Korea, Republic of
H2 URESONIC: Design of a Solar-Hydrogen University Renewable Energy System for a New and Innovative Campus
Feb 2024
Publication
The necessity to move to sustainable energy solutions has inspired an investigation of innovative technologies for satisfying educational institutions’ sustainable energy needs. The possibility of a solar-hydrogen storage system and its integration into university energy management is investigated in this article. The study opens by providing context noting the growing relevance of renewable energy in universities as well as the necessity for effective energy storage systems. The goal is to delve into solar-hydrogen technology outlining its components operating mechanism and benefits over typical storage systems. The chapter on Integration Design examines current university energy infrastructure identifies problems and provides ways for integrating solar-hydrogen systems seamlessly. This integration relies heavily on technological and economic considerations such as a cost-benefit analysis and scalability studies. Case studies include real-world examples performance measurements and significant insights learned from successful implementations. The chapter Future Prospects investigates new trends in solar-hydrogen technology as well as the impact of government legislation providing a forward-looking viewpoint for colleges considering adoption. The report concludes with a summary of significant findings emphasizing the benefits of solar-hydrogen integration and making recommendations for future implementations. The limitation of this research is that it only focuses on design and simulation as a phase of preliminary study.
Experimental Study on the Effect of the Ignition Location on Vented Deflagration of Hydrogen-air Mixtures in Enclosure
Sep 2023
Publication
No countermeasures exist for accidents that might occur in hydrogen-based facilities (leaks fires explosions etc.). In South Korea discussions are underway regarding measures to ensure safety from such accidents such as the construction of underground hydrogen storage tank facilities. However explosion vents with a minimum ventilation area are required in such facilities to minimize damage to buildings and other structures due to accidental explosions. These explosion vents allow the generated overpressure and flames to be safely dispersed outside; however a safe separation distance must be secured to minimize damage to humans. This study aimed to determine the safe separation distance to minimize human damage after analyzing the dispersed overpressure and flame behavior following a vent explosion. Explosion experiments were conducted to investigate the influence of the ignition source location on internal and external overpressure and external flame behavior using a cuboid concrete structure with a volume of 20.33 m3 filled with a hydrogen-air mixture (29.0 vol.%). The impact on overpressure and flame was increased with the increasing distance of the ignition source from the vent. Importantly depending on the ignition location the incident pressure was up to 24.4 times higher while the reflected pressure was 8.7 times higher. Additionally a maximum external overpressure of 30.01 kPa was measured at a distance of 2.4 m from the vent predicting damage to humans at the “Injury” level (1 % fatality probability). Whereas no significant damage would occur at a distance of 7.4 m or more from the vent.
Integrated Battery and Hydrogen Energy Storage for Enhanced Grid Power Savings and Green Hydrogen Utilization
Aug 2024
Publication
This study explores the integration and optimization of battery energy storage systems (BESSs) and hydrogen energy storage systems (HESSs) within an energy management system (EMS) using Kangwon National University’s Samcheok campus as a case study. This research focuses on designing BESSs and HESSs with specific technical specifications such as energy capacities and power ratings and their integration into the EMS. By employing MATLAB-based simulations this study analyzes energy dynamics grid interactions and load management strategies under various operational scenarios. Real-time data from the campus are utilized to examine energy consumption renewable energy generation grid power fluctuations and pricing dynamics providing key insights for system optimization. This study finds that a BESS manages energy fluctuations between 0.5 kWh and 3.7 kWh over a 24 h period with battery power remaining close to 4 W for extended periods. Grid power fluctuates between −5 kW and 75 kW while grid prices range from 75 to 120 USD/kWh peaking at 111 USD/kWh. Hydrogen energy storage varies from 1 kWh to 8 kWh with hydrogen power ranging from −40 kW to 40 kW. Load management keeps power stable at around 35 kW and PV power integration peaks at 48 kW by the 10th h. The findings highlight that BESSs and HESSs effectively manage energy distribution and storage improving system efficiency reducing energy costs by approximately 15% and enhancing grid stability by 20%. This study underscores the potential of BESSs and HESSs in stabilizing grid operations and integrating renewable energy. Future directions include advancements in storage technologies enhanced EMS capabilities through artificial intelligence and machine learning and the development of smart grid infrastructures. Policy recommendations stress the importance of regulatory support and stakeholder collaboration to drive innovation and scale deployment ensuring a sustainable energy future.
No more items...