French Polynesia
Combined Cooling and Power Management Strategy for a Standalone House Using Hydrogen and Solar Energy
May 2021
Publication
Tropical climate is characterized by hot temperatures throughout the year. In areas subject to this climate air conditioning represents an important share of total energy consumption. In some tropical islands there is no electric grid; in these cases electricity is often provided by diesel generators. In this study in order to decarbonize electricity and cooling production and to improve autonomy in a standalone application a microgrid producing combined cooling and electrical power was proposed. The presented system was composed of photovoltaic panels a battery an electrolyzer a hydrogen tank a fuel cell power converters a heat pump electrical loads and an adsorption cooling system. Electricity production and storage were provided by photovoltaic panels and a hydrogen storage system respectively while cooling production and storage were achieved using a heat pump and an adsorption cooling system respectively. The standalone application presented was a single house located in Tahiti French Polynesia. In this paper the system as a whole is presented. Then the interaction between each element is described and a model of the system is presented. Thirdly the energy and power management required in order to meet electrical and thermal needs are presented. Then the results of the control strategy are presented. The results showed that the adsorption cooling system provided 53% of the cooling demand. The use of the adsorption cooling system reduced the needed photovoltaic panel area the use of the electrolyzer and the use of the fuel cell by more than 60% and reduced energy losses by 7% (compared to a classic heat pump) for air conditioning.
Design and Implementation of the Safety System of a Solar-driven Smart Micro-grid Comprising Hydrogen Production for Electricity & Cooling Co-generation
Sep 2023
Publication
This article presents a comprehensive description of the safety system of a real installation that comprises PV panels lithium-ion batteries an electrolyzer H2 storage a fuel cell and a barium chloride/ammonia thermochemical prototype for heat recovery and cooling production. Such a system allows for the increase of the overall efficiency of the H2 chain by exploiting the waste heat and transforming it into a cooling effect particularly useful in tropical regions like French Polynesia. The study provides a great deal of detail regarding practical aspects of the system implementation and a consistent reference to the relevant standards and regulations applicable to the subject matter. More specifically the study covers the ATEX classification of the site the safety features of each component the electrical power distribution the main safety instrumented system fire safety and the force ventilation system. The study also includes safety assessment and a section on lessons learned that could serve as guidance for future installations. In addition an extensive amount of technical data is readily available to the reader in repository (P&ID electrical diagrams etc.).
No more items...