India
In-situ Study of the Effect of Hydrogen on Fatigue Crack Initiation in Polycrystalline Nickel
Aug 2019
Publication
Correlating hydrogen embrittlement phenomenon with the metallic microstructural features holds the key for developing metals resistant to hydrogen-based failures. In case of fatigue failure of hydrogen charged metals in addition to the hydrogen-based failure mechanisms associated with monotonic loading such as HELP HEDE etc. microstructural features such as grain size type of grain boundary (special/random) fraction of special grain boundaries; their network and triple junctions can play a complex role. The probable sites for fatigue crack initiation in such metals can be identified as the sites of highest hydrogen concentration or accumulated plastic strain. To this end we have developed an experimental framework based on in-situ fatigue crack initiation and propagation studies under scanning electron microscope (SEM) to identify the weakest link in the metallic microstructure leading to failure. In-situ fatigue experiments are performed on carefully designed polycrystalline nickel (99.95% pure) specimens (miniaturised shallow-notched & electro-polished) using a 10 kN fatigue stage inside the SEM. Electron Back Scattering Diffraction (EBSD) map of the notched region surface helps identify the distribution of special/random grain boundaries triple junctions and grain orientation. The specimen surface in the shallow notched region for both the hydrogen charged and un-charged specimens are then carefully studied to correlate the microstructural feature associated with fatigue crack initiation sites. Such correlation of the fatigue crack initiation site and microstructural feature is further corroborated with the knowledge of hydrogen trapping and grain’s elastic anisotropicity to be either the site of high hydrogen concentration accumulated plastic slip or both.
Numerical Modelling of Hazards of Hydrogen Storage
Sep 2017
Publication
For the general public to use hydrogen as a vehicle fuel they must be able to handle hydrogen with the same degree of confidence as conventional liquid and gaseous fuels. The hazards associated with jet releases from accidental leaks in a vehicle-refuelling environment must be considered if hydrogen is stored and used as a high-pressure gas since a jet release can result in a fire or explosion. This paper describes the work done by us in modelling some of the consequences of accidental releases of hydrogen implemented in our Fire Explosion Release Dispersion (FRED) software. The new dispersion model is validated against experimental data available in the open literature. The model predictions of hydrogen gas concentration as a function of distance are in good agreement with experiments. In addition FRED has been used to model the consequence of the bursting of a vessel containing compressed hydrogen. The results obtained from FRED i.e. overpressure as a function of distance match well in comparison to experiments. Overall it is concluded that FRED can model the consequences of an accidental release of hydrogen and the blast waves generated from bursting of vessel containing compressed hydrogen
Failure Analysis of Cooling Duct of Top Engine Cowl Panel of Fighter Aircraft
Jun 2019
Publication
Present work describes the failure analysis of cooling duct of a fighter aircraft. The analyzed chemical composition of cooling duct indicates that it is manufactured from Al-based alloy (AA 3003 or its equivalent). Microstructure of cooling duct displays the presence of two phases namely matrix and insoluble particles. The hardness values at different locations within damaged area of cooling duct reflect nearly same and consistent. The fracture surface of the cooling duct exhibits transgranular features and cracks with little branching. The analyzed hydrogen content in cooling duct is significantly higher (∼ 12 ppm) than the specified one (< 1 ppm). However the alloy used to fabricate cooling duct is not susceptible to typical hydrogen embrittlement. This shows hydrogen pick up during operation. The presence of cracks with branching does reflect features of hydrogen embrittlement. In addition striations indicative of fatigue features are also observed. It thus appears that the cooling duct has failed due to pick up of large amount of hydrogen as well as vibrational fatigue.
Utilization and Recycling of End of Life Plastics for Sustainable and Clean Industrial Processes Including the Iron and Steel Industry
Aug 2019
Publication
About 400 million tonnes of plastics are produced per annum worldwide. End-of-life of plastics disposal contaminates the waterways aquifers and limits the landfill areas. Options for recycling plastic wastes include feedstock recycling mechanical /material recycling industrial energy recovery municipal solid waste incineration. Incineration of plastics containing E-Wastes releases noxious odours harmful gases dioxins HBr polybrominated diphenylethers and other hydrocarbons. This study focusses on recycling options in particular feedstock recycling of plastics in high-temperature materials processing for a sustainable solution to the plastic wastes not suitable for recycling. Of the 7% CO2 emissions attributed to the iron and steel industry worldwide ∼30% of the carbon footprint is reduced using the waste plastics compared to other carbon sources in addition to energy savings. Plastics have higher H2 content than the coal. Hydrogen evolved from the plastics acts as the reductant alongside the carbon monoxide. Hydrogen reduction of iron ore in presence of plastics increases the reaction rates due to higher diffusion of H2 compared to CO. Plastic replacement reduces the process temperature by at least 100–200 °C due to the reducing gases (hydrogen) which enhance the energy efficiency of the process. Similarly plastics greatly reduce the emissions in other high carbon footprint process such as magnesia production while contributing to energy.
Numerical Investigation of Hydrogen-air Deflagrations in a Repeated Pipe Congestion
Sep 2019
Publication
Emerging hydrogen energy technologies are creating new avenues for bring hydrogen fuel usage into larger public domain. Identification of possible accidental scenarios and measures to mitigate associated hazards should be well understood for establishing best practice guidelines. Accidentally released hydrogen forms flammable mixtures in a very short time. Ignition of such a mixture in congestion and confinements can lead to greater magnitudes of overpressure catastrophic for both structure and people around. Hence understanding of the permissible level of confinements and congestion around the hydrogen fuel handling and storage unit is essential for process safety. In the present study numerical simulations have been performed for the hydrogen-air turbulent deflagration in a well-defined congestion of repeated pipe rig experimentally studied by [1]. Large Eddy Simulations (LES) have been performed using the in-house modified version of the OpenFOAM code. The Flame Surface Wrinkling Model in the LES context is used for modelling deflagrations. Numerical predictions concerning the effects of hydrogen concentration and congestion on turbulent deflagration overpressure are compared with the measurements [1] to provide validation of the code. Further insight about the flame propagation and trends of the generated overpressures over the range of concentrations are discussed.
Development and Future Scope of Renewable Energy and Energy Storage Systems
May 2022
Publication
This review study attempts to summarize available energy storage systems in order to accelerate the adoption of renewable energy. Inefficient energy storage systems have been shown to function as a deterrent to the implementation of sustainable development. It is therefore critical to conduct a thorough examination of existing and soon-to-be-developed energy storage technologies. Various scholarly publications in the fields of energy storage systems and renewable energy have been reviewed and summarized. Data and themes have been further highlighted with the use of appropriate figures and tables. Case studies and examples of major projects have also been researched to gain a better understanding of the energy storage technologies evaluated. An insightful analysis of present energy storage technologies and other possible innovations have been discovered with the use of suitable literature review and illustrations. This report also emphasizes the critical necessity for an efficient storage system if renewable energy is to be widely adopted.
Methanol Electrolysis for Hydrogen Production Using Polymer Electrolyte Membrane: A Mini-Review
Nov 2020
Publication
Hydrogen (H2) has attained significant benefits as an energy carrier due to its gross calorific value (GCV) and inherently clean operation. Thus hydrogen as a fuel can lead to global sustainability. Conventional H2 production is predominantly through fossil fuels and electrolysis is now identified to be most promising for H2 generation. This review describes the recent state of the art and challenges on ultra-pure H2 production through methanol electrolysis that incorporate polymer electrolyte membrane (PEM). It also discusses about the methanol electrochemical reforming catalysts as well as the impact of this process via PEM. The efficiency of H2 production depends on the different components of the PEM fuel cells which are bipolar plates current collector and membrane electrode assembly. The efficiency also changes with the nature and type of the fuel fuel/oxygen ratio pressure temperature humidity cell potential and interfacial electronic level interaction between the redox levels of electrolyte and band gap edges of the semiconductor membranes. Diverse operating conditions such as concentration of methanol cell temperature catalyst loading membrane thickness and cell voltage that affect the performance are critically addressed. Comparison of various methanol electrolyzer systems are performed to validate the significance of methanol economy to match the future sustainable energy demands.
Energy, Exergy, and Environmental Analyses of Renewable Hydrogen Production Through Plasma Gasification of Microalgal Biomass
Feb 2021
Publication
In this study an energy exergy and environmental (3E) analyses of a plasma-assisted hydrogen production process from microalgae is investigated. Four different microalgal biomass fuels namely raw microalgae (RM) and three torrefied microalgal fuels (TM200 TM250 and TM300) are used as the feedstock for steam plasma gasification to generate syngas and hydrogen. The effects of steam-tobiomass (S/B) ratio on the syngas and hydrogen yields and energy and exergy efficiencies of plasma gasification (hEn;PG hEx;PG) and hydrogen production(hEn;H2 hEx;H2 ) are taken into account. Results show that the optimal S/B ratios of RM TM200 TM250 and TM300 are 0.354 0.443 0.593 and 0.760 respectively occurring at the carbon boundary points (CBPs) where the maximum values of hEn;PG hEx;PG hEn;H2 and hEx;H2 are also achieved. At CBPs torrefied microalgae as feedstock lower thehEn;PG hEx;PG hEn;H2 and hEx;H2 because of their improved calorific value after undergoing torrefaction and the increased plasma energy demand compared to the RM. However beyond CBPs the torrefied feedstock displays better performance. A comparative life cycle analysis indicates that TM300 exhibits the highest greenhouse gases (GHG) emissions and the lowest net energy ratio (NER) due to the indirect emissions associated with electricity consumption.
Hydrogen Production and Subsequent Adsorption/Desorption Process within a Modified Unitized Regenerative Fuel Cell
Apr 2019
Publication
For sustainable and incremental growth mankind is adopting renewable sources of energy along with storage systems. Storing surplus renewable energy in the form of hydrogen is a viable solution to meet continuous energy demands. In this paper the concept of electrochemical hydrogen storage in a solid multi-walled carbon nanotube (MWCNT) electrode integrated in a modified unitized regenerative fuel cell (URFC) is investigated. The method of solid electrode fabrication from MWCNT powder and egg white as an organic binder is disclosed. The electrochemical testing of a modified URFC with an integrated MWCNT-based hydrogen storage electrode is performed and reported. Galvanostatic charging and discharging was carried out and results analyzed to ascertain the electrochemical hydrogen storage capacity of the fabricated electrode. The electrochemical hydrogen storage capacity of the porous MWCNT electrode is found to be 2.47 wt% which is comparable with commercially available AB5-based hydrogen storage canisters. The obtained results prove the technical feasibility of a modified URFC with an integrated MWCNT-based hydrogen storage electrode which is the first of its kind. This is surelya step forward towards building a sustainable energy economy
Experimental Investigation on Helium Jet Release and Distribution in a Vented Cylindrical Enclosure – Effect of Wall Temperature Conditions
Oct 2015
Publication
Hydrogen generated during core meltdown accidents in nuclear reactors can cause serious threat to the structural integrity of the containment and safe operation of nuclear power plants. The study of hydrogen release and mixing within the containments is an important area of safety research as hydrogen released during such accidents in nuclear power plants can lead to hydrogen explosions and catastrophic consequences. A small scale experimental setup called the AERB-IIT Madras Hydrogen Mixing Studies (AIHMS) facility is setup at IIT Madras to study the distribution of hydrogen subsequent to release as a jet followed by its response to various wall thermal conditions. The present paper gives details of the design fabrication and instrumentation of the AIHMS facility and a comparison of features of the facility with respect to other facilities existing for hydrogen mitigation studies. Then it gives details of the experiments conducted and the results of the preliminary experiments on concentration build-up as a result of injection of gases (air and helium) and effect of thermally induced natural convection on gas mixing performed in this experimental facility.
Single Step Compact Steam Methane Reforming Process for Hydrogen-Cng (H-Cng) Production from Natural Gas
Sep 2011
Publication
Compressed natural gas (CNG) is being increasingly used as a clean transportation fuel. However for further reduction in emissions particularly NOx H-CNG mixture with ~ 20 % hydrogen is recommended. Presently most of the H-CNG mixture is produced by blending hydrogen with CNG. For hydrogen production Steam Methane Reforming (SMR) is a major process accounting for more than 90% of hydrogen production by various industries. In this process natural gas is first reformed to syn gas under severe operating conditions (Pressure 20-30 bar temperature 850-950 deg C) followed by conversion of CO to hydrogen in the shift reactor. Other method of hydrogen production such as electrolysis of water is more expensive. Further there are issues of safety with handling of hydrogen its storage and transportation for blending. In order to overcome these problems a single step compact process for the production of H-CNG gaseous mixture through low severity steam methane reforming of natural gas has been developed. It employs a catalyst containing nickel nickel oxide magnesium oxide and silica and has the capability of producing H-CNG mixture in the desired proportion containing 15-20 vol % hydrogen with nil CO production. The process is flexible and rugged allowing H-CNG production as per the demand. The gaseous H-CNG product mixture can directly be used as automobile fuel after compression. The process can help as important step in safe transition towards hydrogen economy. A demonstration unit is being set up at IOC R&D Centre.
Parametric Studies on LaNi4.7Al0.3 Based Hydrogen Storage Reactor with Embedded Cooling Tubes
Mar 2019
Publication
This study reports the investigative conclusions of parametric studies conducted to understand the effect of operating parameters on absorption and desorption characteristics of LaNi4.7Al0.3 metal hydride system for thermal management applications. Reactor with improved design containing 55 embedded cooling tubes is fabricated and filled with 4 kg of metal hydride alloy. Using water as heat transfer fluid (HTF) effects of supply pressure HTF temperature and HTF flow rate on absorption and desorption characteristics of the reactor are analyzed. Increasing supply pressure leads to prominent improvement in absorption capacity while the increase in HTF temperature enhanced desorption performance. At 20 bar and 20 °C 46.2877 g of hydrogen (1.16 wt%) was absorbed resulting in total energy output of 707.3 kJ for 300 s. During desorption at 80 °C with water flow rate of 8 lpm heat input of 608.1 kJ for 300 s resulted in 28.5259 g of hydrogen desorption.
Cost Optimization of a Stand-Alone Hybrid Energy System with Fuel Cell and PV
Mar 2020
Publication
Renewable energy has become very popular in recent years. The amount of renewable generation has increased in both grid-connected and stand-alone systems. This is because it can provide clean energy in a cost-effective and environmentally friendly fashion. Among all varieties photovoltaic (PV) is the ultimate rising star. Integration of other technologies with solar is enhancing the efficiency and reliability of the system. In this paper a fuel cell–solar photovoltaic (FC-PV)-based hybrid energy system has been proposed to meet the electrical load demand of a small community center in India. The system is developed with PV panels fuel cell an electrolyzer and hydrogen storage tank. Detailed mathematical modeling of this system as well as its operation algorithm have been presented. Furthermore cost optimization has been performed to determine ratings of PV and Hydrogen system components. The objective is to minimize the levelized cost of electricity (LCOE) of this standalone system. This optimization is performed in HOMER software as well as another tool using an artificial bee colony (ABC). The results obtained by both methods have been compared in terms of cost effectiveness. It is evident from the results that for a 68 MWh/yr of electricity demand is met by the 129 kW Solar PV 15 kW Fuel cell along with a 34 kW electrolyzer and a 20 kg hydrogen tank with a LPSP of 0.053%. The LCOE is found to be in 0.228 $/kWh. Results also show that use of more sophisticated algorithms such as ABC yields more optimized solutions than package programs such as HOMER. Finally operational details for FC-PV hybrid system using IEC 61850 inter-operable communication is presented. IEC 61850 information models for FC electrolyzer hydrogen tank were developed and relevent IEC 61850 message exchanges for energy management in FC-PV hybrid system are demonstrated.
Recent Advances in Biomass Pretreatment Technologies for Biohydrogen Production
Jan 2022
Publication
Hydrogen is an economical source of clean energy that has been utilized by industry for decades. In recent years demand for hydrogen has risen significantly. Hydrogen sources include water electrolysis hydrocarbon steam reforming and fossil fuels which emit hazardous greenhouse gases and therefore have a negative impact on global warming. The increasing worldwide population has created much pressure on natural fuels with a growing gap between demand for renewable energy and its insufficient supply. As a result the environment has suffered from alarming increases in pollution levels. Biohydrogen is a sustainable energy form and a preferable substitute for fossil fuel. Anaerobic fermentation photo fermentation microbial and enzymatic photolysis or combinations of such techniques are new approaches for producing biohydrogen. For cost-effective biohydrogen production the substrate should be cheap and renewable. Substrates including algal biomass agriculture residue and wastewaters are readily available. Moreover substrates rich in starch and cellulose such as plant stalks or agricultural waste or food industry waste such as cheese whey are reported to support dark- and photo-fermentation. However their direct utilization as a substrate is not recommended due to their complex nature. Therefore they must be pretreated before use to release fermentable sugars. Various pretreatment technologies have been established and are still being developed. This article focuses on pretreatment techniques for biohydrogen production and discusses their efficiency and suitability including hybrid-treatment technology
Hydrogen Embrittlement of Steel Pipelines During Transients
May 2021
Publication
Blending hydrogen into natural gas pipelines is a recent alternative adopted for hydrogen transportation as a mixture with natural gas. In this paper hydrogen embrittlement of steel pipelines originally designed for natural gas transportation is investigated. Solubility permeation and diffusion phenomena of hydrogen molecules into the crystalline lattice structure of the pipeline material are followed up based on transient evolution of internal pressure applied on the pipeline wall. The transient regime is created through changes of gas demand depending on daily consumptions. As a result the pressure may reach excessive values that lead to the acceleration of hydrogen solubility and its diffusion through the pipeline wall. Furthermore permeation is an important parameter to determine the diffusion amount of hydrogen inside the pipeline wall resulting in the embrittlement of the material. The numerical obtained results have shown that using pipelines designed for natural gas conduction to transport hydrogen is a risky choice. Actually added to overpressure and great fluctuations during transients that may cause fatigue and damage the structure also the latter pressure evolution is likely to induce the diffusion phenomena of hydrogen molecules into the lattice of the structure leading to brittle the pipe material. The numerical simulation reposes on solving partial differential equations describing transient gas flow in pipelines coupled with the diffusion equation for mass transfer. The model is built using the finite elements based software COMSOL Multiphysics considering different cases of pipe material; API X52 (base metal and nutrided) and API X80 steels. Obtained results allowed tracking the evolution with time of hydrogen concentration through the pipeline internal wall based on the pressure variation due to transient gas flow. Such observation permits to estimate the amount of hydrogen diffused in the metal to avoid leakage of this flammable gas. Thus precautions may be taken to prevent explosive risks due to hydrogen embrittlement of steel pipelines among other effects that can lead to alter safe conditions of gas conduction.
Modelling of Fatigue Crack Initiation in Hydrogen Charged Polycrystalline Nickel
Jun 2019
Publication
Hydrogen Embrittlement (HE) leads to deterioration of the fracto-mechanical properties of metals. In spite of vast literature it is still not clearly understood and demands significant research on this topic. For better understanding of the hydrogen effect on fatigue behaviour of metals present work focuses on developing a computational framework for fatigue crack initiation studies in metals in the presence of hydrogen. The developed framework consists of a nonlocal crystal plasticity model coupled with hydrogen transport model to study the fatigue behaviour of hydrogen charged metals. The nonlocal crystal plasticity model accounts for the statistically stored dislocations (SSDs) and geometrically necessary dislocations (GNDs) in polycrytalline metal. Hydrogen transport model on the other hand accounts for diffusion and trapping behavior of hydrogen due to concentration gradient pressure gradient plastic strain-rate with dislocations as the only trapping sites along the slip systems. A polycrystalline representative volume element (RVE) with periodic boundary conditions is used in this study. Fatigue crack initiation criterion is proposed for the simulated RVE with controlled microstructure by considering a critical value of the fatigue indicator parameter (FIP). FIP is formulated based on the experimental observations of several crack initiation sites along the grain boundaries their normal direction with respect to loading direction and the accumulated plastic strain in nickel polycrystalline samples. Developed simulation framework correctly accounts cyclic stress-strain behavior and multiple fatigue crack initiation sites observed experimentally in the presence of hydrogen.
Effect of Hydrogen on Short Crack Propagation in SA508 Grade 3 Class I Low Alloy Steel Under Cyclic Loading
Aug 2019
Publication
The effect of hydrogen on short crack propagation under cyclic loading in SA508 Grade 3 Class I low alloy steel is investigated. This low alloy steel is used in manufacturing of pressure vessel installed in Indian nuclear power plants. During operation these pressure vessels are subjected to continuous supply of pressurized hot water at 600 K and hence are susceptible to hydrogen embrittlement. In past research has been conducted on the effect of hydrogen embrittlement on long fatigue crack propagation in this material but the mechanistic understanding and correlation of hydrogen embrittlement with microstructural features in the material can be understood well by studying the effect of hydrogen embrittlement on short fatigue crack propagation. Short fatigue cracks are of the order of 10 µm to 1 mm and unlike long cracks these short cracks strongly interact with the microstructural features in the material such as grain/phase boundaries. The effect of hydrogen embrittlement on short crack propagation is studied by artificial hydrogen charging of the material through electrochemical process. The single edge notch tension (SENT) specimens with an initial notch of the order of 85 to 90 µm are used to study the short crack propagation. The short cracks in hydrogen charged samples initiated from the notch at lower number of loading cycles as compared to the uncharged notched samples for the same value of applied stress range (Δσ). After initiation the short fatigue crack in hydrogen charged samples propagated at higher rate as compared to uncharged samples. This dissimilarity in crack propagation behavior is due to the difference in the interaction of short fatigue crack with the microstructural features for a hydrogen charged and uncharged samples.
Effect of TiO2 on Electrocatalytic Behavior of Ni-Mo Alloy Coating for Hydrogen Energy
Jun 2018
Publication
Ni-Mo-TiO2 composite coating has been developed through electrodeposition method by depositing titanium dioxide (TiO2) nanoparticles parallel to the process of Ni-Mo alloy coating. The experimental results explaining the increased electrocatalytic activity of Ni-Mo alloy coating on incorporation of TiO2 nanoparticles into its alloy matrix is reported here. The effect of addition of TiO2 on composition morphology and phase structure of TiO2 – composite coating is studied with special emphasis on its electrocatalytic activity for hydrogen evolution reaction (HER) in 1.0 M KOH solution. The electrocatalytic activity of alloy coatings were validated using cyclic voltammetry (CV) and chronopotentiometry (CP) techniques. Under optimal condition TiO2 – composite alloy coating represented as (Ni-Mo-TiO2)2.0 A dm 2 is found to exhibit the highest electrocatalytic activity for HER compared to its binary alloy counterpart. The increased electrocatalytic activity of (Ni-Mo-TiO2)2.0 A dm 2 composite coating was attributed to the increased Mo content porosity and roughness of coating affected due to addition of TiO2 nanoparticles supported by SEM EDX XRD and AFM study. The increased electrocatalytic activity of (Ni-Mo-TiO2)2.0 A dm 2 coating was found due to decreased Rct and increased Cdl values demonstrated by EIS study. Better electrocatalytic activity of (Ni-Mo-TiO2)2.0 A dm 2 coating compared to (Ni-Mo)2.0 A dm 2 coating has been explained through mechanism. Experimental study revealed that (Ni-Mo-TiO2)2.0 A dm 2 composite coating follows Volmer-Heyrovsky mechanism compared to Tafel mechanism in case of (Ni-Mo-TiO2)2.0 A dm 2 coating assessed on the basis of Tafel slopes.
Hydrogen Production by PEM Water Electrolysis – A Review
Mar 2019
Publication
Hydrogen is the most efficient energy carrier. Hydrogen can be obtained from different sources of raw materials including water. Among many hydrogen production methods eco-friendly and high purity of hydrogen can be obtained by water electrolysis. However In terms of sustainability and environmental impact PEM water electrolysis was considered as most promising techniques for high pure efficient hydrogen production from renewable energy sources and emits only oxygen as byproduct without any carbon emissions. Moreover the produced hydrogen (H2) and oxygen (O2) directly used for fuel cell and industrial applications. However overall water splitting resulting in only 4% of global industrial hydrogen being produced by electrolysis of water mainly due to the economic issues. Nowadays increased the desire production of green hydrogen has increased the interest on PEM water electrolysis. Thus the considerable research has been completed recently in the development of cost effective electrocatalysts for PEM water electrolysis. In this present review we discussed about the recent developments in the PEM water electrolysis including high performance low cost HER and OER electrocatalysts and their challenges new and old related to electrocatalysts and PEM cell components also addressed. This review will contribute further research improvements and a road map in order to support in developing the PEM water electrolyser as a commercially feasible hydrogen production purpose.
Insights into Renewable Hydrogen Energy: Recent Advances and Prospects
Jan 2020
Publication
Presently the fulfilment of world’s energy demand highly relies on the fossil fuel i.e. coal oil and natural gas. Fossil fuels pose threat to environment and biological systems on the earth. Usage of these fuels leads to an increase in the CO2 content in the atmosphere that causes global warming and undesirable climatic changes. Additionally these are limited sources of energy those will eventually dwindle. There is huge urge of identifying and utilizing the renewable energy resources to replace these fossil fuels in the near future as it is expected to have no impact on environment and thus would enable one to provide energy security. Hydrogen is one of the most desirable fuel capable of replacing vanishing hydrocarbons. In this review we present the status of energy demands recent advances in renewable energy and the prospects of hydrogen as a future fuel are highlighted. It gives a broad overview of different energy systems and mainly focuses on different technologies and their reliability for the production of hydrogen in present and future.
No more items...