couple different primary energy sources with either hydrogen or electricity and (c) the potential for other technologies to competitively produce electricity but not hydrogen. Electricity (movement of electrons) is not fundamentally a large-scale centralized technology that requires centralized methods of production distribution or use. In contrast hydrogen (movement of atoms) is intrinsically a large-scale centralized technology. The large-scale centralized characteristics of nuclear energy as a primary energy source hydrogen production systems and hydrogen storage systems naturally couple these technologies. This connection suggests that serious consideration be given to hydrogen as the ultimate product of nuclear energy and that nuclear systems be designed explicitly for hydrogen production.
Review of Release Behavior of Hydrogen & Natural Gas Blends from Pipelines
Aug 2021
Publication
Hydrogen can be used to reduce carbon emissions by blending into other gaseous energy carriers such as natural gas. However hydrogen blending into natural gas has important implications for safety which need to be evaluated. Hydrogen has different physical properties than natural gas and these properties affect safety evaluations concerning a leak of the blended gas. The intent of this report is to begin to investigate the safety implications of blending hydrogen into the natural gas infrastructure with respect to a leak event from a pipeline. A literature review was conducted to identify existing data that will better inform future hazard and risk assessments for hydrogen/natural gas blends. Metrics with safety implications such as heat flux and dispersion behavior may be affected by the overall blend ratio of the mixture. Of the literature reviewed there was no directly observed separation of the hydrogen from the natural gas or methane blend. No literature was identified that experimentally examined unconfined releases such as concentration fields or concentration at specific distances. Computational efforts have predicted concentration fields by modified versions of existing engineering models but the validation of these models is limited by the unavailability of literature data. There are multiple literature sources that measured flame lengths and heat flux values which are both relevant metrics to risk and hazard assessments. These data can be more directly compared to the outputs of existing engineering models for validation.
The paper can be downloaded on their website
The paper can be downloaded on their website
Cost of Long-Distance Energy Transmission by Different Carriers
Nov 2021
Publication
This paper compares the relative cost of long-distance large-scale energy transmission by electricity and by gaseous and liquid carriers (e-fuels). The results indicate that the cost of electrical transmission per delivered MWh can be up to eight times higher than for hydrogen pipelines about eleven times higher than for natural gas pipelines and twenty to fifty times higher than for liquid fuels pipelines. These differences generally hold for shorter distances as well. The higher cost of electrical transmission is primarily due to lower carrying capacity (MW per line) of electrical transmission lines compared to the energy carrying capacity of the pipelines for gaseous and liquid fuels. The differences in the cost of transmission are important but often unrecognized and should be considered as a significant cost component in the analysis of various renewable energy production distribution and utilization scenarios.
No more items...