Sweden
Allowable Hydrogen Permeation Rate From Road Vehicle Compressed Gaseous Storage Systems In Garages- Part 1- Introduction, Scenarios, and Estimation of an Allowable Permeation Rate
Sep 2009
Publication
The paper presents an overview of the main results of the EC NOE HySafe activity to estimate an allowable hydrogen permeation rate for automotive legal requirements and standards. The work was undertaken as part of the HySafe internal project InsHyde.A slow long term hydrogen release such as that due to permeation from a vehicle into an inadequately ventilated enclosed structure is a potential risk associated with the use of hydrogen in automotive Read More
Hytunnel Project to Investigate the Use of Hydrogen Vehicles in Road Tunnels
Sep 2009
Publication
Hydrogen vehicles may emerge as a leading contender to replace today’s internal combustion engine powered vehicles. A Phenomena Identification and Ranking Table exercise conducted as part of the European Network of Excellence on Hydrogen Safety (HySafe) identified the use of hydrogen vehicles in road tunnels as a topic of important concern. An internal project called HyTunnel was duly established within HySafe to review identify and analyse the i Read More
Fatigue Crack Growth of Electron Beam Melted Ti-6Al-4V in High-Pressure Hydrogen
Mar 2020
Publication
Titanium-based alloys are susceptible to hydrogen embrittlement (HE) a phenomenon that deteriorates fatigue properties. Ti-6Al-4V is the most widely used titanium alloy and the effect of hydrogen embrittlement on fatigue crack growth (FCG) was investigated by carrying out crack propagation tests in air and high-pressure H2 environment. The FCG test in hydrogen environment resulted in a drastic increase in crack growth rate at a certain Δ K with crac Read More
Chitosan Flocculation Associated with Biofilms of C. Saccharolyticus and C. Owensensis Enhances Biomass Retention in a CSTR
Jun 2021
Publication
Cell immobilization and co-culture techniques have gained attention due to its potential to obtain high volumetric hydrogen productivities (QH2). Chitosan retained biomass in the fermentation of co-cultures of Caldicellulosiruptor saccharolyticus and C. owensensis efficiently up to a maximum dilution rate (D) of 0.9 h−1. Without chitosan wash out of the co-culture occurred earlier accompanied with approximately 50% drop in QH2 (D > 0.4 h−1). However Read More
The Role of Lock-in Mechanisms in Transition Processes: The Case of Energy for Road Transport
Jul 2015
Publication
This paper revisits the theoretical concepts of lock-in mechanisms to analyse transition processes in energy production and road transportation in the Nordic countries focussing on three technology platforms: advanced biofuels e-mobility and hydrogen and fuel cell electrical vehicles. The paper is based on a comparative analysis of case studies.The main lock-in mechanisms analysed are learning effects economies of scale economies of scope network Read More
Application of Liquid Hydrogen Carriers in Hydrogen Steelmaking
Mar 2021
Publication
Steelmaking is responsible for approximately one third of total industrial carbon dioxide (CO2) emissions. Hydrogen (H2) direct reduction (H-DR) may be a feasible route towards the decarbonization of primary steelmaking if H2 is produced via electrolysis using fossil-free electricity. However electrolysis is an electricity-intensive process. Therefore it is preferable that H2 is predominantly produced during times of low electricity prices which is enabled by Read More
Large-scale Storage of Hydrogen
Mar 2019
Publication
The large-scale storage of hydrogen plays a fundamental role in a potential future hydrogen economy. Although the storage of gaseous hydrogen in salt caverns already is used on a full industrial scale the approach is not applicable in all regions due to varying geological conditions. Therefore other storage methods are necessary. In this article options for the large-scale storage of hydrogen are reviewed and compared based on fundamental thermod Read More
Rock Mass Response for Lined Rock Caverns Subjected to High Internal Gas Pressure
Mar 2022
Publication
The storage of hydrogen gas in underground lined rock caverns (LRCs) enables the implementation of the first fossil-free steelmaking process to meet the large demand for crude steel. Predicting the response of rock mass is important to ensure that gas leakage due to rupture of the steel lining does not occur. Analytical and numerical models can be used to estimate the rock mass response to high internal pressure; however the fitness of these models u Read More
The Impact of Climate Targets on Future Steel Production – An Analysis Based on a Global Energy System Model
Apr 2020
Publication
This paper addresses how a global climate target may influence iron and steel production technology deployment and scrap use. A global energy system model ETSAP-TIAM was used and a Scrap Availability Assessment Model (SAAM) was developed to analyse the relation between steel demand recycling and the availability of scrap and their implications for steel production technology choices. Steel production using recycled materials has a continuous Read More
Numerical Simulation of Solid Oxide Fuel Cells Comparing Different Electrochemical Kinetics
Mar 2021
Publication
Solid oxide fuel cells (SOFCs) produce electricity with high electrical efficiency and fuel flexibility without pollution for example CO2 NOx SOx and particles. Still numerous issues hindered the large‐scale commercialization of fuel cell at a large scale such as fuel storage mechanical failure catalytic degradation electrode poisoning from fuel and air for example lifetime in relation to cost. Computational fluid dynamics (CFD) couples various physical fields w Read More
Alternative Marine Fuels: Prospects Based on Multi-criteria Decision Analysis Involving Swedish Stakeholders
May 2019
Publication
There is a need for alternative marine fuels in order to reduce the environmental and climate impacts of shipping in the short and long term. This study assesses the prospects for seven alternative fuels for the shipping sector in 2030 including biofuels by applying a multi-criteria decision analysis approach that is based on the estimated fuel performance and on input from a panel of maritime stakeholders and by considering explicitly the influence of Read More
Adopting Hydrogen Direct Reduction for the Swedish Steel Industry: A Technological Innovation System (TIS) Study
Sep 2019
Publication
The Swedish steel industry stands before a potential transition to drastically lower its CO2 emissions using direct hydrogen reduction instead of continuing with coke-based blast furnaces. Previous studies have identified hydrogen direct reduction as a promising option. We build upon earlier efforts by performing a technological innovation system study to systematically examine the barriers to a transition to hydrogen direct reduction and by providing deep Read More
Electricity-based Plastics and their Potential Demand for Electricity and Carbon Dioxide
Apr 2020
Publication
In a future fossil-free circular economy the petroleum-based plastics industry must be converted to non-fossil feedstock. A known alternative is bio-based plastics but a relatively unexplored option is deriving the key plastic building blocks hydrogen and carbon from electricity through electrolytic processes combined with carbon capture and utilization technology. In this paper the future demand for electricity and carbon dioxide is calculated under th Read More
Materials for Hydrogen-based Energy Storage - Past, Recent Progress and Future Outlook
Dec 2019
Publication
Michael Hirscher,
Volodymyr A. Yartys,
Marcello Baricco,
José Bellosta von Colbe,
Didier Blanchard,
Robert C. Bowman Jr.,
Darren P. Broom,
Craig Buckley,
Fei Chang,
Ping Chen,
Young Whan Cho,
Jean-Claude Crivello,
Fermin Cuevas,
William I. F. David,
Petra E. de Jongh,
Roman V. Denys,
Martin Dornheim,
Michael Felderhoff,
Yaroslav Filinchuk,
George E. Froudakis,
David M. Grant,
Evan MacA. Gray,
Bjørn Christian Hauback,
Teng He,
Terry D. Humphries,
Torben R. Jensen,
Sangryun Kim,
Yoshitsugu Kojima,
Michel Latroche,
Hai-wen Li,
Mykhaylo V. Lototskyy,
Joshua W. Makepeace,
Kasper T. Møller,
Lubna Naheed,
Peter Ngene,
Dag Noreus,
Magnus Moe Nygård,
Shin-ichi Orimo,
Mark Paskevicius,
Luca Pasquini,
Dorthe B. Ravnsbæk,
M. Veronica Sofianos,
Terrence J. Udovic,
Tejs Vegge,
Gavin Walker,
Colin Webb,
Claudia Weidenthaler and
Claudia Zlotea
Globally the accelerating use of renewable energy sources enabled by increased efficiencies and reduced costs and driven by the need to mitigate the effects of climate change has significantly increased research in the areas of renewable energy production storage distribution and end-use. Central to this discussion is the use of hydrogen as a clean efficient energy vector for energy storage. This review by experts of Task 32 “Hydrogen-based Energy Read More
Energy Modeling Approach to the Global Energy-mineral Nexus: Exploring Metal Requirements and the Well-below 2 °C Target with 100 Percent Renewable Energy
Jun 2018
Publication
Detailed analysis of pathways to future sustainable energy systems is important in order to identify and overcome potential constraints and negative impacts and to increase the utility and speed of this transition. A key aspect of a shift to renewable energy technologies is their relatively higher metal intensities. In this study a bottom-up cost-minimizing energy model is used to calculate aggregate metal requirements in different energy technology including h Read More
Progress and Challenges on the Thermal Management of Electrochemical Energy Conversion and Storage Technologies: Fuel Cells, Electrolysers, and Supercapacitors
Oct 2021
Publication
It is now well established that electrochemical systems can optimally perform only within a narrow range of temperature. Exposure to temperatures outside this range adversely affects the performance and lifetime of these systems. As a result thermal management is an essential consideration during the design and operation of electrochemical equipment and can heavily influence the success of electrochemical energy technologies. Recently significant at Read More
Impacts of Variation Management on Cost-optimal Investments in Wind Power and Solar Photovoltaics
Dec 2019
Publication
This work investigates the impacts of variation management on the cost-optimal electricity system compositions in four regions with different pre-requisites for wind and solar generation. Five variation management strategies involving electric boilers batteries hydrogen storage low-cost biomass and demand-side management are integrated into a regional investment model that is designed to account for variability. The variation management strategies are Read More
Phase Field Modelling of Formation and Fracture of Expanding Precipitates
May 2017
Publication
It is a common belief that embedded expanding inclusions are subjected to an internal homogeneous compressive hydrostatic stress. Still cracks that appear in precipitates that occupy a larger volume than the original material are frequently observed. The appearance of cracks has since long been regarded as a paradox. In the present study it is shown that matrix materials that increases its volume even several percent during the precipitation process dev Read More
Steel Manufacturing Clusters in a Hydrogen Economy – Simulation of Changes in Location and Vertical Integration of Steel Production in Northwestern Europe
Feb 2022
Publication
With the move to a hydrogen-based primary steel production envisioned for the near future in Europe existing regional industrial clusters loose major assets. Such a restructuring of industries may result in a new geographical distribution of the steel industry and also to another quality of vertical integration at sites. Both implications could turn out as drivers or barriers to invest in new technologies and are thus important in respect to vertical integration of site Read More
Transient Numerical Modeling and Model Predictive Control of an Industrial-scale Steam Methane Reforming Reactor
Mar 2021
Publication
A steam methane reforming reactor is a key equipment in hydrogen production and numerical analysis and process control can provide a critical insight into its reforming mechanisms and flexible operation in real engineering applications. The present paper firstly studies the transport phenomena in an industrial-scale steam methane reforming reactor by transient numerical simulations. Wall effect and local non thermal equilibrium is considered in the simu Read More
A Comparison of Two Hydrogen Storages in a Fossil Free Direct Reduced Iron Process
Jul 2021
Publication
Hydrogen direct reduction has been proposed as a means to decarbonize primary steelmaking. Preferably the hydrogen necessary for this process is produced via water electrolysis. A downside to electrolysis is the large electricity demand. The electricity cost of water electrolysis may be reduced by using a hydrogen storage to exploit variations in electricity price i.e. producing more hydrogen when the electricity price is low and vice versa. In this pap Read More
Conceptual Design of a Hybrid Hydrogen Fuel Cell/Battery Blended-Wing-Body Unmanned Aerial Vehicle—An Overview
May 2022
Publication
The manuscript presents the conceptual design phase of an unmanned aerial vehicle with the objective of a systems approach towards the integration of a hydrogen fuel-cell system and Li-ion batteries into an aerodynamically efficient platform representative of future aircraft configurations. Using a classical approach to aircraft design and a combination of low- and high-resolution computational simulations a final blended wing body UAV was designed Read More
Comparative Study of Battery Storage and Hydrogen Storage to Increase Photovoltaic Self-sufficiency in a Residential Building of Sweden
Dec 2016
Publication
Photovoltaic (PV) is promising to supply power for residential buildings. Battery is the most widely employed storage method to mitigate the intermittence of PV and to overcome the mismatch between production and load. Hydrogen storage is another promising method that it is suitable for long-term storage. This study focuses on the comparison of self-sufficiency ratio and cost performance between battery storage and hydrogen storage for a residential bu Read More
On the Use of Hydrogen in Confined Spaces: Results from the Internal Project InsHyde
Sep 2009
Publication
Alexandros G. Venetsanos,
Paul Adams,
Inaki Azkarate,
A. Bengaouer,
Marco Carcassi,
Angunn Engebø,
E. Gallego,
Olav Roald Hansen,
Stuart J. Hawksworth,
Thomas Jordan,
Armin Keßler,
Sanjay Kumar,
Vladimir V. Molkov,
Sandra Nilsen,
Ernst Arndt Reinecke,
M. Stöcklin,
Ulrich Schmidtchen,
Andrzej Teodorczyk,
D. Tigreat,
N. H. A. Versloot and
L. Boon-Brett
The paper presents an overview of the main achievements of the internal project InsHyde of the HySafe NoE. The scope of InsHyde was to investigate realistic small-medium indoor hydrogen leaks and provide recommendations for the safe use/storage of indoor hydrogen systems. Additionally InsHyde served to integrate proposals from HySafe work packages and existing external research projects towards a common effort. Following a state of t Read More
Concepts for Preventing Metal Dissolution From Stainless-steel Bipolar Plates in PEM Fuel Cells
Dec 2021
Publication
The bipolar plate (BPP) is a component with vast cost-reduction potential in proton exchange membrane fuel cells (PEMFCs). Apart from mechanical and heat transfer requirements the most desired BPP properties are high corrosion and low electrical contact resistance. In this study we confirm that due to ionic decoupling between BPPs and electrodes the surface potentials of the BPPs remain stable even at varying operation loads. These mild potentials i Read More
Well-to-wheel Greenhouse Gas Emissions of Heavy-duty Transports: Influence of Electricity Carbon Intensity
Feb 2021
Publication
There are several alternatives for how to phase out diesel in heavy-duty transports thereby reducing the sector’s climate change impact. This paper assesses the well-to-wheel (WTW) greenhouse gas (GHG) emissions of energy carriers for heavy-duty vehicles analyzing the effect of the carbon intensity of the electricity used in production. The results show that energy carriers with high electricity dependence are not necessarily better than diesel from a Read More
Deflagration-to-detonation Transition in Highly Reactive Combustible Mixtures
Sep 2011
Publication
High resolution numerical simulations used to study the mechanism of deflagration-to-detonation transition (DDT). The computations solved two-dimensional time-dependent reactive Navier-Stokes equations including the effects of compressibility molecular diffusion thermal conduction viscosity and detailed chemical kinetics for the reactive species with subsequent chain branching production of radicals and energy release. It is shown that from the be Read More
Methanol as a Carrier of Hydrogen and Carbon in Fossil-free Production of Direct Reduced Iron
Jul 2020
Publication
Steelmaking is responsible for around 7% of the global emissions of carbon dioxide and new steelmaking processes are necessary to reach international climate targets. As a response to this steelmaking processes based on the direct reduction of iron ore by hydrogen produced via water electrolysis powered by renewable electricity have been suggested. Here we present a novel variant of hydrogen-based steelmaking incorporating methanol as a hydr Read More
Calibration of Hydrogen Coriolis Flow Meters Using Nitrogen and Air and Investigation of the Influence of Temperature on Measurement Accuracy
Feb 2021
Publication
The performance of four Coriolis flow meters designed for use in hydrogen refuelling stations was evaluated with air and nitrogen by three members of the MetroHyVe JRP consortium; NEL METAS and CESAME EXADEBIT.A wide range of conditions were tested overall with gas flow rates ranging from (0.05–2) kg/min and pressures ranging from (20–86) bar. The majority of tests were conducted at nominal pressures of either 20 bar or 40 bar in order to Read More
The Benefit of Collaboration in the North European Electricity System Transition—System and Sector Perspectives
Dec 2019
Publication
This work investigates the connection between electrification of the industry transport and heat sector and the integration of wind and solar power in the electricity system. The impact of combining electrification of the steel industry passenger vehicles and residential heat supply with flexibility provision is evaluated from a systems and sector perspective. Deploying a parallel computing approach to the capacity expansion problem the impact of flexi Read More
Implementing Maritime Battery-electric and Hydrogen Solutions: A Technological Innovation Systems Analysis
Sep 2020
Publication
Maritime transport faces increasing pressure to reduce its greenhouse gas emissions to be in accordance with the Paris Agreement. For this to happen low- and zero-carbon energy solutions need to be developed. In this paper we draw on sustainability transition literature and introduce the technological innovation system (TIS) framework to the field of maritime transportation research. The TIS approach analytically distinguishes between different i Read More
A Tale of Two Phase Diagrams Interplay of Ordering and Hydrogen Uptake in Pd–Au–H
Apr 2021
Publication
Due to their ability to reversibly absorb/desorb hydrogen without hysteresis Pd–Au nanoalloys have been proposed as materials for hydrogen sensing. For sensing it is important that absorption/desorption isotherms are reproducible and stable over time. A few studies have pointed to the influence of short and long range chemical order on these isotherms but many aspects of the impact of chemical order have remained unexplored. Here we use alloy cl Read More
Overview of Power Electronic Converter Topologies Enabling Large-Scale Hydrogen Production via Water Electrolysis
Feb 2022
Publication
Renewable power-to-hydrogen (P2H) technology is one of the most promising solutions for fulfilling the increasing global demand for hydrogen and to buffer large-scale fluctuating renewable energies. The high-power high-current ac/dc converter plays a crucial role in P2H facilities transforming medium-voltage (MV) ac power to a large dc current to supply hydrogen electrolyzers. This work introduces the general requirements and overviews several powe Read More
A Microstructure Informed and Mixed-mode Cohesive Zone Approach to Simulating Hydrogen Embrittlement
Mar 2022
Publication
Hydrogen induced failure under uniaxial tension is simulated in a duplex stainless steel considering microstructural feature of the material. There are three key ingredients in the modelling approach: image processing and finite element representation of the experimentally observed microstructure stress driven hydrogen diffusion and diffusion coupled cohesive zone modelling of fracture considering mixed failure mode. The microstructure used as basis fo Read More
Measurement Challenges for Hydrogen Vehicles
Apr 2019
Publication
Uptake of hydrogen vehicles is an ideal solution for countries that face challenging targets for carbon dioxide reduction. The advantage of hydrogen fuel cell electric vehicles is that they behave in a very similar way to petrol engines yet they do not emit any carbon containing products during operation. The hydrogen industry currently faces the dilemma that they must meet certain measurement requirements (set by European legislation) but cannot Read More
Estimation of an Allowable Hydrogen Permeation Rate From Road Vehicle Compressed Gaseous H2 Storage Systems In Typical Garages, Part 2: CFC Dispersion Calculations Using the ADREA-HF Code and Experimental Validation Using Helium Tests at the Garage Facility
Sep 2009
Publication
The time and space evolution of the distribution of hydrogen in confined settings was investigated computationally and experimentally for permeation from typical compressed gaseous hydrogen storage systems for buses or cars. The work was performed within the framework of the InsHyde internal project of the HySafe NoE funded by EC. The main goal was to examine whether hydrogen is distributed homogeneously within a garage like facility or whet Read More
Hydrogen Fuel Cell Aircraft for the Nordic Market
Mar 2024
Publication
A model for a fuel cell propelled 50 PAX hydrogen aircraft is developed. In terms of year 2045 Nordic air travel demand this aircraft is expected to cover 97% of travel distances and 58% of daily passenger volume. Using an ATR 42 as a baseline cryogenic tanks and fuel cell stacks are sized and propulsion system masses updated. Fuselage and wing resizing are required which increases mass and wetted area. Sizing methods for the multi-stack fuel cell and t Read More
Sustainable Offshore Oil and Gas Fields Development: Techno-economic Feasibility Analysis of Wind–hydrogen–natural Gas Nexus
Jul 2021
Publication
Offshore oil and gas field development consumes quantities of electricity which is usually provided by gas turbines. In order to alleviate the emission reduction pressure and the increasing pressure of energy saving governments of the world have been promoting the reform of oil and gas fields for years. Nowadays environmentally friendly alternatives to provide electricity are hotspots such as the integration of traditional energy and renewable ene Read More
Hydrogen Double Compression-expansion Engine (H2DCEE): A Sustainable Internal Combustion Engine with 60%+ Brake Thermal Efficiency Potential at 45 Bar BMEP
May 2022
Publication
Hydrogen (H2) internal combustion engines may represent cost-effective and quick solution to the issue of the road transport decarbonization. A major factor limiting their competitiveness relative to fuel cells (FC) is the lower efficiency. The present work aims to demonstrate the feasibility of a H2 engine with FC-like 60%+ brake thermal efficiency (BTE) levels using a double compression-expansion engine (DCEE) concept combined with a high pressure direct inj Read More
Integration of a Dark Fermentation Effluent in a Microalgal-based Biorefinery for the Production of High-added Value Omega-3 Fatty Acids
Mar 2019
Publication
Dark fermentation is an anaerobic digestion process of biowaste used to produce hydrogen- for generation of energy- that however releases high amounts of polluting volatile fatty acids such as acetic acid in the environment. In order for this biohydrogen production process to become more competitive the volatile fatty acids stream can be utilized through conversion to high added-value metabolites such as omega-3 fatty acids. The docosahexaenoic acid is o Read More
Wood Cellulose as a Hydrogen Storage Material
Apr 2020
Publication
Hydrogen has become a strong candidate to be a future energy storage medium but there are technological challenges both in its production and storage. For storage a search for lightweight abundant and non-toxic materials is on the way. An abundant natural material such as wood cellulose would make an ideal storage medium from a sustainability perspective. Here using a combination of static DFT calculations and ab initio molecular dynamics simu Read More
Achieving Carbon-neutral Iron and Steelmaking in Europe Through the Deployment of Bioenergy with Carbon Capture and Storage
Jan 2019
Publication
The 30 integrated steel plants operating in the European Union (EU) are among the largest single-point CO2 emitters in the region. The deployment of bioenergy with carbon capture and storage (bio-CCS) could significantly reduce their emission intensities. In detail the results demonstrate that CO2 emission reduction targets of up to 20% can be met entirely by biomass deployment. A slow CCS technology introduction on top of biomass deployment is e Read More
Assessment of Hydrogen Direct Reduction for Fossil-free Steelmaking
Aug 2018
Publication
Climate policy objectives require zero emissions across all sectors including steelmaking. The fundamental process changes needed for reaching this target are yet relatively unexplored. In this paper we propose and assess a potential design for a fossil-free steelmaking process based on direct reduction of iron ore with hydrogen. We show that hydrogen direct reduction steelmaking needs 3.48 MWh of electricity per tonne of liquid steel mainly for the elec Read More
Pathways to Low-cost Clean Hydrogen Production with Gas Switching Reforming
Feb 2020
Publication
Gas switching reforming (GSR) is a promising technology for natural gas reforming with inherent CO2 capture. Like conventional steam methane reforming (SMR) GSR can be integrated with CO2 -gas shift and pressure swing adsorption units for pure hydrogen production. The resulting GSR-H2 process concept was techno-economically assessed in this study. Results showed that GSR-H2 can achieve 96% CO2 capture at a CO2 avoidance cost of 15 $/ton (i Read More
Energy Production by Laser-induced Annihilation in Ultradense Hydrogen H(0)
Feb 2021
Publication
Laser-induced nuclear processes in ultra-dense hydrogen H(0) give ejection of bunches of mesons similar to known baryon annihilation processes. This process was recently described as useful for relativistic interstellar travel (Holmlid and Zeiner-Gundersen 2020) and more precise experimental results exist now. The mesons are identified from their known decay time constants at rest as slow charged kaons slow neutral long-lived kaons and slow char Read More
Large-scale Compressed Hydrogen Storage as Part of Renewable Electricity Storage Systems
Mar 2021
Publication
Storing energy in the form of hydrogen is a promising green alternative. Thus there is a high interest to analyze the status quo of the different storage options. This paper focuses on the large-scale compressed hydrogen storage options with respect to three categories: storage vessels geological storage and other underground storage alternatives. In this study we investigated a wide variety of compressed hydrogen storage technologies discussing in fa Read More
Photocatalytic Hydrogen Production by Biomimetic Indium Sulfide Using Mimosa Pudica Leaves as Template
Jan 2019
Publication
Biomimetic sulfur-deficient indium sulfide (In2.77S4) was synthesized by a template-assisted hydrothermal method using leaves of Mimosa pudica as a template for the first time. The effect of this template in modifying the morphology of the semiconductor particles was determined by physicochemical characterization revealing an increase in surface area decrease in microsphere size and pore size and an increase in pore volume density in samp Read More
Production of H2-rich Syngas from Excavated Landfill Waste through Steam Co-gasification with Biochar
Jun 2020
Publication
Gasification of excavated landfill waste is one of the promising options to improve the added-value chain during remediation of problematic old landfill sites. Steam gasification is considered as a favorable route to convert landfill waste into H2-rich syngas. Co-gasification of such a poor quality landfill waste with biochar or biomass would be beneficial to enhance the H2 concentration in the syngas as well as to improve the gasification performance. In this Read More
Design of Clean Steel Production with Hydrogen: Impact of Electricity System Composition
Dec 2021
Publication
In Europe electrification is considered a key option to obtain a cleaner production of steel at the same time as the electricity system production portfolio is expected to consist of an increasing share of varying renewable electricity (VRE) generation mainly in the form of solar PV and wind power. We investigate cost-efficient designs of hydrogen-based steelmaking in electricity systems dominated by VRE. We develop and apply a linear cost-minimization m Read More
Toward a Fossil Free Future with HYBRIT: Development of Iron and Steelmaking Technology in Sweden and Finland
Jul 2020
Publication
The Swedish and Finnish steel industry has a world-leading position in terms of efficient blast furnace operations with low CO2 emissions. This is a result of a successful development work carried out in the 1980s at LKAB (Luossavaara-Kiirunavaara Aktiebolag mining company) and SSAB (steel company) followed by the closing of sinter plants and transition to 100% pellet operation at all of SSAB’s five blast furnaces. However to further reduce CO2 emission Read More
No more items...