Iran, Islamic Republic of
Comprehensive Optimisation of an Integrated Energy System for Power, Hydrogen, and Freshwater Generation Using High-temperature PEM Fuel Cell
Feb 2024
Publication
Modern energy conversion technologies with low or no emissions are needed to achieve sustainable development goals. This research examines the thermodynamic and exergy-economic features of a high-temperature proton exchange membrane fuel cell. A cutting-edge integrated energy system uses high-temperature proton exchange membrane fuel cells an organic Rankine cycle a proton exchange membrane electrolyzer and a multi-effect desalination unit. This setup generates electricity hydrogen and fresh water. Methanol-steam reformation produces hydrogen for the fuel cell. The recommended cycle drives an organic Rankine power producing cycle using 120-200 °C waste heat from hightemperature proton exchange membrane fuel cell to power water electrolysis and hydrogen generation. An integrated method incorporates energy and exergy balances and cost analysis to assess the proposed system's exergetic economic and environmental impacts. The suggested integration delivers high energy and exergy efficiency at an acceptable cost and environmental effect. According to parametric research boosting the fuel cell's working temperature decreases production costs and carbon dioxide emissions per mass. Raising current density has positive technical and environmental impacts. As the current density increases from 0.4 to 0.8 (A/cm2 ) the net power generation increases to 46.67% and the exergy efficiency increases from 64.5% to 68%. An increase in multi-effect distillation motivate steam pressure from 200 to 600 kPa results in an increase in the daily freshwater generated from 111.68 m3 to 116.41 m3 . For environmental protection and output optimization fuel utilization ratio must be reduced. The ideal system's exergy efficiency product unit cost and environmental impact are 65.78% 86.28 ($/h) and 4.33% respectively.
Comprehensive Review of Carbon Capture and Storage Integration in Hydrogen Production: Opportunities, Challenges, and Future Perspectives
Oct 2024
Publication
The growing emphasis on renewable energy highlights hydrogen’s potential as a clean energy carrier. However traditional hydrogen production methods contribute significantly to carbon emissions. This review examines the integration of carbon capture and storage (CCS) technologies with hydrogen production processes focusing on their ability to mitigate carbon emissions. It evaluates various hydrogen production techniques including steam methane reforming electrolysis and biomass gasification and discusses how CCS can enhance environmental sustainability. Key challenges such as economic technical and regulatory obstacles are analyzed. Case studies and future trends offer insights into the feasibility of CCS–hydrogen integration providing pathways for reducing greenhouse gases and facilitating a clean energy transition.
Hydrogen as an Energy Source: A Review of Production Technologies and Challenges of Fuel Cell Vehicles
Oct 2024
Publication
The significant growth of both the global population and economy in recent years has led to a rise in global energy demand. Fossil fuels have a significant contribution to generating energy which has raised concerns about sustainability and environmental impact. There are widespread efforts to find alternative sources in order to reduce dependence on fossil fuels and mitigate their environmental consequences. Among the alternative sources hydrogen has emerged as a promising option due to its potential to be a clean and sustainable energy source. Hydrogen possesses several advantages such as a high calorific value a high reaction rate various sources and the ability to integrate with other renewable energy sources and existing systems. These attributes render hydrogen a stable and reliable energy resource which can help reduce greenhouse gas emissions (GHG) and transition towards a sustainable future. In this review paper distinct hydrogen production technologies such as conventional renewable and nuclear energy are investigated and compared. In addition the challenges and limitations of the application of hydrogen fuel cells on vehicles and hydrogen circulation components are explored. Finally the environmental impact of hydrogen vehicles specifically their role in promoting sustainable development is investigated.
Techno-economic Assessment of Hydrogen-based Energy Storage Systems in Determining the Optimal Configuration of the Nuclear-renewable Hybrid Energy System
Apr 2024
Publication
Population growth and economic development have significantly increased global energy demand. Hence it has raised concerns about the increase in the consumption of fossil fuels and climate change. The present work introduced a new approach to using carbon-free energy sources such as nuclear and renewable to meet energy demand. The idea of using the Nuclear-Renewable Hybrid Energy System (N-R HES) is suggested as a leading solution that couples a nuclear power plant with renewable energy and hydrogen-based storage systems. For this purpose using a meta-heuristic method based on Newton’s laws the configuration of the N-R HES is optimized from an economic and reliability point of view. The optimal system is selected from among six cases with different subsystems such as wind turbine photovoltaic panel nuclear reactor electrolysis fuel cell and hydrogen storage tank. Furthermore the performance of hydrogen-based energy storage systems such as hightemperature electrolysis (HTE) and low-temperature electrolysis (LTE) is evaluated from technical and economic aspects. The results of this work showed that using nuclear energy to supply the base load increases the reliability of the system and reduces the loss of power supply probability to zero. More than 70 % of the power is produced by nuclear reactors which includes more than 80 % of the system costs. The key findings showed that despite HTE’s higher efficiency using LTE as a storage system in N-R HES is more cost-effective. Finally due to recent developments and the safer design of nuclear reactors they can play an important role in combination with renewable energies to support carbon-free energy sectors especially in remote areas for decades to come.
No more items...