United Kingdom
Progress in Reducing Emissions in Scotland: 2021 Report to Parliament
Dec 2021
Publication
This is the tenth annual Progress Report to the Scottish Parliament as required by the Climate Change (Scotland) Act 2009. This year’s report shows that in 2019 Scotland’s greenhouse emissions fell by 2% compared to 2018 and are now 44% below 1990 levels. The reductions were largely driven by the manufacturing and construction and fuel supply sectors with electricity generation remaining the biggest driver of emissions cuts over the past decade (2009-2019). The potential for further emissions savings from electricity generation has however largely run out.
The focus must now shift to ensuring that rapid emissions reductions are delivered with no further delay to allow Scotland to meet its legislated 2030 target.
This report and other reports by the Climate Change Committee can be downloaded on their website.
The focus must now shift to ensuring that rapid emissions reductions are delivered with no further delay to allow Scotland to meet its legislated 2030 target.
This report and other reports by the Climate Change Committee can be downloaded on their website.
Optimising Onshore Wind with Energy Storage Considering Curtailment
May 2022
Publication
Operating energy storage alongside onshore wind can improve its economics whilst providing a pathway for otherwise curtailed generation. In this work we present a framework to evaluate the economic potential of onshore wind co-located with battery storage (BS) and a hydrogen electrolyser (HE). This model is applied to a case study in Great Britain using historic data and considering local network charges and the cost of using curtailed power capturing an often neglected element of competition. We use a Markov Chain to model wind curtailment and determine the optimised scheduling of the storage as we vary price parameters and storage sizing. Finally by considering storage CAPEX and comparing against the case with no storage we can determine the value added (or lost) by different sized BS and HE for an onshore wind owner as a function of power purchase agreement (PPA) and green hydrogen market price. Results show that value added increases when HE is increased and when BS is decreased. Additionally a 10 MW electrolysers uses 27% more curtailed wind than 10 MW BS.
Numerical Investigation on NOx Emission of a Hydrogen-Fuelled Dual-Cylinder Free-Piston Engine
Jan 2023
Publication
The free-piston engine is a type of none-crank engine that could be operated under variable compression ratio and this provides it flexible fuel applicability and low engine emission potential. In this work several 1-D engine models including conventional gasoline engines free-piston gasoline engines and free-piston hydrogen engines have been established. Both engine performance and emission performance under engine speeds between 5–11 Hz and with different equivalent ratios have been simulated and compared. Results indicated that the free-piston engine has remarkable potential for NOx reduction and the largest reduction is 57.37% at 6 Hz compared with a conventional gasoline engine. However the figure of NOx from the hydrogen free-piston engine is slightly higher than that of the gasoline free-piston engine and the difference increases with the increase of engine speed. In addition several factors and their relationships related to hydrogen combustion in the free-piston engine have been investigated and results show that the equivalent ratio ϕ = 0.88 is a vital point that affects NOx production and the ignition advance timing could also affect combustion duration the highest in-cylinder temperature and NOx production to a large extent.
Multi-model Assessment of Heat Decarbonisation Options in the UK Using Electricity and Hydrogen
May 2022
Publication
Delivering low-carbon heat will require the substitution of natural gas with low-carbon alternatives such as electricity and hydrogen. The objective of this paper is to develop a method to soft-link two advanced investment-optimising energy system models RTN (Resource-Technology Network) and WeSIM (Whole-electricity System Investment Model) in order to assess cost-efficient heat decarbonisation pathways for the UK while utilising the respective strengths of the two models. The linking procedure included passing on hourly electricity prices from WeSIM as input to RTN and returning capacities and locations of hydrogen generation and shares of electricity and hydrogen in heat supply from RTN to WeSIM. The outputs demonstrate that soft-linking can improve the quality of the solution while providing useful insights into the cost-efficient pathways for zero-carbon heating. Quantitative results point to the cost-effectiveness of using a mix of electricity and hydrogen technologies for delivering zero-carbon heat also demonstrating a high level of interaction between electricity and hydrogen infrastructure in a zero-carbon system. Hydrogen from gas reforming with carbon capture and storage can play a significant role in the medium term while remaining a cost-efficient option for supplying peak heat demand in the longer term with the bulk of heat demand being supplied by electric heat pumps.
Fuel Cell Development for New Energy Vehicles (NEVs) and Clean Air in China
Apr 2018
Publication
This paper reviews the background to New Energy Vehicles (NEV) policies in China and the key scientific and market challenges that need to be addressed to accelerate fuel cells (FCs) in the rapidly developing NEV market. The global significance of the Chinese market key players core FC technologies and future research priorities are discussed.
Economic Dispatch Model of Nuclear High-Temperature Reactor with Hydrogen Cogeneration in Electricity Market
Dec 2021
Publication
Hydrogen produced without carbon emissions could be a useful fuel as nations look to decarbonize their electricity transport and industry sectors. Using the iodine–sulfur (IS) cycle coupled with a nuclear heat source is one method for producing hydrogen without the use of fossil fuels. An economic dispatch model was developed for a nuclear-driven IS system to determine hydrogen sale prices that would make such a system profitable. The system studied is the HTTR GT/H2 a design for power and hydrogen cogeneration at the Japan Atomic Energy Agency’s High Temperature Engineering Test Reactor. This study focuses on the development of the economic model and the role that input data plays in the final calculated values. Using a historical price duration curve shows that the levelized cost of hydrogen (LCOH) or breakeven sale price of hydrogen would need to be 98.1 JPY/m3 or greater. Synthetic time histories were also used and found the LCOH to be 67.5 JPY/m3 . The price duration input was found to have a significant effect on the LCOH. As such great care should be used in these economic dispatch analyses to select reasonable input assumptions.
“Bigger than Government”: Exploring the Social Construction and Contestation of Net-zero Industrial Megaprojects in England
Jan 2023
Publication
Industry is frequently framed as hard-to-decarbonize given its diversity of requirements technologies and supply chains many of which are unique to particular sectors. Net zero commitments since 2019 have begun to challenge the carbon intensity of these various industries but progress has been slow globally. Against this backdrop the United Kingdom has emerged as a leader in industrial decarbonization efforts. Their approach is based on industrial clusters which cut across engineering spatial and socio-political dimensions. Two of the largest of these clusters in England in terms of industrial emissions are the Humber and Merseyside. In this paper drawn from a rich mixed methods original dataset involving expert interviews (N = 46 respondents) site visits (N = 20) a review of project documents and the academic literature we explore ongoing efforts to decarbonize both the Humber and Merseyside through the lens of spatially expansive and technically complex megaprojects. Both have aggressive implementation plans in place for the deployment of net-zero infrastructure with Zero Carbon Humber seeking billions in investment to build the country’s first large-scale bioenergy with carbon capture and storage (BECCS) plant alongside a carbon transport network and hydrogen production infrastructure and HyNet seeking billions in investment to build green and blue hydrogen facilities along with a carbon storage network near Manchester and Liverpool. We draw from the social construction of technology (SCOT) literature to examine the relevant social groups interpretive flexibility and patterns of closure associated with Zero Carbon Humber and HyNet. We connect our findings to eight interpretive frames surrounding the collective projects and make connections to problems contestation and closure.
An Investigation into the Change Leakage when Switching from Natural Gas to Hydrogen in the UK Gas Distribution Network
Sep 2021
Publication
The H21 National Innovation Competition project is examining the feasibility of repurposing the existing GB natural gas distribution network for transporting 100% hydrogen. It aims to undertake an experimental testing programme that will provide the necessary data to quantify the comparative risk between a 100% hydrogen network and the natural gas network. The first phase of the project focuses on leakage testing of a strategic set of assets that have been removed from service which provide a representative sample of assets across the network. This paper presents the work undertaken for Phase 1A (background testing) where HSE and industry partners have tested a range of natural gas pipework assets of varying size material age and pressure-rating in a new bespoke open-air testing facility at the HSE Science and Research Centre Buxton. The assets have been pressurised with hydrogen and then methane and the leakage rate from the assets measured in both cases. The main finding of this work is that the assets tested which leak hydrogen also leak methane. None of the assets were found to leak hydrogen but not methane. In addition repair techniques that were effective at stopping methane leaks were also effective at stopping hydrogen leaks. The data from the experiments have been interpreted to obtain a range of leakage ratios between the two gases for releases under different conditions. This has been compared to the predicted ratio of hydrogen to methane volumetric leak rates for laminar (1.2:1) and turbulent (2.9:1) releases and good agreement was observed.
Evidence Base Utilised to Justify a Hydrogen Blend Gas Network Safety Case
Sep 2021
Publication
Blending hydrogen with natural gas up to 20 % mol/mol has been identified as a key enabler of hydrogen deployment within the UK gas network. This work outlines the evidence base generated to form the basis of safety submitted to the Health and Safety Executive (HSE) to justify a demonstration of hydrogen blending on a live public gas network within the UK supplying a hydrogen blend to 668homes over the course of 10 months. An evidence base to demonstrate that gas users are not prejudiced by the addition of hydrogen is required by the Gas Safety (Management) Regulations [1] to allow hydrogen distribution above the 0.1 mol% limit specified within the regulations. The technical evidence generated to support the safety case presented to the HSE concerned the implications of introducing a hydrogen blend on appliance operation materials gas characteristics and operational procedures. The outputs of the technical evidence workstreams provided input data to a Quantitative Risk Assessment (QRA) of the GB gas distribution network. The QRA was developed in support of the safety case to allow a causal understanding of public risk to be understood where harm due to gas usage was defined as risk to life caused either by carbon monoxide poisoning or as a result of fires/explosions. Public records were used to calibrate and validate the base risk model to understand the dynamics of public risk due to natural gas usage. The experimental and analytical results of the technical workstreams were then used to derive risk model inputs relating to a hydrogen blend. This allowed a quantified comparison of risk to be understood to demonstrate parity of safety between natural gas and a hydrogen blend. This demonstration of risk parity is a condition precedent of allowing the distribution and utilisation of hydrogen blends within the GB gas network.
Hubs and Clusters Approach to Unlock the Development of Carbon Capture and Storage - Case Study in Spain
Jul 2021
Publication
Xiaolong Sun,
Juan Alcalde,
Mahdi Bakhtbidar,
Javier Elío,
Víctor Vilarrasa,
Jacobo Canal,
Julio Ballesteros,
Niklas Heinemann,
Stuart Haszeldine,
Andrew Cavanagh,
David Vega-Maza,
Fernando Rubiera,
Roberto Martínez-Orio,
Gareth Johnson,
Ramon Carbonell,
Ignacio Marzan,
Anna Travé and
Enrique Gomez-Rivas
Many countries have assigned an indispensable role for carbon capture and storage (CCS) in their national climate change mitigation pathways. However CCS deployment has stalled in most countries with only limited commercial projects realised mainly in hydrocarbon-rich countries for enhanced oil recovery. If the Paris Agreement is to be met then this progress must be replicated widely including hydrocarbon-limited countries. In this study we present a novel source-to-sink assessment methodology based on a hubs and clusters approach to identify favourable regions for CCS deployment and attract renewed public and political interest in viable deployment pathways. Here we apply this methodology to Spain where fifteen emission hubs from both the power and the hard-to-abate industrial sectors are identified as potential CO2 sources. A priority storage structure and two reserves for each hub are selected based on screening and ranking processes using a multi-criteria decision-making method. The priority source-to-sink clusters are identified indicating four potential development regions with the North-Western and North-Eastern Spain recognised as priority regions due to resilience provided by different types of CO2 sources and geological structures. Up to 68.7 Mt CO2 per year comprising around 21% of Spanish emissions can be connected to clusters linked to feasible storage. CCS especially in the hard-to-abate sector and in combination with other low-carbon energies (e.g. blue hydrogen and bioenergy) remains a significant and unavoidable contributor to the Paris Agreement’s mid-century net-zero target. This study shows that the hubs and clusters approach can facilitate CCS deployment in Spain and other hydrocarbon-limited countries.
Feasibility of Hydrogen Storage in Depleted Hydrocarbon Chalk Reservoirs: Assessment of Biochemical and Chemical Effects
Jul 2022
Publication
Hydrogen storage is one of the energy storage methods that can help realization of an emission free future by saving surplus renewable energy for energy deficit periods. Utilization of depleted hydrocarbon reservoirs for large-scale hydrogen storage may be associated with the risk of chemical/biochemical reactions. In the specific case of chalk reservoirs the principal reactions are abiotic calcite dissolution acetogenesis methanogenesis and biological souring. Here we use PHREEQC to evaluate the dynamics and the extent of hydrogen loss by each of these reactions in hydrogen storage scenarios for various Danish North Sea chalk hydrocarbon reservoirs. We find that: (i) Abiotic calcite dissolution does not occur in the temperature range of 40-180◦ C. (ii) If methanogens and acetogens grow as slow as the slowest growing methanogens and acetogens reported in the literature methanogenesis and acetogenesis cannot cause a hydrogen loss more than 0.6% per year. However (iii) if they proceed as fast as the fastest growing methanogens and acetogens reported in the literature a complete loss of all injected hydrogen in less than five years is possible. (iv) Co-injection of CO2 can be employed to inhibit calcite dissolution and keep the produced methane due to methanogenesis carbon neutral. (v) Biological sulfate reduction does not cause significant hydrogen loss during 10 years but it can lead to high hydrogen sulfide concentrations (1015 ppm). Biological sulfate reduction is expected to impact hydrogen storage only in early stages if the only source of sulfur substrates are the dissolved species in the brine and not rock minerals. Considering these findings we suggest that depleted chalk reservoirs may not possess chemical/biochemical risks and be good candidates for large-scale underground hydrogen storage.
Application of Pipeline QRA Methodologies to Hydrogen Pipelines in Support of the Transition to a Decarbonised Future
Sep 2021
Publication
Hydrogen is expected to play a key role in the decarbonised future of energy. For hydrogen distribution pipelines are seen as the main method for mass transport of hydrogen gas. To support the evaluation of risk related to hydrogen pipelines a revised QRA methodology is presented based on currently available and industry accepted guidance related to natural gas. The QRA approach is primarily taken from HSE UK’s MISHAP methodology [1]. The base methodology is reviewed and modifications suggested to adapt it for use with hydrogen gas transport. Compared to natural gas it was found that the escape distances for hydrogen (based on the degree of heat flux) were lower. However as for the overall risk for both individual and societal the case with hydrogen was more severe close to the pipeline. This was driven by the increased ignition probability of hydrogen. The approach may be used as part of the review and appraisal process of hydrogen projects
Economic Analysis of a Zero-carbon Liquefied Hydrogen Tanker Ship
Jun 2022
Publication
The green hydrogen economy is considered one of the sustainable solutions to mitigate climate change. This study provides an economic analysis of a novel liquified hydrogen (LH2) tanker fuelled by hydrogen with a total capacity of ~280000 m3 of liquified hydrogen named ‘JAMILA’. An established economic method was applied to investigate the economic feasibility of the JAMILA ship as a contribution to the future zero-emission target. The systematic economic evaluation determined the net present value of the LH2 tanker internal rate of return payback period and economic value added to support and encourage shipyards and the industrial sector in general. The results indicate that the implementation of the LH2 tanker ship can cover the capital cost of the ship within no more than 2.5 years which represents 8.3% of the assumed 30-year operational life cycle of the project in the best maritime shipping prices conditions and 6 years in the worst-case shipping marine economic conditions. Therefore the assessment of the economic results shows that the LH2 tankers may be a worthwhile contribution to the green hydrogen economy.
Assessing Damaged Pipelines Transporting Hydrogen
Jun 2022
Publication
There is worldwide interest in transporting hydrogen using both new pipelines and pipelines converted from natural gas service. Laboratory tests investigating the effect of hydrogen on the mechanical properties of pipeline steels have shown that even low partial pressures of hydrogen can substantially reduce properties such as reduction in area and fracture toughness and increase fatigue crack growth rates. However qualitative arguments suggest that the effects on pipelines may not be as severe as predicted from the small scale tests. If the trends seen in laboratory tests do occur in service there are implications for the assessment of damage such as volumetric corrosion dents and mechanical interference. Most pipeline damage assessment methods are semi-empirical and have been calibrated with data from full scale tests that did not involve hydrogen. Hence the European Pipeline Research Group (EPRG) commissioned a study to investigate damage assessment methods in the presence of hydrogen. Two example pipeline designs were considered both were assessed assuming a modern high performance material and an older material. From these analyses the numerical results show that the high toughness material will tolerate damage even if the properties are degraded by hydrogen exposure. However low toughness materials may not be able to tolerate some types of severe damage. If the predictions are realistic operators may have to repair more damage or reduce operating pressures. Furthermore damage involving cracking may not Page 2 of 22 satisfy the ASME B31.12 requirements for preventing time dependent crack growth. Further work is required to determine if the effects predicted using small scale laboratory test data will occur in practice.
Strategic Transport Fleet Analysis of Heavy Goods Vehicle Technology for Net-zero Targets
Jul 2022
Publication
This paper addresses the decarbonisation of the heavy-duty transport sector and develops a strategy towards net-zero greenhouse gas (GHG) emissions in heavy-goods vehicles (HGVs) by 2040. By conducting a literature review and a case study on the vehicle fleet of a large UK food and consumer goods retailer the feasibilities of four alternative vehicle technologies are evaluated from environmental economic and technical perspectives. Socio-political factors and commercial readiness are also examined to capture non-technical criteria that influences decision-makers. Strategic analysis frameworks such as PEST-SWOT models were developed for liquefied natural gas biomethane electricity and hydrogen to allow a holistic comparison and identify their long-term deployment potential. Technology innovation is needed to address range and payload limitations of electric trucks whereas government and industry support are essential for a material deployment of hydrogen in the 2030s. Given the UK government’s plan to phase out new diesel HGVs by 2040 fleet operators should commence new vehicle trials by 2025 and replace a considerable amount of their lighter diesel trucks with zero-emission vehicles by 2030 and the remaining heavier truck fleet by 2035.
Vision for a European Metrology Network for Energy Gases
Mar 2022
Publication
As Europe moves towards decarbonising its energy infrastructure new measurement needs will arise that require collaborative efforts between European National Metrology Institutes and Designated Institutes to tackle. Such measurement needs include flow metering of hydrogen or hydrogen enriched natural gas in the gas grid for billing quality assurance of hydrogen at refuelling stations and equations of state for carbon dioxide in carbon capture and storage facilities. The European metrology network for energy gases for the first time provides a platform where metrology institutes can work together to develop a harmonised strategy prioritise new challenges and share expertise and capabilities to support the European energy gas industry to meet stringent EU targets for climate change and emissions reductions
Prospectivity Analysis for Underground Hydrogen Storage, Taranaki Basin, Aotearoa New Zealand: A Multi-criteria Decision-making Approach
May 2024
Publication
Seasonal underground hydrogen storage (UHS) in porous media provides an as yet untested method for storing surplus renewable energy and balancing our energy demands. This study investigates the technical suitability for UHS in depleted hydrocarbon fields and one deep aquifer site in Taranaki Basin Aotearoa New Zealand. Prospective sites are assessed using a decision tree approach providing a “fast-track” method for identifying potential sites and a decision matrix approach for ranking optimal sites. Based on expert elicitation the most important factors to consider are storage capacity reservoir depth and parameters that affect hydrogen injectivity/withdrawal and containment. Results from both approaches suggest that Paleogene reservoirs from gas (or gas cap) fields provide the best option for demonstrating UHS in Aotearoa New Zealand and that the country’s projected 2050 hydrogen storage demand could be exceeded by developing one or two high ranking sites. Lower priority is assigned to heterolithic and typically finer grained labile and clay-rich Miocene oil reservoirs and to deep aquifers that have no proven hydrocarbon containment.
Hydrogen Refuelling Station Calibration with a Traceable Gravimetric Standard
Apr 2020
Publication
Of all the alternatives to hydrocarbon fuels hydrogen offers the greatest long-term potential to radically reduce the many problems inherent in fuel used for transportation. Hydrogen vehicles have zero tailpipe emissions and are very efficient. If the hydrogen is made from renewable sources such as nuclear power or fossil sources with carbon emissions captured and sequestered hydrogen use on a global scale would produce almost zero greenhouse gas emissions and greatly reduce air pollutant emissions. The aim of this work is to realise a traceability chain for hydrogen flow metering in the range typical for fuelling applications in a wide pressure range with pressures up to 875 bar (for Hydrogen Refuelling Station - HRS with Nominal Working Pressure of 700 bar) and temperature changes from −40 °C (pre-cooling) to 85 °C (maximum allowed vehicle tank temperature) in accordance with the worldwide accepted standard SAE J2601. Several HRS have been tested in Europe (France Netherlands and Germany) and the results show a good repeatability for all tests. This demonstrates that the testing equipment works well in real conditions. Depending on the installation configuration some systematic errors have been detected and explained. Errors observed for Configuration 1 stations can be explained by pressure differences at the beginning and end of fueling in the piping between the Coriolis Flow Meter (CFM) and the dispenser: the longer the distance the bigger the errors. For Configuration 2 where this distance is very short the error is negligible.
On the Cost of Zero Carbon Hydrogen: A Techno-economic Analysis of Steam Methane Reforming with Carbon Capture and Storage
May 2023
Publication
This article challenges the view that zero carbon hydrogen from steam methane reforming (SMR) is prohibitively expensive and that the cost of CO2 capture increases exponentially as residual emissions approach zero; a flawed narrative often eliminating SMR produced hydrogen as a route to net zero. We show that the capture and geological storage of 100% of the fossil CO2 produced in a SMR is achievable with commercially available post-combustion capture technology and an open art solvent. The Levelised Cost of Hydrogen (LCOH) of 69£/MWhth HHV (2.7£/kg) for UK production remains competitive to other forms of low carbon hydrogen but retains a hydrogen lifecycle carbon intensity of 5 gCO2e/MJ (LHV) due to natural gas supply chain and embodied greenhouse gas (GHG) emissions. Compensating for the remaining lifecycle GHG emissions via Direct Air Capture with geological CO2 Storage (DACCS) increases the LCOH to 71–86 £/MWhth HHV (+3–25%) for a cost estimate of 100–1000 £/tCO2 for DACCS and the 2022 UK natural gas supply chain methane emission rates. Finally we put in perspective the cost of CO2 avoidance of fuel switching from natural gas to hydrogen with long term price estimates for natural gas use and DACCS and hydrogen produced from electrolysis.
Investigations on Pressure Dependence of Coriolis Mass Flow Meters Used at Hydrogen Refueling Stations
Sep 2020
Publication
In the framework of the ongoing EMPIR JRP 16ENG01 ‘‘Metrology for Hydrogen Vehicles’’ a main task is to investigate the influence of pressure on the measurement accuracy of Coriolis Mass Flow Meters (CFM) used at Hydrogen Refueling Stations (HRS). At a HRS hydrogen is transferred at very high and changing pressures with simultaneously varying flow rates and temperatures. It is clearly very difficult for CFMs to achieve the current legal requirements with respect to mass flow measurement accuracy at these measurement conditions. As a result of the very dynamic filling process it was observed that the accuracy of mass flow measurement at different pressure ranges is not sufficient. At higher pressures it was found that particularly short refueling times cause significant measurement deviations. On this background it may be concluded that pressure has a great impact on the accuracy of mass flow measurement. To gain a deeper understanding of this matter RISE has built a unique high-pressure test facility. With the aid of this newly developed test rig it is possible to calibrate CFMs over a wide pressure and flow range with water or base oils as test medium. The test rig allows calibration measurements under the conditions prevailing at a 70 MPa HRS regarding mass flows (up to 3.6 kg min−1) and pressures (up to 87.5 MPa).
No more items...