Ukraine
Numerical Modelling of Hydrogen Deflagration Dynamics in Enclosed Space
Sep 2009
Publication
A three-dimensional mathematical model of gaseous hydrogen deflagration in the enclosed space is developed. The process is described by the system of gas dynamics differential equations. Thermodynamic parameters of the mixture and its components are defined as functions of the local temperature and mixture composition. The concentration changes of the fuel and combustion products are determined using conservation laws taking into account rates of component disappearance and formation and turbulent diffusion. It is assumed that the chemical reaction takes place only in the volume where the fuel concentration is within the limits of inflammability. The mathematical model is validated during an intercomparison test to predict deflagration of a large-scale hydrogen-air mixture in open atmosphere. An algorithm of numerical solution based on the Godunov method is developed. A computer system of engineering analysis of gas-dynamic processes of hydrogen-air mixture formation and combustion in enclosed space with natural ventilation is created. It allows predicting the history of the changes of overpressure temperature concentrations of hydrogen and combustion products and other thermogasdynamic parameters of the mixture in space. This prognosis can be used to estimate dangerous zones of destruction and recommend some safety measures.
Legal Regulation of Hydrogen in Germany and Ukraine as a Precondition for Energy Partnership and Energy Transition
Dec 2021
Publication
In August 2020 Germany and Ukraine launched an energy partnership that includes the development of a hydrogen economy. Ukraine has vast renewable energy resources for “green” hydrogen production and a gas transmission system for transportation instead of Russian natural gas. Based on estimates by Hydrogen Europe Ukraine can install 8000 MW of total electrolyser capacity by 2030. For these reasons Ukraine is among the EU’s priority partners concerning clean hydrogen according to the EU Hydrogen strategy. Germany plans to reach climate neutrality by 2045 and “green” hydrogen plays an important role in achieving this target. However according to the National Hydrogen Strategy of Germany local production of “green” hydrogen will not cover all internal demand in Germany. For this reason Germany considers importing hydrogen from Ukraine. To govern the production and import of “green” hydrogen Germany and Ukraine shall introduce legal regulations the initial analysis of which is covered in this study. Based on observation and comparison this paper presents and compares approaches while exploring the current stage and further perspectives for legal regulation of hydrogen in Germany and Ukraine. This research identifies opportunities in hydrogen production to improve the flexibility of the Ukrainian power system. This is an important issue for Ukrainian energy security. In the meantime hydrogen can be a driver for decarbonisation according to the initial plans of Germany and it may also have positive impact on the operation of Germany’s energy system with a high share of renewables.
Laboratory Method for Simulating Hydrogen Assisted Degradation of Gas Pipeline Steels
Aug 2019
Publication
Integrity of natural gas transmission systems is of great importance for energy and environmental security. Deterioration occurs in gas transit pipelines due to operational conditions and action of corrosion and hydrogenating media and leads to changes in microstructure and mechanical properties of pipeline steels which influences on pipeline performance. Hydrogenation of metal during corrosion process together with working stresses facilitates a development of in-bulk damaging at nano- and microscales. Reducing brittle fracture resistance of pipeline steels under operation increases significantly a failure risk of gas pipelines associated with in-bulk material degradation. Therefore hydrogen assisted degradation of pipelines steels under operation calls for effective methods for in-laboratory accelerated degradation. The present study is devoted to the development of the procedure of laboratory simulation of in-service degradation of pipeline steels. The role of hydrogen in degradation of pipeline steels was analysed. The procedure of accelerated degradation of pipeline steels under the combined action of axial loading and hydrogen charging was developed and induced in the laboratory. The procedure was consisted in consistently subjecting of specimens to electrolytic hydrogen charging to an axial loading up and to an artificial aging. Pipeline steels in the different states (as-received post-operated aged and after in-laboratory degradation) were investigated. The tensile mechanical behaviour of steels and impact toughness were experimentally studied. It was definitely concluded that the applied procedure caused the changes in the metal mechanical properties at the same level compared to the properties degradation due to operation. The developed procedure enables on a laboratory scale simulating of pipeline steel degradation during long-term operation under simultaneous action of hydrogenation and working loading and it makes possible to predict the mechanical behaviour of pipeline steels during service.
Using Hydrogen Reactors to Improve the Diesel Engine Performance
Apr 2022
Publication
This work is aimed at solving the problem of converting diesel power drives to diesel– hydrogen fuels which are more environmentally friendly and less expensive alternatives to diesel fuel. The method of increasing the energy efficiency of diesel fuels has been improved. The thermochemical essence of using methanol as an alternative fuel to increase energy efficiency based on the provisions of thermotechnics is considered. Alternative methanol fuel has been chosen as the initial product for the hydrogen conversion process and its energy value cost and temperature conditions have been taken into account. Calculations showed that the caloric effect from the combustion of the converted mixture of hydrogen H2 and carbon monoxide CO exceeds the effect from the combustion of the same amount of methanol fuel. Engine power and fuel energy were increased due to the thermochemical regeneration of engine exhaust gas heat. An experimental setup was created to study the operation of a converted diesel engine on diesel–hydrogen products. Experimental studies of power and environmental parameters of a diesel engine converted for diesel–hydrogen products were performed. The studies showed that the conversion of diesel engines to operate using diesel– hydrogen products is technically feasible. A reduction in energy consumption was accompanied by an improvement in the environmental performance of the diesel–hydrogen engine working together with a chemical methanol conversion thermoreactor. The formation of carbon monoxide occurred in the range of 52–62%; nitrogen oxides in the exhaust gases decreased by 53–60% according to the crankshaft speed and loading on the experimental engine. In addition soot emissions were reduced by 17% for the engine fueled with the diesel–hydrogen fuel. The conversion of diesel engines for diesel–hydrogen products is very profitable because the price of methanol is on average 10–20% of the cost of petroleum fuel.
Effectiveness Evaluation of Facilities Protecting from Hydrogen-air Explosion Overpressure
Sep 2011
Publication
The physical processes of the explosion of the hydrogen cloud which is formed as a result of the instantaneous destruction of high-pressure cylinder in the fuelling station are investigated. To simulate the formation of hydrogen-air mixture and its combustion a three-dimensional model of an instantaneous explosion of the gas mixture based on the Euler equations supplemented by the conservation laws of mixture components solved by Godunov method is used. To reduce the influence of the overpressure effects in the shock wave on the surrounding environment it is proposed to use a number of protective measures. An estimation of the efficiency of safety devices is carried out by monitoring the overpressure changes in several critical points. To reduce the pressure load on the construction of protective devices a range of constructive measures is also offered.
The Influence of Hydrogen Desorption on Micromechanical Properties and Tribological Behavior of Iron and Carbon Steels
Dec 2018
Publication
The influence of the previous electrolytic hydrogenation on the micromechanical properties and tribological behavior of the surface layers of iron and carbon steels has been studied. The concentrations of diffusion-moving and residual hydrogen in steels are determined depending on the carbon content. It is shown that the amount of sorbed hydrogen is determined by the density of dislocations and the relative volume of cementite. After desorption of diffusion-moving hydrogen the microhardness increases and materials plasticity decreases. The change of these characteristics decreases with the increase of carbon content in the steels. Internal stresses increase and redistribute under hydrogen desorption. Fragmentation of ferrite and perlite occurs as a result of electrolytic hydrogenation. Ferrite is characterized by the structure fragmentation and change of the crystallographic orientation of planes. The perlite structure shows the crushing of cementite plates and their destruction. The influence of hydrogen desorption on the microhardness of structural components of ferrite-perlite steels is shown. Large scattering of microhardness is found in perlite due to different diffusion rates of hydrogen because of the unequally oriented cementite plates. It was found that the tendency of materials to blister formation is reduced with the increase of carbon content. The influence of hydrogen on the tribological behaviour of steels under dry and boundary friction has been studied. It is shown that hydrogen desorption intensifies the materials wear. After hydrogen desorption tribological behaviour is determined by the adhesion interaction between the contacting pairs.
The Energy Approach to the Evaluation of Hydrogen Effect on the Damage Accumulation
Aug 2019
Publication
The energy approach for determining the durability of structural elements at high temperature creep and hydrogen activity was proposed. It has been shown that the approach significantly simplifies research compared with the known ones. Approbation of the approach was carried out on the example of determining the indicators of durability of the Bridgman sample under conditions of creep and different levels of hydrogenation of the metal. It was shown that with an increase of hydrogen concentration in the metal from 2 to 10 ppm the durability of the test sample decreased from 22 to 58%.
Evaluation of the Protection Effectiveness Against Overpressure From Hydrogen-air Explosion
Sep 2017
Publication
The aim of this study is to assess the probability of the damage to hydrogen fuelling station personnel exposed to the hydrogen explosion shock wave. A three-dimensional mathematical model of the explosion of hydrogen-air cloud formed after the destruction of the high-pressure storage cylinders is developed. A computer technology how to define the personnel damage probability field on the basis of probit analysis of the generated shock wave is developed. To automate the process of computing the "probit function-damage probability" tabular dependence is replaced by a piecewise cubic spline. The results of calculations of overpressure fields impulse loading and the probability of damage to fuelling station personnel exposed to the shock wave are obtained. The mathematical model takes into account the complex terrain and three-dimensional non-stationary nature of the shock wave propagation process. The model allows to obtain time-spatial distribution of damaging factors (overpressure in the shock wave front and the compression phase impulse) required to determine the three-dimensional non-stationary damage probability fields based on probit analysis. The developed computer technology allows to carry out an automated analysis of the safety situation at the fuelling station and to conduct a comparative analysis of the effectiveness of different types of protective facilities.
Corrosion Cracking of Carbon Steels of Different Structure in the Hydrogen Sulfide Environment Under Static Load
Dec 2018
Publication
Hydrogen sulfide corrosion is one of the main reasons of steels destruction in the oil and gas industry. Damages appear as a result of corrosion and hydrogen embrittlement and corrosion cracking occurs when the load is applied. The influence of the steels structure on its stress corrosion cracking under the loads in hydrogen sulfide environment is insufficiently studied. The aim of the study is to determine the influence of the steels structure on its corrosion hydrogenation and corrosion cracking in the NACE hydrogen sulfide solution.<br/>It was established that the corrosion rate and hydrogenation of steel У8 in the NACE solution grows when the structure dispersion increases from perlite to sorbite troostite and martensite. The corrosion rate and hydrogenation of steel 45 are the greatest in pearlite-ferrite while the smallest - in sorbite.<br/>The corrosion of steels У8 and 45 in the NACE solution is localized: the average size of the ulcers is 50 ... 80 μm on the steel У8 and 45 ... 65 μm on steel 45. The depth of ulcers is maximal on the steel У8 with the martensite structure (~ 260 μm) and on the steel 45 with the troostite structure (~ 210 μm).<br/>Static load (σ = 300 MPa) increases the hydrogenation of steels in the hydrogen sulfide environment. The concentration of hydrogen in steel У8 with troostite structure increases by ~ 1.8 times. The concentration of hydrogen in steel 45 with troostite and martensite structures increases by ~ 1.2...1.3 and by ~ 1.4...1.6 times respectively.<br/>The steel У8 with martensite and perlite structures and steel 45 with troostite structure has the lowest resistance to corrosion cracking. Steels destruction depends on both hydrogen permeation and the corrosion localization which leads to the increase of the microelectrochemical heterogeneity of the surfaces.
Specific Effects of Hydrogen Concentration on Resistance to Fracture of Ferrite-pearlitic Pipeline Steels
Aug 2019
Publication
The presented work is dedicated to evaluation of strain and fatigue behaviour of the ferrite-pearlite low-alloyed pipeline steels under known hydrogen concentration in a bulk of metal. Tensile test results have shown on the existence of some characteristic value of the hydrogen concentration CH at which the mechanism of hydrogen influence changes namely: below this value the enhanced plasticity (decreasing of the yield stress value) takes place and above – the hydrogen embrittlement occurs. The ambiguous relationship between fatigue crack growth rate and hydrogen concentration CH in the bulk of steels under their cyclic loading in hydrogen-contained environments has been found. There is a certain CH value at which the crack growth resistance of steel increases and the diagram of fatigue crack growth rate shifts to higher values of stress intensity factor. The generalised diagram of hydrogen concentration effect on strength behaviour of low-alloyed ferrite-pearlite pipeline steels is presented and discussed with the aim of evaluation of different mechanisms of hydrogen effect conditions of their realization and possible co-existence.
Numerical Assessment of Hydrogen Explosion Consequences in Mine Tunnel
Sep 2019
Publication
The aim of the work is a numerical estimation of the conditional probability of damage to the mine personnel during an accidental explosion of a hydrogen-air mixture. The methodology for determining the parameters of the gas-dynamic process of the explosion of a hydrogen-air cloud in an open and closed space taking into account chemical interaction and space clutter is presented. A computational method based on a probit analysis for determining the damage probability fields of a person exposed to the explosion shock wave has been developed. To automate the computational process the tabular dependence “probit-function-damage probability” is replaced by a piecewise cubic spline. Numerical studies of the influence of the drift working space clutter by an electric locomotive on the distribution of the overpressure of the gaseous medium and the conditional probability of the eardrums rupture and lethal damage to personnel in the accidental zone of the coal mine have been carried out. It was obtained that the closed nature of the working space and its blockage significantly changes the shape and size of the danger zone and requires consideration by an expert at the stage of deciding on the safety level at the mine. The scientific novelty of the method proposed in the work is in taking into account in the mathematical model of the movement of a multi-component chemically reacting gas mixture the effect of compressibility of flow complex terrain (space clutter with equipment) three-dimensional nature of the gas-air mixture dispersion process. The model allows obtaining the space-time distributions of the shock-impulse load of the blast wave that is necessary for determining the non-stationary three-dimensional fields of the conditional probability of damage to the staff on the basis of probit analysis. The developed computational method allows analyzing and forecasting in time and space the conditional probability of damage of varying degrees of severity of personnel who are exposed to an explosive shock wave as an indicator of the safety level of a coal mine.
Computational Modelling of Pressure Effects from Hydrogen Explosions
Sep 2007
Publication
The statement of the problem and algorithm of computational modelling of the processes of formation of the hydrogen-air mixture in the atmosphere its explosion (taking into account chemical interaction) and dispersion of the combustion materials in the open space with complex relief are presented. The finite-difference scheme was developed for the case of the three-dimensional system of gas dynamics equations complemented by the mass conservation laws of the gas admixture and combustion materials. The algorithm of the computation of thermal and physical parameters of the gas mixture appearing as a result of the instantaneous explosion taking into account chemical interaction was developed. The algorithm of computational solution of the difference scheme obtained on the basis of Godunov method was considered. The verification of the mathematical model showed its acceptable accuracy in comparison with known experimental data. It allows using the developed model for the modelling of pressure and thermal consequences of possible failures at the industrial enterprises which store and use hydrogen. The computational modelling of an explosion of the gas hydrogen cloud appearing as a result of instantaneous destruction of high pressure containers at the fuelling station was carried out. The analysis of different ways of protection of the surrounding buildings from destructive effects of the shock wave was conducted. The recommendations considering the choice of dimensions of the protection area around the fuelling station were worked out.
Numerical Modelling of Hydrogen Release, Mixture and Dispersion in Atmosphere.
Sep 2005
Publication
The method of the numerical solution of a three-dimensional problem of atmospheric release dispersion and explosion of gaseous admixtures is presented. It can be equally applied for gases of different densities including hydrogen. The system of simplified Navie-Stocks equations received by truncation of viscous members (Euler equations with source members) is used to obtain a numerical solution. The algorithm is based on explicit finite-difference Godunov scheme of arbitrary parameters breakup disintegration. To verify the developed model and computer system comparisons of numerical calculations with the published experimental data on the dispersion of methane and hydrocarbons explosions have been carried out. Computational experiments on evaporation and dispersion of spilled liquid hydrogen and released gaseous hydrogen at different wind speeds have been conducted. The largest mass concentrations of hydrogen between the bottom and top limits of flame propagation and cloud borders have been determined. The problem of the explosion of a hydrogen-air cloud of the complex form generated by large-scale spillage of liquid hydrogen and instant release of gaseous hydrogen has been numerically solved at low wind speed. Shock-wave loadings affecting the buildings located on a distance of 52 m from a hydrogen release place have been shown.
Factors Affecting Hydrogen Adsorption in Metal–Organic Frameworks: A Short Review
Jun 2021
Publication
Metal–organic frameworks (MOFs) have significant potential for hydrogen storage. The main benefit of MOFs is their reversible and high-rate hydrogen adsorption process whereas their biggest disadvantage is related to their operation at very low temperatures. In this study we describe selected examples of MOF structures studied for hydrogen adsorption and different factors affecting hydrogen adsorption in MOFs. Approaches to improving hydrogen uptake are reviewed including surface area and pore volume in addition to the value of isosteric enthalpy of hydrogen adsorption. Nanoconfinement of metal hydrides inside MOFs is proposed as a new approach to hydrogen storage. Conclusions regarding MOFs with incorporated metal nanoparticles which may be used as nanoscaffolds and/or H2 sorbents are summarized as prospects for the near future.
Mechanical Properties of Gas Main Steels after Long-Term Operation and Peculiarities of Their Fracture Surface Morphology
Feb 2019
Publication
Regularities of steel structure degradation of the “Novopskov-Aksay-Mozdok” gas main pipelines (Nevinnomysskaya CS) as well as the “Gorky-Center” pipelines (Gavrilovskaya CS) were studied. The revealed peculiarities of their degradation after long-term operation are suggested to be treated as a particular case of the damage accumulation classification (scheme) proposed by prof. H.M. Nykyforchyn. It is shown that the fracture surface consists of sections of ductile separation and localized zones of micro-spalling. The presence of the latter testifies to the hydrogen-induced embrittlement effect. However the steels under investigation possess sufficiently high levels of the mechanical properties required for their further safe exploitation both in terms of durability and cracking resistance.
Hydrogen Assisted Crack Initiation and Propagation in Nickel-cobalt Heat Resistant Superalloys
Aug 2019
Publication
It has been investigated the Ni-Co alloys (obtained from powder 0.1...0.3 mm under hot gaseous (in argon) isostatic pressure (up to 300 MPa) (Ni60Co15Cr8W8Al2Mo3) (Firth Rixon Metal Ltd Sheffield) and deformed (obtained by vacuum induced remealting) materials (Ni62Cr14Co10Mo5Nb3Al3Ti3) for gaseous turbine discs. Investigation has performed in the range of temperature 25…800°С and hydrogen pressure up to 70 MPa. By the 3D visualization of crack morphology it has been discovered the structure of fatigue crack surface and established the refer points on crack path including the boundary between the matrix and intermetallic particles (400×200 μm) crack opening structural elements distributions on the surface for selection of next local areas for more precision fracture surface and TEM examinations. Hydrogen influence on cyclic crack resistance parameters appears in the decreasing of loading cycles number (with amplitudes 15 MPa) in hydrogenated specimens of both alloys and increase with hydrogen concentration. At the highest hydrogen saturation regimes of Ni60Co15Cr8W8Al2Mo3 alloy (800°С 35 MPa Н2 36 hours СН = 32.7 ppm) number of cycles which necessary for crack initiation is 3 times less in comparison with specimen in initial state. At crack initiation step in hydrogenated Ni56Cr14Co15Mo5Al3Ti3 alloy it has been established that before intermetallic inclusion (400×200 μm) local stresses increased after its passing – has decreased. By fracture surface investigation it has been found the micro cracks up to 40 μm. Thin structure of heat resistant superalloys has characterises by disperse phase agglomeration with dimensions from 5 to 30 nm and crack propagation has a jumping character with no less then 50…70 nm steps.
Requirements for Hydrogen Resistance of Materials in CI Engine Toxic Substances Powered by Biofuels
Aug 2019
Publication
It has been described the conception of using platinum catalytic layer in multi hole fuel injector atomizer. The catalytic layer has been placed on not working part of atomizer needle. The aim of modification was activation of dehydrogenation reaction paraffin to olefin hydrocarbons with escape hydrogen molecule in CI engine bio fuel. The modification of atomizer with catalytic layer and reaction process leads to the presence of hydrogen and its influence on structural materials properties after the catalysis which requires the high hydrogen and crack resistance of used materials. There is used high speed steel as material. Article describes how hydrogen and combustion gases influence on thermal friction processes on this material. First of all the investigations were conduct 359 engine with biodiesel. During test had been observed nitrogen oxides carbon monoxide and particles emission. The obtained results show that there is possibility to lower toxic substances emission in exhaust gases CI engine powered by biodiesel. On the second it has been described the influence of biodiesel (including hydrogen) on fuel injector components and their influence on structural materials characteristics. There has been presented how biodiesel with hydrogen influences on precision elements and injection and return discharges. The investigation has been made by using engine test bench and fuel injector and pumps test equipment.
Stress Corrosion Cracking of Gas Pipeline Steels of Different Strength
Jul 2016
Publication
With the development of the natural gas industry gas transmission pipelines have been developed rapidly in terms of safety economy and efficiency. Our recent studies have shown that an important factor of main pipelines serviceability loss under their long-term service is the in-bulk metal degradation of the pipe wall. This leads to the loss of the initial mechanical properties primarily resistance to brittle fracture which were set in engineering calculations at the pipeline design stage. At the same time stress corrosion cracking has been identified as one of the predominant failures in pipeline steels in humid environments which causes rupture of high-pressure gas transmission pipes as well as serious economic losses and disasters.
In the present work the low-carbon pipeline steels with different strength levels from the point of view of their susceptibility to stress corrosion cracking in the as-received state and after in-laboratory accelerated degradation under environmental conditions similar to those of an acidic soil were investigated. The main objectives of this study were to determine whether the development of higher strength materials led to greater susceptibility to stress corrosion cracking and whether degraded pipeline steels became more susceptible to stress corrosion cracking than in the as-received state. The procedure of accelerated degradation of pipeline steels was developed and introduced in laboratory under the combined action of axial loading and hydrogen charging. It proved to be reliable and useful to performed laboratory simulation of in-service degradation of pipeline steels with different strength. The in-laboratory degraded 17H1S and X60 pipeline steels tested in the NS4 solution saturated with CO2 under open circuit potential revealed the susceptibility to stress corrosion cracking reflected in the degradation of mechanical properties and at the same time the degraded X60 steel showed higher resistance to stress corrosion cracking than the degraded 17H1S steel. Fractographic observation confirmed the pipeline steels hydrogen embrittlement caused by the permeated hydrogen.
In the present work the low-carbon pipeline steels with different strength levels from the point of view of their susceptibility to stress corrosion cracking in the as-received state and after in-laboratory accelerated degradation under environmental conditions similar to those of an acidic soil were investigated. The main objectives of this study were to determine whether the development of higher strength materials led to greater susceptibility to stress corrosion cracking and whether degraded pipeline steels became more susceptible to stress corrosion cracking than in the as-received state. The procedure of accelerated degradation of pipeline steels was developed and introduced in laboratory under the combined action of axial loading and hydrogen charging. It proved to be reliable and useful to performed laboratory simulation of in-service degradation of pipeline steels with different strength. The in-laboratory degraded 17H1S and X60 pipeline steels tested in the NS4 solution saturated with CO2 under open circuit potential revealed the susceptibility to stress corrosion cracking reflected in the degradation of mechanical properties and at the same time the degraded X60 steel showed higher resistance to stress corrosion cracking than the degraded 17H1S steel. Fractographic observation confirmed the pipeline steels hydrogen embrittlement caused by the permeated hydrogen.
Fractographic Features of Long Term Operated Gas Pipeline Steels Fracture Under Impact Loading
Jan 2020
Publication
Pipelines during their service life subjected to operational degradation i.e. their mechanical characteristics worsened with time. Pronounced texture of pipe steels associated with their manufacturing process revealed itself in an essential difference in impact toughness determined for specimens cut in mutually perpendicular directions with respect to the pipe axis. Higher KCV values for longitudinal specimens as compared with transverse ones were explained by the difference in a length of perlite grain strips separated by ferrite grains in specimens of different orientation. A role of hydrogen absorbed my metal during its operation in steel degradation was discussed.<br/>The main fractographic peculiarity for the operated steels comparing to the steels in the initial state is the appearance of delamination on the fracture surfaces which are oriented in the rolling direction. Correlation was found for the tested steels between fractographic sings of their embrittlement due to operational degradation and their loss of brittle fracture resistance. It is concluded that a decrease of impact toughness caused by long term operation of pipeline steels is definitely concerned with the amount of delamination on the fracture surfaces.
Brittle Fracture Manifestation in Gas Pipeline Steels after Long-term Operation
Dec 2020
Publication
Gas pipelines are exposed to operational loads combined with corrosive environment action during their long-term service. Complicated service conditions lead to a worsening of steel properties a reduction of serviceability of the whole object therefore a risk of its premature failure rises. Aware of the importance of the existing problem the aim of this study is the analysis of various mechanical properties of steels after their long-term operation on gas pipelines and detecting and evaluating fractographic signs of this degradation.<br/>Mechanical properties of operated pipe steels characterizing their brittle fracture resistance were significantly decreased. Delamination areas as one of a feature of brittle fracture were identified on the fracture surfaces of specimens after SSRT of the operated steels in corrosive environment. Fracture was initiated from the outer surface of the specimens along the boundaries of ferrite and pearlite grains with significant secondary cracking.<br/>The obvious texture in the steels affects noticeably the results of the impact tests. Higher KCV values for the specimens cut in the longitudinal direction relative to the pipe axis comparing with the specimens of transversal orientation were obtained. This was explained by different length of narrow pearlite strips alternated by wide ferrite bands and interrupted by individual ferrite grains depending on the orientation of the specimen fracture surface relative to the pipe axis. Thus a proper direction of specimen cutting to achieve the maximum sensitivity of KCV parameter to operational degradation of steels is discussed. The effect of specimen orientation on the results of the Charpy testing becomes much more pronounced with steel operation. Defects accumulated in steels during their service are preferentially oriented in the pipe axial direction along the boundaries between ferrite and pearlite strips. Analyzing the fracture surfaces of the Charpy specimens after their impact testing certain signs of embrittlement were found for long term operated steels in the form of delaminations varying in size and shape and some cleavage fragments. Furthermore their percentage of total fracture surface (generally formed by dimples) correlates well with a drop in the impact toughness. The established relationship could be the basis for the introduction of fractographic criteria of the steel serviceability.
No more items...