Italy
Flexible Power & Biomass-to-Methanol Plants: Design Optimization and Economic Viability of the Electrolysis Integration
Nov 2021
Publication
This paper assesses the optimal design criteria of a flexible power and biomass to methanol (PBtM) plant conceived to operate both without green hydrogen addition (baseline mode) and with hydrogen addition (enhanced mode) following an intermittent use of the electrolysis system which is turned on when the electricity price allows an economically viable hydrogen production. The assessed plant includes a gasification section syngas cleaning and compression methanol synthesis and purification and heat recovery steam cycle to be flexibly operated. A sorption-enhanced gasification technology allows to produce a tailored syngas for the downstream synthesis in both the baseline and enhanced operating conditions by controlling the in-situ CO2 separation rate. Two designs are assessed for the methanol synthesis unit with two different reactor sizes: (i) a larger reactor designed on the enhanced operation mode (enhanced reactor design – ERD) and (ii) a smaller reactor designed on the baseline operation mode (baseline reactor design – BRD). The ERD design resulted to be preferable from the techno economic perspectives resulting in 20% lower cost of the e-MeOH (30.80 vs. 37.76 €/ GJLHV) with the baseline assumptions (i.e. 80% of electrolyzer capacity factor and 2019 Denmark day-ahead market electricity price). Other important outcomes are: (i) high electrolysis capacity factor is needed to obtain competitive cost of e-MeOH and (ii) advantages of flexibly operated PBtM plants with respect to inflexible PBtM plants are significant in scenarios with high penetration of intermittent renewables leading to low average prices of electricity but also longer periods of high peak prices.
Hazards Assessment and Technical Actions Due to the Production of Pressured Hydrogen within a Pilot Photovoltaic-electrolyser-fuel Cell Power System for Agricultural Equipment
Jun 2016
Publication
A pilot power system formed by photovoltaic panels alkaline electrolyser and fuel cell stacks was designed and set up to supply the heating system of an experimental greenhouse. The aim of this paper is to analyse the main safety aspects of this power system connected to the management of the pressured hydrogen such as the explosion limits of the mixture hydrogen-oxygen the extension of the danger zone the protection pressure vessels and the system to make unreactive the plant. The electrolyser unit is the core of this plant and from the safety point of view has been equipped with devices able to highlight the mal-functions before they cause damages. Alarm situations are highlighted and the production process is cut off in safe conditions in the event that the operational parameters have an abnormal deviation from the design values. Also the entire power system has been designed so that any failure to its components does not compromise the workers’ safety even if the risk analysis is in progress because technical operation are being carried out for enhancing the plant functionality making it more suitable to the designed task of supplying electrically the green-house heating system during cold periods. Some experimental data pertinent to the solar radiation and the corresponding hydrogen pro-duction rate are also reported. At present it does not exist a well-established safety reference protocol to design the reliability of these types of power plants and then the assumed safety measures even if related to the achieved pilot installation can represent an original base of reference to set up guidelines for designing the safety of power plants in the future available for agricultural purposes.
A CFD Analysis of Liquefied Gas Vessel Explosions
Dec 2021
Publication
Hydrogen is one of the most suitable candidates in replacing fossil fuels. However storage issues due to its very low density under ambient conditions are encountered in many applications. The liquefaction process can overcome such issues by increasing hydrogen’s density and thus enhancing its storage capacity. A boiling liquid expanding vapour explosion (BLEVE) is a phenomenon in liquefied gas storage systems. It is a physical explosion that might occur after the catastrophic rupture of a vessel containing a liquid with a temperature above its boiling point at atmospheric pressure. Even though it is an atypical accident scenario (low probability) it should be always considered due to its high yield consequences. For all the above-mentioned reasons the BLEVE phenomenon for liquid hydrogen (LH2) vessels was studied using the CFD methodology. Firstly the CFD model was validated against a well-documented CO2 BLEVE experiment. Secondly hydrogen BLEVE cases were simulated based on tests that were conducted in the 1990s on LH2 tanks designed for automotive purposes. The parametric CFD analysis examined different filling degrees initial pressures and temperatures of the tank content with the aim of comprehending to what extent the initial conditions influence the blast wave. Good agreement was shown between the simulation outcomes and the LH2 bursting scenario tests results.
Aqueous Phase Reforming of the Residual Waters Derived from Lignin-rich Hydrothermal Liquefaction: Investigation of Representative Organic Compounds and Actual Biorefinery Streams
Sep 2019
Publication
Secondary streams in biorefineries need to be valorized to improve the economic and environmental sustainability of the plants. Representative model compounds of the water fraction from the hydrothermal liquefaction (HTL) of biomass were subjected to aqueous phase reforming (APR) to produce hydrogen. Carboxylic and bicarboxylic acids hydroxyacids alcohols cycloketones and aromatics were identified as model compounds and tested for APR. The tests were performed with a Pt/C catalyst and the influence of the carbon concentration (0.3–1.8 wt. C%) was investigated. Typically the increase of the concentration negatively affected the conversion of the feed toward gaseous products without influencing the selectivity toward hydrogen production. A synthetic ternary mixture (glycolic acid acetic acid lactic acid) was subjected to APR to evaluate any differences in performance compared to the tests with single compounds. Indeed glycolic acid reacted faster in the mixture than in the corresponding single compound test while acetic acid remained almost unconverted. The influence of the reaction time temperature and carbon concentration was also evaluated. Finally residual water resulting from the HTL of a lignin-rich stream originating from an industrial-scale lignocellulosic ethanol process was tested for the first time after a thorough characterization. In this framework the stability of the catalyst was studied and found to be correlated to the presence of aromatics in the aqueous feedstock. For this reason the influence of an extraction procedure for the selective removal of these compounds was explored leading to an improvement in the APR performance.
Engineering Thoughts on Hydrogen Embrittlement
Jul 2018
Publication
Hydrogen Embrittlement (HE) is a topical issue for pipelines transporting sour products. Engineers need a simple and effective approach in materials selection at design stage. In other words they must know if a material is susceptible to cracking to be able of:
As an example material selection for sour service pipeline is the object of well-known standards e.g. by Nace International and EFC: they pose some limits in the sour service of steels with reference to surface hardness. These standards have shown some weak points namely:
- selecting the right material
- and apply correct operational measures during the service life.
As an example material selection for sour service pipeline is the object of well-known standards e.g. by Nace International and EFC: they pose some limits in the sour service of steels with reference to surface hardness. These standards have shown some weak points namely:
- In the definition of sour service;
- In defining the role of crack initiation and propagation considering that in Hydrogen embrittlement stress state and stress variations are very important.
Hydrogen as an Energy Vector to Optimize the Energy Exploitation of a Self-consumption Solar Photovoltaic Facility in a Dwelling House
Nov 2019
Publication
Solar photovoltaic (PV) plants coupled with storage for domestic self-consumption purposes seem to be a promising technology in the next years as PV costs have decreased significantly and national regulations in many countries promote their installation in order to relax the energy requirements of power distribution grids. However electrochemical storage systems are still unaffordable for many domestic users and thus the advantages of self-consumption PV systems are reduced. Thus in this work the adoption of hydrogen systems as energy vectors between a PV plant and the energy user is proposed. As a preliminary study in this work the design of a PV and hydrogen-production self-consumption plant for a single dwelling is described. Then a technical and economic feasibility study conducted by modeling the facility within the Homer Energy Pro energy systems analysis tool is reported. The proposed system will be able to provide back not only electrical energy but also thermal energy through a fuel cell or refined water covering the fundamental needs of the householders (electricity heat or cooling and water). Results show that although the proposed system effectively increases the energy local use of the PV production and reduces significantly the energy injections or demands into/from the power grid avoiding power grid congestions and increasing the nano-grid resilience operation and maintenance costs may reduce its economic attractiveness for a single dwelling.
Optimization of Small-Scale Hydrogen Production with Membrane Reactors
Mar 2023
Publication
In the pathway towards decarbonization hydrogen can provide valid support in different sectors such as transportation iron and steel industries and domestic heating concurrently reducing air pollution. Thanks to its versatility hydrogen can be produced in different ways among which steam reforming of natural gas is still the most commonly used method. Today less than 0.7% of global hydrogen production can be considered low-carbon-emission. Among the various solutions under investigation for low-carbon hydrogen production membrane reactor technology has the potential especially at a small scale to efficiently convert biogas into green hydrogen leading to a substantial process intensification. Fluidized bed membrane reactors for autothermal reforming of biogas have reached industrial maturity. Reliable modelling support is thus necessary to develop their full potential. In this work a mathematical model of the reactor is used to provide guidelines for their design and operations in off-design conditions. The analysis shows the influence of temperature pressures catalyst and steam amounts and inlet temperature. Moreover the influence of different membrane lengths numbers and pitches is investigated. From the results guidelines are provided to properly design the geometry to obtain a set recovery factor value and hydrogen production. For a given reactor geometry and fluidization velocity operating the reactor at 12 bar and the permeate-side pressure of 0.1 bar while increasing reactor temperature from 450 to 500 °C leads to an increase of 33% in hydrogen production and about 40% in HRF. At a reactor temperature of 500 °C going from 8 to 20 bar inside the reactor doubled hydrogen production with a loss in recovery factor of about 16%. With the reactor at 12 bar a vacuum pressure of 0.5 bar reduces hydrogen production by 43% and HRF by 45%. With the given catalyst it is sufficient to have only 20% of solids filled into the reactor being catalytic particles. With the fixed operating conditions it is worth mentioning that by adding membranes and maintaining the same spacing it is possible to increase hydrogen production proportionally to the membrane area maintaining the same HRF.
Analysis of the Combustion Process in a Hydrogen-Fueled CFR Engine
Mar 2023
Publication
Green hydrogen produced using renewable energy is nowadays one of the most promising alternatives to fossil fuels for reducing pollutant emissions and in turn global warming. In particular the use of hydrogen as fuel for internal combustion engines has been widely analyzed over the past few years. In this paper the authors show the results of some experimental tests performed on a hydrogen-fueled CFR (Cooperative Fuel Research) engine with particular reference to the combustion. Both the air/fuel (A/F) ratio and the engine compression ratio (CR) were varied in order to evaluate the influence of the two parameters on the combustion process. The combustion duration was divided in two parts: the flame front development (characterized by laminar flame speed) and the rapid combustion phase (characterized by turbulent flame speed). The results of the hydrogen-fueled engine have been compared with results obtained with gasoline in a reference operating condition. The increase in engine CR reduces the combustion duration whereas the opposite effect is observed with an increase in the A/F ratio. It is interesting to observe how the two parameters CR and A/F ratio have a different influence on the laminar and turbulent combustion phases. The influence of both A/F ratio and engine CR on heat transfer to the combustion chamber wall was also evaluated and compared with the gasoline operation. The heat transfer resulting from hydrogen combustion was found to be higher than the heat transfer resulting from gasoline combustion and this is probably due to the different quenching distance of the two fuels.
Hydrogen Addition to Natural Gas in Cogeneration Engines: Optimization of Performances Through Numerical Modeling
Aug 2021
Publication
A numerical study of the energy conversion process occurring in a lean-charge cogenerative engine designed to be powered by natural gas is here conducted to analyze its performances when fueled with mixtures of natural gas and several percentages of hydrogen. The suitability of these blends to ensure engine operations is proven through a zero–one-dimensional engine schematization where an original combustion model is employed to account for the different laminar propagation speeds deriving from the hydrogen addition. Guidelines for engine recalibration are traced thanks to the achieved numerical results. Increasing hydrogen fractions in the blend speeds up the combustion propagation achieving the highest brake power when a 20% of hydrogen fraction is considered. Further increase of this last would reduce the volumetric efficiency by virtue of the lower mixture density. The formation of the NOx pollutants also grows exponentially with the hydrogen fraction. Oppositely the efficiency related to the exploitation of the exhaust gases’ enthalpy reduces with the hydrogen fraction as shorter combustion durations lead to lower temperatures at the exhaust. If the operative conditions are shifted towards leaner air-to-fuel ratios the in-cylinder flame propagation speed decreases because of the lower amount of fuel trapped in the mixture reducing the conversion efficiencies and the emitted nitrogen oxides at the exhaust. The link between brake power and spark timing is also highlighted: a maximum is reached at an ignition timing of 21° before top dead center for hydrogen fractions between 10 and 20%. However the exhaust gases’ temperature also diminishes for retarded spark timings. Lastly an optimization algorithm is implemented to individuate the optimal condition in which the engine is characterized by the highest power production with the minimum fuel consumption and related environmental impact. As a main result hydrogen addition up to 15% in volume to natural gas in real cogeneration systems is proven as a viable route only if engine operations are shifted towards leaner air-to-fuel ratios to avoid rapid pressure rise and excessive production of pollutant emissions.
Techno-economic Analysis of Hydrogen Production from PV Plants
Jan 2022
Publication
Hydrogen production through electrolysis from renewable sources is expected to play an important role to achieve the reduction targets of carbon dioxide emissions set for the next decades. Electrolysers can use the renewable energy surplus to produce green hydrogen and contribute to making the electrical grid more stable. Hydrogen can be used as medium-long term energy storage converted into other fuels or used as feedstock in industry thus contributing to decarbonise hard-to-abate-sectors. However due to the intermittent and variable nature of solar and wind power the direct coupling of electrolysers with renewables may lead to high production fluctuations and frequent shutdowns. As a consequence accelerated electrolyser degradation and safety issues related to low load operation may arise. In this study simulations of hydrogen production with an electrolyser fed by a PV system are performed in Matlab for a reference year. The effect of PV power fluctuations on the electrolyser operation and production is investigated. The impact of the electrolyser size for a fixed nominal power of the PV plant is also analysed from both energetic and economic points of view.
A Rational Approach to the Ecological Transition in the Cruise Market: Technologies and Design Compromises for the Fuel Switch
Jan 2023
Publication
Supporting policies to achieve a green revolution and ecological transition is a global trend. Although the maritime transport of goods and people can rightly be counted among the least polluting sectors much can be done to further reduce its environmental footprint. Moreover to boost the ecological transition of vessels a whole series of international regulations and national laws have been promulgated. Among these the most impactful on both design and operational management of ships concern the containment of air-polluting emissions in terms of GHG NOx SOx and PM. To address this challenge it might seem that many technologies already successfully used in other transport sectors could be applied. However the peculiar characteristics of ships make this statement not entirely true. In fact technological solutions recently adopted for example in the automotive sector must deal with the large size of vessels and the consequent large amount of energy necessary for their operation. In this paper with reference to the case study of a medium/large-sized passenger cruise ship the use of different fuels (LNG ammonia hydrogen) and technologies (internal combustion engines fuel cells) for propulsion and energy generation on board will be compared. By imposing the design constraint of not modifying the payload and the speed of the ship the criticalities linked to the use of one fuel rather than another will be highlighted. The current limits of application of some fuels will be made evident with reference to the state of maturity of the relevant technologies. Furthermore the operational consequences in terms of autonomy reduction will be presented. The obtained results underline the necessity for shipowners and shipbuilders to reflect on the compromises required by the challenges of the ecological transition which will force them to choose between reducing payload or reducing performance.
Pressure Management in Smart Gas Networks for Increasing Hydrogen Blending
Jan 2022
Publication
The injection of hydrogen into existing gas grids is acknowledged as a promising option for decarbonizing gas systems and enhancing the integration among energy sectors. Nevertheless it affects the hydraulics and the quality management of networks. When the network is fed by multiple infeed sites and hydrogen is fed from a single injection point non-homogeneous hydrogen distribution throughout the grid happens to lead to a reduction of the possible amount of hydrogen to be safely injected within the grid. To mitigate these impacts novel operational schemes should therefore be implemented. In the present work the modulation of the outlet pressures of gas infeed sites is proposed as an effective strategy to accommodate larger hydrogen volumes into gas grids extending the area of the network reached by hydrogen while keeping compliance with quality and hydraulic restrictions. A distribution network operated at two cascading pressure tiers interfaced by pressure regulators constitutes the case study which is simulated by a fluid-dynamic and multi-component model for gas networks. Results suggest that higher shares of hydrogen and other green gases can be introduced into existing distribution systems by implementing novel asset management schemes with negligible impact on grid operations.
On the Use of a Hydrogen-Fueled Engine in a Hybrid Electric Vehicle
Dec 2022
Publication
Hybrid electric vehicles are currently one of the most effective ways to increase the efficiency and reduce the pollutant emissions of internal combustion engines. Green hydrogen produced with renewable energies is an excellent alternative to fossil fuels in order to drastically reduce engine pollutant emissions. In this work the author proposes the implementation of a hydrogen-fueled engine in a hybrid vehicle; the investigated hybrid powertrain is the power-split type in which the engine two electric motor/generators and the drive shaft are coupled together by a planetary gear set; this arrangement allows the engine to operate independently from the wheels and thus to exploit the best efficiency operating points. A set of numeric simulations were performed in order to compare the gasoline-fueled engine with the hydrogen-fueled one in terms of the thermal efficiency and total energy consumed during a driving cycle. The simulation results show a mean engine efficiency increase of around 17% when fueled with hydrogen with respect to gasoline and an energy consumption reduction of around 15% in a driving cycle.
The Role of Hydrogen in the Optimal Design of Off-grid Hybrid Renewable Energy Systems
Jan 2022
Publication
The optimal design of off-grid hybrid renewable energy systems (HRESs) is a challenging task which often involves conflicting goals to be faced. In this work levelized cost of energy (LCOE) and CO2 emissions have been addressed simultaneously by using the ε-constraint method together with the particle swarm optimization (PSO) algorithm. Cost-emissions Pareto fronts of different HRES configurations were developed to gain greater awareness about the potential of renewable-based energy systems in off-grid applications. Various combinations of the following components were investigated: photovoltaic panels wind turbines batteries hydrogen and diesel generators. The hydrogen-based system comprises an electrolyzer to convert the excess renewable energy into hydrogen a pressurized tank for H2 storage and a fuel cell for the reconversion of hydrogen into electricity during renewable energy deficits. Electrolyzer and fuel cell devices were modelled by means of part-load performance curves. Size-dependent costs and component lifetimes as a function of the cumulative operational duty were also considered for a more accurate techno-economic assessment. The proposed methodology was applied to the Froan islands (Norway) which were chosen as a reference case study since they are well representative of many other insular microgrid environments in Northern Europe. Results from the sizing simulations revealed that energy storage devices are key components to reduce the dependency on fossil fuels. In particular the hydrogen storage system is crucial in off-grid areas to enhance the RES penetration and avoid a sharp increase in the cost of energy. Hydrogen in fact allows the battery and RES technologies not to be oversized thanks to its cost-effective long-term storage capability. Concerning the extreme case with no diesel the cheapest configuration which includes both batteries and hydrogen has an LCOE of 0.41 €/kWh. This value is around 35% lower than the LCOE of a system with only batteries as energy storage.
A Novel Optimal Power Control for a City Transit Hybrid Bus Equipped with a Partitioned Hydrogen Fuel Cell Stack
May 2020
Publication
The development of more sustainable and zero-emissions collective transport solutions could play a very important measure in the near future within smart city policies. This paper tries to give a contribution to this aim proposing a novel approach to fuel cell vehicle design and operation. Traditional difficulties experienced in fuel cell transient operation are in fact normally solved in conventional vehicle prototypes through the hybridization of the propulsion system and with the complete fulfillment of transients in road energy demand through a high-capacity onboard energy storage device. This makes it normally necessary to use Li-ion battery solutions accepting their restrictions in terms of weight costs energy losses limited lifetime and environmental constraints. The proposed solution instead introduces a partitioning of the hydrogen fuel cell (FC) and novel optimal power control strategy with the aim of limiting the capacity of the energy storage still avoiding FC transient operation. The limited capacity of the resulting energy storage systems which instead has to answer higher power requests makes it possible to consider the utilization of a high-speed flywheel energy storage system (FESS) in place of high energy density Li-ion batteries. The proposed control strategy was validated by vehicle simulations based on a modular and parametric model; input data were acquired experimentally on an operating electric bus in real traffic conditions over an urban bus line. Simulation results highlight that the proposed control strategy makes it possible to obtain an overall power output for the FC stacks which better follows road power demands and a relevant downsizing of the FESS device.
Optimal Design of a Hydrogen-powered Fuel Cell System for Aircraft Applications
Mar 2024
Publication
Recently hydrogen and fuel cells have gained interest as an emerging technology to mitigate the effects of climate change caused by the aviation sector. The aim of this work is to evaluate the applicability of this technology to an existing regional aircraft in order to assess its electrification with the aim of reducing greenhouse gas emissions and achieving sustainability goals. The design of a proton-exchange membrane fuel cell system (PEMFC) with the inclusion of liquid hydrogen storage is carried out. Specifically a general mathematical model is developed which involves multiple scales ranging from individual cells to aircraft scale. First the fuel cell electrochemical model is developed and validated against published polarization curves. Then different sizing approaches are used to compute the overall weight of the hydrogen-based propulsion system in order to optimize the system and minimize its weight. Crucially this work underscores that the feasibility of hydrogenbased fuel cell systems relies not only on hydrogen storage but especially on the electrochemical cell performance which influences the size of the balance of plant and especially its thermal management section. In particular the strategic significance of working with fuel cells at partial loads is demonstrated. This entails achieving an optimal balance between the stacks oversizing and the weights of both hydrogen storage and balance of plant thereby minimizing the overall weight of the system. It is thus shown that an integrated approach is imperative to guide progress towards efficient and implementable hydrogen technology in regional aviation. Furthermore a high-performance PEMFC is analyzed resulting in an overall weight reduction up to nearly 10% compared to the baseline case study. In this way it is demonstrated as technological advancements in PEMFCs can offer further prospects for improving system efficiency.
Achieving Net Zero Emissions in Italy by 2050: Challenges and Opportunities
Dec 2021
Publication
This paper contributes to the climate policy discussion by focusing on the challenges and opportunities of reaching net zero emissions by 2050 in Italy. To support Italian energy planning we developed energy roadmaps towards national climate neutrality consistent with the Paris Agreement objectives and the IPCC goal of limiting the increase in global surface temperature to 1.5 ◦C. Starting from the Italian framework these scenarios identify the correlations among the main pillars for the change of the energy paradigm towards net emissions by 2050. The energy scenarios were developed using TIMES-RSE a partial equilibrium and technology-rich optimization model of the entire Italian energy system. Subsequently an in-depth analysis was developed with the sMTISIM a long-term simulator of power system and electricity markets. The results show that to achieve climate neutrality by 2050 the Italian energy system will have to experience profound transformations on multiple and strongly related dimensions. A predominantly renewable-based energy mix (at least 80–90% by 2050) is essential to decarbonize most of the final energy consumption. However the strong increase of non-programmable renewable sources requires particular attention to new flexibility resources needed for the power system such as Power-to-X. The green fuels produced from renewables via Power-to-X will be a vital energy source for those sectors where electrification faces technical and economic barriers. The paper’s findings also confirm that the European “energy efficiency first” principle represents the very first step on the road to climate neutrality.
An Overview on Safety Issues Related to Hydrogen and Methane Blend Applications in Domestic and Industrial Use
Sep 2017
Publication
The share of electrical energy hailing from renewable sources in the European electricity mix is increasing. The match between renewable power supply and demand has become the greatest challenge to cope with. Gas infrastructure can accommodate large volumes of electricity converted into gas whenever this supply of renewable power is larger than the grid capacity or than the electricity demand. The Power-to-Gas (P2G) process chain could play a significant role in the future energy system. Renewable electric energy can be transformed into storable hydrogen via electrolysis and subsequent methanation. The aim of this paper is to provide an overview of the required technical adaptations of the most common devices for end users such as heating plants CHP systems home gas furnaces and cooking surfaces wherever these are fuelled with methane and hydrogen blends in variable percentages by volume. Special attention will be given to issues related to essential safety standards firstly comparing existing Italian and European regulations in this regard and secondly highlighting the potential need for legislation to regulate the suitability of hydrogen methane blends. Finally a list of foreseeable technical solutions will be provided and discussed thoroughly
Flexible Power and Biomass-To-Methanol Plants With Different Gasification Technologies
Jan 2022
Publication
The competitiveness of biofuels may be increased by integrating biomass gasification plants with electrolysis units which generate hydrogen to be combined with carbon-rich syngas. This option allows increasing the yield of the final product by retaining a higher amount of biogenic carbon and improving the resilience of the energy sector by favoring electric grid services and sector coupling. This article illustrates a techno-economic comparative analysis of three flexible power and biomass to methanol plants based on different gasification technologies: direct gasification indirect gasification and sorptionenhanced gasification. The design and operational criteria of each plant are conceived to operate both without green hydrogen addition (baseline mode) and with hydrogen addition (enhanced mode) following an intermittent use of the electrolysis system which is turned on when the electricity price allows an economically viable hydrogen production. The methanol production plants include a gasification section syngas cleaning conditioning and compression section methanol synthesis and purification and heat recovery steam cycle to be flexibly operated. Due to the high oxygen demand in the gasifier the direct gasification-based plant obtains a great advantage to be operated between a minimum load to satisfy the oxygen demand at high electricity prices and a maximum load to maximize methanol production at low electricity prices. This allows avoiding large oxygen storages with significant benefits for Capex and safety issues. The analysis reports specific fixed-capital investments between 1823 and 2048 €/kW of methanol output in the enhanced operation and LCOFs between 29.7 and 31.7 €/GJLHV. Economic advantages may be derived from a decrease in the electrolysis capital investment especially for the direct gasification-based plants which employ the greatest sized electrolyzer. Methanol breakeven selling prices range between 545 and 582 €/t with the 2019 reference Denmark electricity price curve and between 484 and 535 €/t with an assumed modified electricity price curve of a future energy mix with increased penetration of intermittent renewables.
Redrawing the EU’s Energy Relations: Getting it Right with African Renewable Hydrogen
Oct 2022
Publication
In this paper we will explore the state of play with renewable hydrogen development in Africa through some case studies from AGHA members and the scope for growth moving forward. In so doing we will address some of the prevailing challenges to build out of a clean hydrogen economy that could be foreseen already at this early stage and look for potential solutions building on what is already in place in other sectors. We make the case that there should be four key areas of focus moving forward on African-EU hydrogen collaboration. Firstly (i) foreign direct investment (FDI) should be de-risked through offtake mechanisms and public-private partnerships (ii) flagship projects should lead the way (iii) large parts of the value chain should remain in Africa (iv) wider ‘democratisation’ and accessibility of the sector should be encouraged
How to Power the Energy–Water Nexus: Coupling Desalination and Hydrogen Energy Storage in Mini-Grids with Reversible Solid Oxide Cells
Nov 2020
Publication
Sustainable Development Goals establish the main challenges humankind is called to tackle to assure equal comfort of living worldwide. Among these the access to affordable renewable energy and clean water are overriding especially in the context of developing economies. Reversible Solid Oxide Cells (rSOC) are a pivotal technology for their sector-coupling potential. This paper aims at studying the implementation of such a technology in new concept PV-hybrid energy storage mini-grids with close access to seawater. In such assets rSOCs have a double useful effect: charge/discharge of the bulk energy storage combined with seawater desalination. Based on the outcomes of an experimental proof-of-concept on a single cell operated with salty water the operation of the novel mini-grid is simulated throughout a solar year. Simulation results identify the fittest mini-grid configuration in order to achieve energy and environmental optimization hence scoring a renewable penetration of more than 95% marginal CO2 emissions (13 g/kWh) and almost complete coverage of load demand. Sector-coupling co-production rate (desalinated water versus electricity issued from the rSOC) is 0.29 L/kWh.
Performance and Stability of a Critical Raw Materials-free Anion Exchange Membrane Electrolysis Cell
Feb 2023
Publication
A water electrolysis cell based on anion exchange membrane (AEM) and critical raw materials-free (CRM-free) electrocatalysts was developed. A NiFe-oxide electrocatalyst was used at the anode whereas a series of metallic electrocatalysts were investigated for the cathode such as Ni NiCu NiMo NiMo/KB. These were compared to a benchmark Pt/C cathode. CRMs-free anode and cathode catalysts were synthetized with a crystallite size of about 10 nm. The effect of recirculation through the cell of a diluted KOH solution was investigated. A concentration of 0.5–1 M KOH appeared necessary to achieve suitable performance at high current density. amongst the CRM-free cathodes the NiMo/KB catalyst showed the best performance in the AEM electrolysis cell achieving a current density of 1 A cm− 2 at about 1.7–1.8 V/cell when it was used in combination with a NiFe-oxide anode and a 50 µm thick Fumatech FAA-3–50® hydrocarbon membrane. Durability tests showed an initial decrease of cell voltage with time during 2000 h operation at 1 A cm− 2 until reaching a steady state performance with an energy efficiency close to 80%. An increase of reversible losses during start-up and shutdown cycles was observed. Appropriate stability was observed during cycled operation between 0.2 and 1 A cm− 2 ; however the voltage efficiency was slightly lower than in steady-state operation due to the occurrence of reversible losses during the cycles. Post operation analysis of electrocatalysts allowed getting a better comprehension of the phenomena occurring during the 2000 h durability test.
A Critical Review of Polymer Electrolyte Membrane Fuel Cell Systems for Automotive Applications: Components, Materials, and Comparative Assessment
Mar 2023
Publication
The development of innovative technologies based on employing green energy carriers such as hydrogen is becoming high in demand especially in the automotive sector as a result of the challenges associated with sustainable mobility. In the present review a detailed overview of the entire hydrogen supply chain is proposed spanning from its production to storage and final use in cars. Notably the main focus is on Polymer Electrolyte Membrane Fuel Cells (PEMFC) as the fuel-cell type most typically used in fuel cell electric vehicles. The analysis also includes a cost assessment of the various systems involved; specifically the materials commonly employed to manufacture fuel cells stacks and hydrogen storage systems are considered emphasizing the strengths and weaknesses of the selected strategies together with assessing the solutions to current problems. Moreover as a sought-after parallelism a comparison is also proposed and discussed between traditional diesel or gasoline cars battery-powered electric cars and fuel cell electric cars thus highlighting the advantages and main drawbacks of the propulsion systems currently available on the market.
Fluid-dynamics Analyses and Economic Investigation of Offshore Hydrogen Transport via Steel and Composite Pipelines
Apr 2024
Publication
One of the challenges associated with the use of hydrogen is its storage and transportation. Hydrogen pipelines are an essential infrastructure for transporting hydrogen from offshore production sites to onshore distribution centers. This paper presents an innovative analysis of the pressure drops velocity profile and levelized cost of hydrogen (LCOH) in various hydrogen transportation scenarios examining the influence of pipeline type (steel vs. composite) diameter and outlet pressure. The role of the compressor and the pipeline individually and together was assessed for 1000 and 100 tons of hydrogen. Notably the LCOH was highly sensitive to these parameters with the compressor contribution ranging between 21.52% and 85.11% and the pipeline’s share varying from 14.89% to 78.48%. The outflow pressure and diameter of the pipeline have a significant impact on the performance: when 1000 tons of hydrogen is transported the internal pressure drop ranges from 2 to 30 bar and the flow velocity can vary between 2 and 25 m/s. For equivalent hydrogen quantities the composite pipeline exhibits the same trends but with minor variations in the specific values.
Thermoacoustic Combustion Stability Analysis of a Bluff Body-Stabilized Burner Fueled by Methane–Air and Hydrogen–Air Mixtures
Apr 2023
Publication
Hydrogen can play a key role in the gradual transition towards a full decarbonization of the combustion sector e.g. in power generation. Despite the advantages related to the use of this carbon-free fuel there are still several challenging technical issues that must be addressed such as the thermoacoustic instability triggered by hydrogen. Given that burners are usually designed to work with methane or other fossil fuels it is important to investigate their thermoacoustic behavior when fueled by hydrogen. In this framework the present work aims to propose a methodology which combines Computational Fluid Dynamics CFD (3D Reynolds-Averaged Navier-Stokes (RANS)) and Finite Element Method (FEM) approaches in order to investigate the fluid dynamic and the thermoacoustic behavior introduced by hydrogen in a burner (a lab-scale bluff body stabilized burner) designed to work with methane. The case of CH4 -air mixture was used for the validation against experimental results and benchmark CFD data available in the literature. Numerical results obtained from CFD simulations namely thermofluidodynamic properties and flame characteristics (i.e. time delay and heat release rate) are used to evaluate the effects of the fuel change on the Flame Response Function to the acoustic perturbation by means of a FEM approach. As results in the H2 -air mixture case the time delay decreases and heat release rate increases with respect to the CH4 -air mixture. A study on the Rayleigh index was carried out in order to analyze the influence of H2 -air mixture on thermoacoustic instability of the burner. Finally an analysis of both frequency and growth rate (GR) on the first four modes was carried out by comparing the two mixtures. In the H2 -air case the modes are prone to become more unstable with respect to the same modes of the case fueled by CH4 -air due to the change in flame topology and variation of the heat release rate and time delay fields.
Electric Mobility in Portugal: Current Situation and Forecasts for Fuel Cell Vehicles
Nov 2021
Publication
In recent years the growing concern for air quality has led to the development of sustainable vehicles to replace conventional internal combustion engine (ICE) vehicles. Currently the most widespread technology in Europe and Portugal is that of Battery Electric Vehicles (BEV) or plug‐in HEV (PHEV) electric cars but hydrogen‐based transport has also shown significant growth in the commercialization of Fuel Cell Electric Vehicles (FCEV) and in the development of new infrastructural schemes. In the current panorama of EV particular attention should be paid to hydrogen technology i.e. FCEVs which is potentially a valid alternative to BEVs and can also be hybrid (FCHEV) and plug‐in hybrid (FCPHEV). Several sources cited show a positive trend of hydrogen in the transport sector identifying a growing trend in the expansion of hydrogen infrastructure although at this time it is still at an early stage of development. At the moment the cost of building the infrastructure is still high but on the basis of medium/long‐term scenarios it is clear that investments in hydrogen refueling stations will be profitable if the number of Fuel Cell vehicles increases. Conversely the Fuel Cell vehicle market is hampered if there is no adequate infrastructure for hydrogen development. The opportunity to use Fuel Cells to store electrical energy is quite fascinating and bypasses some obstacles encountered with BEVs. The advantages are clear since the charging times are reduced compared to charging from an electric charging post and the long‐distance voyage is made easier as the autonomy is much larger i.e. the psycho‐ sociological anxiety is avoided. Therefore the first part of the paper provides an overview of the current state of electric mobility in Portugal and the strategies adopted by the country. This is necessary to have a clear vision of how a new technology is accepted by the population and develops on the territory that is the propensity of citizens to technological change. Subsequently using current data on EV development and comparing information from recent years this work aims to investigate the future prospects of FCEVs in Portugal by adopting a dynamic model called SERA (Scenario Evaluation and Regionalization Analysis) with which it is possible to identify the Portuguese districts and cities where an FC charging infrastructure is expected to be most beneficial. From the results obtained the districts of Lisbon Porto and Aveiro seem to be the most interested in adopting FC technology. This analysis aims to ensure a measured view of the credible development of this market segment.
Numerical Investigation of Dual Fuel Combustion on a Compression Ignition Engine Fueled with Hydrogen/Natural Gas Blends
Mar 2022
Publication
The present work aims to assess the influence of the composition of blends of hydrogen (H2 ) and Natural Gas (NG) on Dual Fuel (DF) combustion characteristics including gaseous emissions. The 3D-CFD study is carried out by means of a customized version of the KIVA-3V code. An automotive 2.8 L 4-cylinder turbocharged diesel engine was previously modified in order to operate in DF NG–diesel mode and tested at the dynamometer bench. After validation against experimental results the numerical model is applied to perform a set of combustion simulations at 3000 rpm–BMEP = 8 bar in DF H2/NG-diesel mode. Different H2–NG blends are considered: as the H2 mole fraction varies from 0 vol% to 50 vol% the fuel energy within the premixed charge is kept constant. The influence of the diesel Start Of Injection (SOI) is also investigated. Simulation results demonstrate that H2 enrichment accelerates the combustion process and promotes its completion strongly decreasing UHC and CO emissions. Evidently CO2 specific emissions are also reduced (up to about 20% at 50 vol% of H2 ). The main drawbacks of the faster combustion include an increase of in-cylinder peak pressure and pressure rate rise and of NOx emissions. However the study demonstrates that the optimization of diesel SOI can eliminate all aforementioned shortcomings.
Combustion Characterization in a Diffusive Gas Turbine Burner for Hydrogen-Compliant Applications
Jun 2022
Publication
The target of net-zero emissions set by the 2015 Paris Agreement has strongly commissioned the energy production sector to promote decarbonization renewable sources exploitation and systems efficiency. In this framework the utilization of hydrogen as a long-term energy carrier has great potential. This paper is concerned with the combustion characterization in a non-premixed gas turbine burner originally designed for natural gas when it is fed with NG-H2 blends featuring hydrogen content from 0 to 50% in volume. The final aim is to retrofit a 40 MW gas turbine. Starting from the operational data of the engine a CFD model of the steady-state combustion process has been developed with reference to the base load NG conditions by reducing the fuel mass-flow rate by up to 17% to target the baseline turbine inlet temperature. When the fuel is blended with hydrogen for a given temperature at turbine inlet an increase in the peak temperature up to 800 K is obtained if no countermeasures are taken. Furthermore the flame results are more intense and closer to the injector in the case of hydrogen blending. The results of this work hint at the necessity of carefully analyzing the possible NOx compensation strategies as well as the increased thermal stresses on the injector.
Impacts of Renewable Energy Resources on Effectiveness of Grid-Integrated Systems: Succinct Review of Current Challenges and Potential Solution Strategies
Sep 2020
Publication
This study is aimed at a succinct review of practical impacts of grid integration of renewable energy systems on effectiveness of power networks as well as often employed state-of-the-art solution strategies. The renewable energy resources focused on include solar energy wind energy biomass energy and geothermal energy as well as renewable hydrogen/fuel cells which although not classified purely as renewable resources are a famous energy carrier vital for future energy sustainability. Although several world energy outlooks have suggested that the renewable resources available worldwide are sufficient to satisfy global energy needs in multiples of thousands the different challenges often associated with practical exploitation have made this assertion an illusion to date. Thus more research efforts are required to synthesize the nature of these challenges as well as viable solution strategies hence the need for this review study. First brief overviews are provided for each of the studied renewable energy sources. Next challenges and solution strategies associated with each of them at generation phase are discussed with reference to power grid integration. Thereafter challenges and common solution strategies at the grid/electrical interface are discussed for each of the renewable resources. Finally expert opinions are provided comprising a number of aphorisms deducible from the review study which reveal knowledge gaps in the field and potential roadmap for future research. In particular these opinions include the essential roles that renewable hydrogen will play in future energy systems; the need for multi-sectoral coupling specifically by promoting electric vehicle usage and integration with renewable-based power grids; the need for cheaper energy storage devices attainable possibly by using abandoned electric vehicle batteries for electrical storage and by further development of advanced thermal energy storage systems (overviews of state-of-the-art thermal and electrochemical energy storage are also provided); amongst others.
Hydrogen Embrittlement in Advanced High Strength Steels and Ultra High Strength Steels: A New Investigation Approach
Dec 2018
Publication
In order to reduce CO2 emissions and fuel consumption and to respect current environmental norms the reduction of vehicles weight is a primary target of the automotive industry. Advanced High Strength Steels (AHSS) and Ultra High Strength Steel (UHSS) which present excellent mechanical properties are consequently increasingly used in vehicle manufacturing. The increased strength to mass ratio compensates the higher cost per kg and AHSS and UHSS are proving to be cost-effective solutions for the body-in-white of mass market products.
In particular aluminized boron steel can be formed in complex shapes with press hardening processes acquiring high strength without distortion and increasing protection from crashes. On the other hand its characteristic martensitic microstructure is sensitive to hydrogen delayed fracture phenomena and at the same time the dew point in the furnace can produce hydrogen consequently to the high temperature reaction between water and aluminum. The high temperature also promotes hydrogen diffusion through the metal lattice under the aluminum-silicon coating thus increasing the diffusible hydrogen content. However after cooling the coating acts as a strong barrier preventing the hydrogen from going out of the microstructure. This increases the probability of delayed fracture. As this failure brings to the rejection of the component during production or even worse to the failure in its operation diffusible hydrogen absorbed in the component needs to be monitored during the production process.
For fast and simple measurements of the response to diffusible hydrogen of aluminized boron steel one of the HELIOS innovative instruments was used HELIOS II. Unlike the Devanathan cell that is based on a double electrochemical cell HELIOS II is based on a single cell coupled with a solid-state sensor. The instrument is able to give an immediate measure of diffusible hydrogen content in sheet steels semi-products or products avoiding time-consuming specimen palladium coating with a guided procedure that requires virtually zero training.
Two examples of diffusible hydrogen analyses are given for Usibor®1500-AS one before hot stamping/ quenching and one after hot stamping suggesting that the increase in the number of dislocations during hot stamping could be the main responsible for the lower apparent diffusivity of hydrogen.
In particular aluminized boron steel can be formed in complex shapes with press hardening processes acquiring high strength without distortion and increasing protection from crashes. On the other hand its characteristic martensitic microstructure is sensitive to hydrogen delayed fracture phenomena and at the same time the dew point in the furnace can produce hydrogen consequently to the high temperature reaction between water and aluminum. The high temperature also promotes hydrogen diffusion through the metal lattice under the aluminum-silicon coating thus increasing the diffusible hydrogen content. However after cooling the coating acts as a strong barrier preventing the hydrogen from going out of the microstructure. This increases the probability of delayed fracture. As this failure brings to the rejection of the component during production or even worse to the failure in its operation diffusible hydrogen absorbed in the component needs to be monitored during the production process.
For fast and simple measurements of the response to diffusible hydrogen of aluminized boron steel one of the HELIOS innovative instruments was used HELIOS II. Unlike the Devanathan cell that is based on a double electrochemical cell HELIOS II is based on a single cell coupled with a solid-state sensor. The instrument is able to give an immediate measure of diffusible hydrogen content in sheet steels semi-products or products avoiding time-consuming specimen palladium coating with a guided procedure that requires virtually zero training.
Two examples of diffusible hydrogen analyses are given for Usibor®1500-AS one before hot stamping/ quenching and one after hot stamping suggesting that the increase in the number of dislocations during hot stamping could be the main responsible for the lower apparent diffusivity of hydrogen.
Health-Conscious Optimization of Long-Term Operation for Hybrid PEMFC Ship Propulsion Systems
Jun 2021
Publication
The need to decarbonize the shipping sector is leading to a growing interest in fuel cell-based propulsion systems. While Polymer Electrolyte Membrane Fuel Cells (PEMFC) represent one of the most promising and mature technologies for onboard implementation they are still prone to remarkable degradation. The same problem is also affecting Lithium-ion batteries (LIB) which are usually coupled with PEMFC in hybrid powertrains. By including the combined degradation effects in an optimization strategy the best compromise between costs and PEMFC/LIB lifetime could be determined. However this is still a challenging yet crucial aspect rarely addressed in the literature and rarely yet explored. To fill this gap a health-conscious optimization is here proposed for the long-term minimization of costs and PEMFC/LIB degradation. Results show that a holistic multi-objective optimization allows a 185% increase of PEMFC/LIB lifetime with respect to a fuel-consumption-minimization-only approach. With the progressive ageing of PEMFC/LIB the hybrid propulsion system modifies the energy management strategy to limit the increase of the daily operation cost. Comparing the optimization results at the beginning and the end of the plant lifetime daily operation costs are increased by 73% and hydrogen consumption by 29%. The proposed methodology is believed to be a useful tool able to give insights into the effective costs involved in the long-term operation of this new type of propulsion system.
SNG Generation via Power to Gas Technology: Plant Design and Annual Performance Assessment
Nov 2020
Publication
Power to gas (PtG) is an emerging technology that allows to overcome the issues due to the increasingly widespread use of intermittent renewable energy sources (IRES). Via water electrolysis power surplus on the electric grid is converted into hydrogen or into synthetic natural gas (SNG) that can be directly injected in the natural gas network for long-term energy storage. The core units of the Power to synthetic natural gas (PtSNG) plant are the electrolyzer and the methanation reactors where the renewable electrolytic hydrogen is converted to synthetic natural gas by adding carbon dioxide. A technical issue of the PtSNG plant is the different dynamics of the electrolysis unit and the methanation unit. The use of a hydrogen storage system can help to decouple these two subsystems and to manage the methanation unit for assuring long operation time and reducing the number of shutdowns. The purpose of this paper is to evaluate the energy storage potential and the technical feasibility of the PtSNG concept to store intermittent renewable sources. Therefore different plant sizes (1 3 and 6 MW) have been defined and investigated by varying the ratio between the renewable electric energy sent to the plant and the total electric energy generated by the renewable energy source (RES) facility based on a 12 MW wind farm. The analysis has been carried out by developing a thermochemical and electrochemical model and a dynamic model. The first allows to predict the plant performance in steady state. The second allows to forecast the annual performance and the operation time of the plant by implementing the control strategy of the storage unit. The annual overall efficiencies are in the range of 42–44% low heating value (LHV basis). The plant load factor i.e. the ratio between the annual chemical energy of the produced SNG and the plant capacity results equal to 60.0% 46.5% and 35.4% for 1 3 and 6 MW PtSNG sizes respectively.
Multi-Objective Optimization of a Hydrogen Hub for the Decarbonization of a Port Industrial Area
Feb 2022
Publication
Green hydrogen is addressed as a promising solution to decarbonize industrial and mobility sectors. In this context ports could play a key role not only as hydrogen users but also as suppliers for industrial plants with which they have strong commercial ties. The implementation of hydrogen technologies in ports has started to be addressed as a strategy for renewable energy transition but still requires a detailed evaluation of the involved costs which cannot be separated from the correct design and operation of the plant. Hence this study proposes the design and operation optimization of a hydrogen production and storage system in a typical Italian port. Multi-objective optimization is performed to determine the optimal levelized cost of hydrogen in environmental and techno-economic terms. A Polymer Electrolyte Membrane (PEM) electrolyzer powered by a grid-integrated photovoltaic (PV) plant a compression station and two-pressure level storage systems are chosen to provide hydrogen to a hydrogen refueling station for a 20-car fleet and satisfy the demand of the hydrogen batch annealing in a steel plant. The results report that a 341 kWP PV plant 89 kW electrolyzer and 17 kg hydrogen storage could provide hydrogen at 7.80 €/kgH2 potentially avoiding about 153 tCO2eq/year (120 tCO2eq/year only for the steel plant).
Enhanced Performance and Durability of Low Catalyst Loading PEM Water Electrolyser Based on a Short-side Chain Perfluorosulfonic Ionomer
Sep 2016
Publication
Water electrolysis supplied by renewable energy is the foremost technology for producing ‘‘green” hydrogen for fuel cell vehicles. In addition the ability to rapidly follow an intermittent load makes electrolysis an ideal solution for grid-balancing caused by differences in supply and demand for energy generation and consumption. Membrane-electrode assemblies (MEAs) designed for polymer electrolyte membrane (PEM) water electrolysis based on a novel short-side chain (SSC) perfluorosulfonic acid (PFSA) membrane Aquivion with various cathode and anode noble metal loadings were investigated in terms of both performance and durability. Utilizing a nanosized Ir0.7Ru0.3O solid solution anode catalyst and a supported Pt/C cathode catalyst in combination with the Aquivion membrane gave excellent electrolysis performances exceeding 3.2 A cm-2 at 1.8 V terminal cell voltage ( 80% efficiency) at 90 ºC in the presence of a total catalyst loading of 1.6 mg cm−2. A very small loss of efficiency corresponding to 30 mV voltage increase was recorded at 3 A cm 2 using a total noble metal catalyst loading of less than 0.5 mg cm−2 (compared to the industry standard of 2 mg cm−2). Steady-state durability tests carried out for 1000 h at 1 A cm -2 showed excellent stability for the MEA with total noble metal catalyst loading of 1.6 mg cm−2 (cell voltage increase 5 lV/h). Moderate degradation rate (cell voltage increase 15 lV/h) was recorded for the low loading 0.5 mg cm-2 MEA. Similar stability characteristics were observed in durability tests at 3 A cm−2. These high performance and stability characteristics were attributed to the enhanced proton conductivity and good stability of the novel membrane the optimized structural properties of the the enhanced proton conductivity and good stability of the novel membrane the optimized structural properties of the the enhanced proton conductivity and good stability of the novel membrane the optimized structural properties of the Ir and Ru oxide solid solution and the enrichment of Ir species on the surface for the anodic catalyst.
Hydrogen Production via Steam Reforming: A Critical Analysis of MR and RMM Technologies
Jan 2020
Publication
Hydrogen as the energy carrier of the future’ has been a topic discussed for decades and is today the subject of a new revival especially driven by the investments in renewable electricity and the technological efforts done by high-developed industrial powers such as Northern Europe and Japan. Although hydrogen production from renewable resources is still limited to small scale local solutions and R&D projects; steam reforming (SR) of natural gas at industrial scale is the cheapest and most used technology and generates around 8 kg CO2 per kg H2. This paper is focused on the process optimization and decarbonization of H2 production from fossil fuels to promote more efficient approaches based on membrane separation. In this work two emerging configurations have been compared from the numerical point of view: the membrane reactor (MR) and the reformer and membrane module (RMM) proposed and tested by this research group. The rate of hydrogen production by SR has been calculated according to other literature works a one-dimensional model has been developed for mass heat and momentum balances. For the membrane modules the rate of hydrogen permeation has been estimated according to mass transfer correlation previously reported by this research group and based on previous experimental tests carried on in the first RMM Pilot Plant. The methane conversion carbon dioxide yield temperature and pressure profile are compared for each configuration: SR MR and RMM. By decoupling the reaction and separation section such as in the RMM the overall methane conversion can be increased of about 30% improving the efficiency of the system.
Numerical Modeling of Energy Systems Based on Micro Gas Turbine: A Review
Jan 2022
Publication
In the context of the great research pulse on clean energy transition distributed energy systems have a key role especially in the case of integration of both renewable and traditional energy sources. The stable interest in small-scale gas turbines can further increase owing to their flexibility in both operation and fuel supply. Since their not-excellent electrical efficiency research activities on micro gas turbine (MGT) are focused on the performance improvements that are achievable in several ways like modifying the Brayton cycle integrating two or more plants using cleaner fuels. Hence during the last decades the growing interest in MGT-based energy systems encouraged the development of many numerical approaches aimed to provide a reliable and effective prediction of the energy systems’ behavior. Indeed numerical modeling can help to individuate potentialities and issues of each enhanced layout or hybrid energy system and this review aims to discuss the various layout solutions proposed by researchers with particular attention to recent publications highlighting the adopted modeling approaches and methods.
Dynamic Quality Tracking of Natural Gas and Hydrogen Mixture in a Portion of Natural Gas Grid
Aug 2015
Publication
Direct injection of alternative fuels (biomethane hydrogen) in the natural gas grid appears to be a promising solution to reach environmental objectives of CO2 emission reduction in the current energy scenario. This approach is justified by the large amount of biogas producible which can be upgraded to biomethane; while another proposed solution to increase renewable energy sources exploitation lies in producing hydrogen from excess wind energy followed by injection in the natural gas grid. Nevertheless compliance with composition limits and quality constraints in the resulting natural gas mixture has to be analysed in both stationary and dynamic operations tracking the gas quality downstream the injection point of the alternative fuels. A model was developed to simulate unsteady operation of a portion of gas grid dealing with realistic industrial and residential consumptions concentrated in offtake points. Two case studies were investigated focusing on the comparison between different amounts of hydrogen injection in the pure natural gas flow yielding composition flow rate and pressure profiles. The analysis shows how imposed quality thresholds can be respected although the hydrogen fraction within the natural gas mixture is highly sensitive to the profile and size of the loads connected to the gas pipeline.
An MILP Approach for the Optimal Design of Renewable Battery-hydrogen Energy Systems for Off-grid Insular Communities
Jul 2021
Publication
The optimal sizing of stand-alone renewable H2-based microgrids requires the load demand to be reliably satisfied by means of local renewable energy supported by a hybrid battery/hydrogen storage unit while minimizing the system costs. However this task is challenging because of the high number of components that have to be installed and operated. In this work an MILP optimization framework has been developed and applied to the off-grid village of Ginostra (on the Stromboli island Italy) which is a good example of several other insular sites throughout the Mediterranean area. A year-long time horizon was considered to model the seasonal storage which is necessary for off-grid areas that wish to achieve energy independence by relying on local renewable sources. The degradation costs of batteries and H2-based devices were included in the objective function of the optimization problem i.e. the annual cost of the system. Efficiency and investment cost curves were considered for the electrolyzer and fuel cell components in order to obtain a more detailed and precise techno-economic estimation. The design optimization was also performed with the inclusion of a general demand response program (DRP) to assess its impact on the sizing results. Moreover the effectiveness of the proposed MILP-based method was tested by comparing it with a more traditional approach based on a metaheuristic algorithm for the optimal sizing complemented with ruled-based strategies for the system operation. Thanks to its longer-term storage capability hydrogen is required for the optimal system configuration in order to reach energy self-sufficiency. Finally considering the possibility of load deferral the electricity generation cost can be reduced to an extent that depends on the amount of load that is allowed to participate in the DRP scheme. This cost reduction is mainly due to the decreased capacity of the battery storage system.
Recent Progress and New Perspectives on Metal Amide and Imide Systems for Solid-State Hydrogen Storage
Apr 2018
Publication
Hydrogen storage in the solid state represents one of the most attractive and challenging ways to supply hydrogen to a proton exchange membrane (PEM) fuel cell. Although in the last 15 years a large variety of material systems have been identified as possible candidates for storing hydrogen further efforts have to be made in the development of systems which meet the strict targets of the Fuel Cells and Hydrogen Joint Undertaking (FCH JU) and U.S. Department of Energy (DOE). Recent projections indicate that a system possessing: (i) an ideal enthalpy in the range of 20–50 kJ/mol H2 to use the heat produced by PEM fuel cell for providing the energy necessary for desorption; (ii) a gravimetric hydrogen density of 5 wt. % H2 and (iii) fast sorption kinetics below 110 ◦C is strongly recommended. Among the known hydrogen storage materials amide and imide-based mixtures represent the most promising class of compounds for on-board applications; however some barriers still have to be overcome before considering this class of material mature for real applications. In this review the most relevant progresses made in the recent years as well as the kinetic and thermodynamic properties experimentally measured for the most promising systems are reported and properly discussed.
Tetrahydroborates: Development and Potential as Hydrogen Storage Medium
Oct 2017
Publication
The use of fossil fuels as an energy supply becomes increasingly problematic from the point of view of both environmental emissions and energy sustainability. As an alternative hydrogen is widely regarded as a key element for a potential energy solution. However differently from fossil fuels such as oil gas and coal the production of hydrogen requires energy. Alternative and intermittent renewable energy sources such as solar power wind power etc. present multiple advantages for the production of hydrogen. On the one hand the renewable sources contribute to a remarkable reduction of pollutants released to the air and on the other hand they significantly enhance the sustainability of energy supply. In addition the storage of energy in form of hydrogen has a huge potential to balance an effective and synergetic utilization of renewable energy sources. In this regard hydrogen storage technology is a key technology towards the practical application of hydrogen as “energy carrier”. Among the methods available to store hydrogen solid-state storage is the most attractive alternative from both the safety and the volumetric energy density points of view. Because of their appealing hydrogen content complex hydrides and complex hydride-based systems have attracted considerable attention as potential energy vectors for mobile and stationary applications. In this review the progresses made over the last century on the synthesis and development of tetrahydroborates and tetrahydroborate-based systems for hydrogen storage purposes are summarized.
Control Strategy Assessment for Improving PEM Fuel Cell System Efficiency in Fuel Cell Hybrid Vehicles
Mar 2022
Publication
Concerns about climate change air pollution and the depletion of oil resources have prompted authorities to enforce increasingly strict rules in the automotive sector. There are several benefits to implementing fuel cell hybrid vehicles (FCHV) in the transportation sector including the ability to assist in reducing greenhouse gas emissions by replacing fossil fuels with hydrogen as energy carriers. This paper examines different control strategies for optimizing the power split between the battery and PEM fuel cell in order to maximize the PEM fuel cell system efficiency and reduce fuel consumption. First the vehicle and fuel cell system models are described. A forward approach is considered to model the vehicle dynamics while a semi-empirical and quasi-static model is used for the PEM fuel cell. Then different rule-based control strategies are analyzed with the aim of maximizing fuel cell system efficiency while ensuring a constant battery state of charge (SOC). The different methods are evaluated while the FCHV is performing both low-load and high-load drive cycles. The hydrogen consumption and the overall fuel cell system efficiency are considered for all testing conditions. The results highlight that in both low-load cycles and high-load cycles the best control strategies achieve a fuel cell system efficiency equal or greater to 33% while achieving a fuel consumption 30% less with respect to the baseline control strategy in low-load drive cycles.
Proposed Approach to Calculate Safety Distances for Hydrogen Fuelling Station in Italy
Sep 2021
Publication
In 2021 only 6 hydrogen fuelling station have been built in Italy of which 3 are not operational and only 1 is open to the public while the rest are built in private or industrial areas. While fuelling station which store more than 5000 kg of hydrogen are subjected to the “Seveso Directive” the permitting procedure for refuelling station which store less than the threshold is supervised by the fire brigade command of the province where the station is built. Recently in the effort to easy the permitting procedure to establish new stations a Ministerial Decree was published in the official gazette of the Italian Republic which lists minimum safety features and safety distances that if respected guarantee the approval by the authority. Nevertheless the imposed distances are such that the land required to build the station constitute a barrier rather than a facilitation. Exploiting the possibility introduced by the Decree to calculate safety distances following a Fire Safety Engineering approach a method is proposed for calculation of safety distances. The present paper presents the Italian regulation and describes an approach to calculate the safety distances including an example applied on the dispenser.
Roadmap to Achieving Sustainable Development via Green Hydrogen
Jan 2023
Publication
The conversion to renewable energy can be achieved when cities and communities start to depend on sustainable resources capable of providing for the basic needs of the community along with a reduction in the daily problems and issues that people face. These issues such as poverty hunger sanitation and economic difficulties are highlighted in the Sustainable Development Goals (SDGs) which aim to limit and eradicate these problems along with other environmental obstacles including climate change and Greenhouse Gases (GHGs). These SDGs containing 17 goals target each sector and provide propositions to solve such devastating problems. Hydrogen contributes to the targets of these sustainable developments since through its implementation in different industries the levels of GHG will drop and thus contribute to the climate change which Earth is facing. Further through the usage of such resources many job opportunities will also be developed thus enhancing the economy and lifting the status of society. This paper classifies the four different types of hydrogen and outlines the differences between them. The paper then emphasizes the importance of green hydrogen use within the shipping industry transportation and infrastructure along with economic and social development through job opportunities. Furthermore this paper provides case studies tackling green hydrogen status in the United Kingdom United States of America and European Union as well as Africa United Arab of Emirates and Asia. Finally challenges and recommendations concerning the green hydrogen industry are addressed. This paper aims to relate the use of green hydrogen to the direct and indirect goals of SDG.
Dynamic Modeling of a PEM Fuel Cell Power Plant for Flexibility Optimization and Grid Support
Jun 2022
Publication
The transition toward high shares of non-programmable renewable energy sources in the power grid requires an increase in the grid flexibility to guarantee grid reliability and stability. This work developed within the EU project Grasshopper identifies hydrogen Fuel Cell (FC) power plants based on low temperature PEM cells as a source of flexibility for the power grid. A dynamic numerical model of the flexible FC system is developed and tested against experimental data from a 100-kW pilot plant built within the Grasshopper project. The model is then applied to assess the flexible performance of a 1 MW system in order to optimize the scale-up of the pilot plant to the MW-size. Simulations of load-following operation show the flexibility of the plant which can ramp up and down with a ramp rate depending only on an externally imposed limit. Warm-up simulations allow proposing solutions to limit the warm-up time. Of main importance are the minimization of the water inventory in the system and the construction of a compact system which minimizes the distance between the components.
Materials for Hydrogen-based Energy Storage - Past, Recent Progress and Future Outlook
Dec 2019
Publication
Michael Hirscher,
Volodymyr A. Yartys,
Marcello Baricco,
José Bellosta von Colbe,
Didier Blanchard,
Robert C. Bowman Jr.,
Darren P. Broom,
Craig Buckley,
Fei Chang,
Ping Chen,
Young Whan Cho,
Jean-Claude Crivello,
Fermin Cuevas,
William I. F. David,
Petra E. de Jongh,
Roman V. Denys,
Martin Dornheim,
Michael Felderhoff,
Yaroslav Filinchuk,
George E. Froudakis,
David M. Grant,
Evan MacA. Gray,
Bjørn Christian Hauback,
Teng He,
Terry D. Humphries,
Torben R. Jensen,
Sangryun Kim,
Yoshitsugu Kojima,
Michel Latroche,
Hai-wen Li,
Mykhaylo V. Lototskyy,
Joshua W. Makepeace,
Kasper T. Møller,
Lubna Naheed,
Peter Ngene,
Dag Noreus,
Magnus Moe Nygård,
Shin-ichi Orimo,
Mark Paskevicius,
Luca Pasquini,
Dorthe B. Ravnsbæk,
M. Veronica Sofianos,
Terrence J. Udovic,
Tejs Vegge,
Gavin Walker,
Colin Webb,
Claudia Weidenthaler and
Claudia Zlotea
Globally the accelerating use of renewable energy sources enabled by increased efficiencies and reduced costs and driven by the need to mitigate the effects of climate change has significantly increased research in the areas of renewable energy production storage distribution and end-use. Central to this discussion is the use of hydrogen as a clean efficient energy vector for energy storage. This review by experts of Task 32 “Hydrogen-based Energy Storage” of the International Energy Agency Hydrogen TCP reports on the development over the last 6 years of hydrogen storage materials methods and techniques including electrochemical and thermal storage systems. An overview is given on the background to the various methods the current state of development and the future prospects. The following areas are covered; porous materials liquid hydrogen carriers complex hydrides intermetallic hydrides electro-chemical storage of energy thermal energy storage hydrogen energy systems and an outlook is presented for future prospects and research on hydrogen-based energy storage
A Model-based Parametric and Optimal Sizing of a Battery/Hydrogen Storage of a Real Hybrid Microgrid Supplying a Residential Load: Towards Island Operation
Jun 2021
Publication
In this study the optimal sizing of a hybrid battery/hydrogen Energy Storage System “ESS” is assessed via a model-based parametric analysis in the context of a real hybrid renewable microgrid located in Huelva Spain supplying a real-time monitored residential load (3.5 kW; 5.6 MWh/year) in island mode. Four storage configurations (battery-only H2-only hybrid battery priority and hybrid H2 priority) are assessed under different Energy Management Strategies analysing system performance parameters such as Loss of Load “LL” (kWh;%) Over Production “OP” (kWh;%) round-trip storage efficiency ESS (%) and total storage cost (€) depending on the ESS sizing characteristics. A parallel approach to the storage optimal sizing via both multi-dimensional sensitivity analysis and PSO is carried out in order to address both sub-optimal and optimal regions respectively. Results show that a hybridised ESS capacity is beneficial from an energy security and efficiency point of view but can represent a substantial additional total cost (between 100 and 300 k€) to the hybrid energy system especially for the H2 ESS which presents higher costs. Reaching 100% supply from renewables is challenging and introducing a LL threshold induces a substantial relaxation of the sizing and cost requirements. Increase in battery capacity is more beneficial for the LL abatement while increasing H2 capacity is more useful to absorb large quantities of excess energy. The optimal design via PSO technique is complemented to the parametric study.
Finding Synergy Between Renewables and Coal: Flexible Power and Hydrogen Production from Advanced IGCC Plants with Integrated CO2 Capture
Feb 2021
Publication
Variable renewable energy (VRE) has seen rapid growth in recent years. However VRE deployment requires a fleet of dispatchable power plants to supply electricity during periods with limited wind and sunlight. These plants will operate at reduced utilization rates that pose serious economic challenges. To address this challenge this paper presents the techno-economic assessment of flexible power and hydrogen production from integrated gasification combined cycles (IGCC) employing the gas switching combustion (GSC) technology for CO2 capture and membrane assisted water gas shift (MAWGS) reactors for hydrogen production. Three GSC-MAWGS-IGCC plants are evaluated based on different gasification technologies: Shell High Temperature Winkler and GE. These advanced plants are compared to two benchmark IGCC plants one without and one with CO2 capture. All plants utilize state-of-the-art H-class gas turbines and hot gas clean-up for maximum efficiency. Under baseload operation the GSC plants returned CO2 avoidance costs in the range of 24.9–36.9 €/ton compared to 44.3 €/ton for the benchmark. However the major advantage of these plants is evident in the more realistic mid-load scenario. Due to the ability to keep operating and sell hydrogen to the market during times of abundant wind and sun the best GSC plants offer a 6–11%-point higher annual rate of return than the benchmark plant with CO2 capture. This large economic advantage shows that the flexible GSC plants are a promising option for balancing VRE provided a market for the generated clean hydrogen exists.
Innovative Combustion Analysis of a Micro-gas Turbine Burner Supplied with Hydrogen-natural Gas Mixtures
Sep 2017
Publication
The author discusses in this paper the potential of a micro gas turbine (MGT) combustor when operated under unconventional fuel supplied. The combustor of C30 gas turbine is a reverse flow annular combustor. The CFD analysis of the reacting flow is performed with the 3D ANSYS-FLUENT solver. Specific computational experiments refer to the use of hydrogen – natural gas mixtures in order to define the optimal conditions for pilot and main injections in terms of combustion stability and NOx production. The author's methodology relies on an advanced CFD approach that compares different schemes like eddy dissipation concept together with the flamelet- PDF based approach coupled with an accurate study of the turbulent chemistry interaction. Extended kinetic mechanisms are also included in the combustion model. Some test cases are examined to make a comparison of combustion stability and efficiency and pollutant production with high hydrogen / natural gas ratios.
An Extensive Review of Liquid Hydrogen in Transportation with Focus on the Maritime Sector
Sep 2022
Publication
The European Green Deal aims to transform the EU into a modern resource-efficient and competitive economy. The REPowerEU plan launched in May 2022 as part of the Green Deal reveals the willingness of several countries to become energy independent and tackle the climate crisis. Therefore the decarbonization of different sectors such as maritime shipping is crucial and may be achieved through sustainable energy. Hydrogen is potentially clean and renewable and might be chosen as fuel to power ships and boats. Hydrogen technologies (e.g. fuel cells for propulsion) have already been implemented on board ships in the last 20 years mainly during demonstration projects. Pressurized tanks filled with gaseous hydrogen were installed on most of these vessels. However this type of storage would require enormous volumes for large long-range ships with high energy demands. One of the best options is to store this fuel in the cryogenic liquid phase. This paper initially introduces the hydrogen color codes and the carbon footprints of the different production techniques to effectively estimate the environmental impact when employing hydrogen technologies in any application. Afterward a review of the implementation of liquid hydrogen (LH2 ) in the transportation sector including aerospace and aviation industries automotive and railways is provided. Then the focus is placed on the maritime sector. The aim is to highlight the challenges for the adoption of LH2 technologies on board ships. Different aspects were investigated in this study from LH2 bunkering onboard utilization regulations codes and standards and safety. Finally this study offers a broad overview of the bottlenecks that might hamper the adoption of LH2 technologies in the maritime sector and discusses potential solutions.
Electrolyzer Performance Analysis of an Integrated Hydrogen Power System for Greenhouse Heating. A Case Study
Jul 2016
Publication
A greenhouse containing an integrated system of photovoltaic panels a water electrolyzer fuel cells and a geothermal heat pump was set up to investigate suitable solutions for a power system based on solar energy and hydrogen feeding a self-sufficient geothermal-heated greenhouse. The electricity produced by the photovoltaic source supplies the electrolyzer; the manufactured hydrogen gas is held in a pressure tank. In these systems the electrolyzer is a crucial component; the technical challenge is to make it work regularly despite the irregularity of the solar source. The focus of this paper is to study the performance and the real energy efficiency of the electrolyzer analyzing its operational data collected under different operating conditions affected by the changeable solar radiant energy characterizing the site where the experimental plant was located. The analysis of the measured values allowed evaluation of its suitability for the agricultural requirements such as greenhouse heating. On the strength of the obtained result a new layout of the battery bank has been designed and exemplified to improve the performance of the electrolyzer. The evaluations resulting from this case study may have a genuine value therefore assisting in further studies to better understand these devices and their associated technologies.
No more items...