United Kingdom
Optimal Design and Analysis of a Hybrid Hydrogen Energy Storage System for an Island-Based Renewable Energy Community
Oct 2023
Publication
Installations of decentralised renewable energy systems (RES) are becoming increasing popular as governments introduce ambitious energy policies to curb emissions and slow surging energy costs. This work presents a novel model for optimal sizing for a decentralised renewable generation and hybrid storage system to create a renewable energy community (REC) developed in Python. The model implements photovoltaic (PV) solar and wind turbines combined with a hybrid battery and regenerative hydrogen fuel cell (RHFC). The electrical service demand was derived using real usage data from a rural island case study location. Cost remuneration was managed with an REC virtual trading layer ensuring fair distribution among actors in accordance with the European RED(III) policy. A multi-objective genetic algorithm (GA) stochastically determines the system capacities such that the inherent trade-off relationship between project cost and decarbonisation can be observed. The optimal design resulted in a levelized cost of electricity (LCOE) of 0.15 EUR/kWh reducing costs by over 50% compared with typical EU grid power with a project internal rate of return (IRR) of 10.8% simple return of 9.6%/year and return on investment (ROI) of 9 years. The emissions output from grid-only use was reduced by 72% to 69 gCO2 e/kWh. Further research of lifetime economics and additional revenue streams in combination with this work could provide a useful tool for users to quickly design and prototype future decentralised REC systems.
A Holistic Framework for the Optimal Design and Operation of Electricity, Heating, Cooling and Hydrogen Technologies in Buildings
Jun 2024
Publication
In this work the Design and Operation of Integrated Technologies (DO-IT) framework is developed a comprehensive tool to support short- and long-term technology investment and operation decisions for integrated energy generation conversion and storage technologies in buildings. The novelty of this framework lies in two key aspects: firstly it integrates essential open-source modelling tools covering energy end uses in buildings technology performance and cost and energy system design optimisation into a unified and easily-reproducible framework. Secondly it introduces a novel optimisation tool with a concise and generic mathematical formulation capable of modelling multi-energy vector systems capturing interdependencies between different energy vectors and technologies. The model formulation which captures both short- and long-term energy storage facilitates the identification of smart design and operation strategies with low computational cost. Different building energy demand and price scenarios are investigated and the economic and energy benefits of using a holistic multi-energy-vector approach are quantified. Technology combinations under consideration include: (i) a photovoltaic-electric heat pump-battery system (ii) a photovoltaic-electric heat pump-battery-hot water cylinder system (iii) a photovoltaic-electrolyser‑hydrogen storage-fuel cell system and (iv) a system with all above technology options. Using a university building as a case study it is shown that the smart integration of electricity heating cooling and hydrogen generation and storage technologies results in a total system cost which is >25% lower than the scenario of only importing grid electricity and using a fuel oil boiler. The battery mitigates intra-day fluctuations in electricity demand and the hot-water cylinder allows for efficiently managing heat demand with a small heat pump. In order to avoid PV curtailment excess PV-generated electricity can also be stored in the form of green hydrogen providing a long-term energy storage solution spanning days weeks or even seasons. Results are useful for end-users investment decision makers and energy policy makers when selecting building-integrated low-carbon technologies and relevant policies.
Enabling Safe and Sustainable Hydrogen Mobility: Circular Economy-Driven Management of Hydrogen Vehicle Safety
Sep 2023
Publication
Hydrogen vehicles encompassing fuel cell electric vehicles (FCEVs) are pivotal within the UK’s energy landscape as it pursues the goal of net-zero emissions by 2050. By markedly diminishing dependence on fossil fuels FCEVs including hydrogen vehicles wield substantial influence in shaping the circular economy (CE). Their impact extends to optimizing resource utilization enabling zero-emission mobility facilitating the integration of renewable energy sources supplying adaptable energy storage solutions and interconnecting diverse sectors. The widespread adoption of hydrogen vehicles accelerates the UK’s transformative journey towards a sustainable CE. However to fully harness the benefits of this transition a robust investigation and implementation of safety measures concerning hydrogen vehicle (HV) use are indispensable. Therefore this study takes a holistic approach integrating quantitative risk assessment (QRA) and an adaptive decision-making trial and evaluation laboratory (DEMATEL) framework as pragmatic instruments. These methodologies ensure both the secure deployment and operational excellence of HVs. The findings underscore that the root causes of HV failures encompass extreme environments material defects fuel cell damage delivery system impairment and storage system deterioration. Furthermore critical driving factors for effective safety intervention revolve around cultivating a safety culture robust education/training and sound maintenance scheduling. Addressing these factors is pivotal for creating an environment conducive to mitigating safety and risk concerns. Given the intricacies of conducting comprehensive hydrogen QRAs due to the absence of specific reliability data this study dedicates attention to rectifying this gap. A sensitivity analysis encompassing a range of values is meticulously conducted to affirm the strength and reliability of our approach. This robust analysis yields precise dependable outcomes. Consequently decision-makers are equipped to discern pivotal underlying factors precipitating potential HV failures. With this discernment they can tailor safety interventions that lay the groundwork for sustainable resilient and secure HV operations. Our study navigates the intersection of HVs safety and sustainability amplifying their importance within the CE paradigm. Using the careful amalgamation of QRA and DEMATEL methodologies we chart a course towards empowering decision-makers with the insights to steer the hydrogen vehicle domain to safer horizons while ushering in an era of transformative eco-conscious mobility.
H21 Phase 2 Technical Summary Report
Jul 2023
Publication
The H21 Phase 2 research will provide vital evidence both towards the hydrogen village trial and potential town scale pilots and to the Government which is aiming to make a decision about the use of hydrogen for home heating by 2026.
The key objectives of the H21 Phase 2 NIC project were to further develop the evidence base supporting conversion of the natural gas distribution network to 100% hydrogen. The key principles of H21 NIC Phase 2 were to:
→ Confirm how we can manage and operate the network safely through an appraisal of existing network equipment procedures and network modelling tools.
→ Validate network operations on a purpose-built below 7 barg network as well as an existing unoccupied buried network and provide a platform to publicise and demonstrate a hydrogen network in action.
→ Develop a combined distribution network and downstream Quantitative Risk Assessment (QRA) for 100% hydrogen by further developing the work undertaken on the H21 Phase 1 QRA and the Hy4Heat ‘downstream of ECV’ QRA.
→ Continue to understand how consumers could be engaged with ahead of a conversion. This programme was split into four phases detailed below:
→ Phase 2a – Appraisal of Network 0-7 bar Operations
→ Phase 2b – Unoccupied Network Trials
→ Phase 2c – Combined QRA
→ Phase 2d – Social Sciences
The project with the support of the HSE’s Science & Research Centre (HSE S&RC) and DNV successfully undertook a programme of work to review the NGN below 7 barg network operating procedures. The project implemented testing and demonstrations on the Phase 2a Microgrid at DNV Spadeadam and Phase 2b Unoccupied Trial site in South Bank on a repurposed NGN network to provide and demonstrate the supporting evidence for the required changes to procedures. Details of the outputs of the HSE S&RC procedure review and the evidence collected by DNV from the testing and demonstration projects is provided in detail in this technical summary report.
Due to the differences in gas characteristics between hydrogen and natural gas changes will be required to some of the operational and maintenance procedures the evidence of which is provided in this report. The Gas Distribution Networks (GDNs) will need to review the findings from this project when implementing the required changes to their operational and maintenance procedures.
The key objectives of the H21 Phase 2 NIC project were to further develop the evidence base supporting conversion of the natural gas distribution network to 100% hydrogen. The key principles of H21 NIC Phase 2 were to:
→ Confirm how we can manage and operate the network safely through an appraisal of existing network equipment procedures and network modelling tools.
→ Validate network operations on a purpose-built below 7 barg network as well as an existing unoccupied buried network and provide a platform to publicise and demonstrate a hydrogen network in action.
→ Develop a combined distribution network and downstream Quantitative Risk Assessment (QRA) for 100% hydrogen by further developing the work undertaken on the H21 Phase 1 QRA and the Hy4Heat ‘downstream of ECV’ QRA.
→ Continue to understand how consumers could be engaged with ahead of a conversion. This programme was split into four phases detailed below:
→ Phase 2a – Appraisal of Network 0-7 bar Operations
→ Phase 2b – Unoccupied Network Trials
→ Phase 2c – Combined QRA
→ Phase 2d – Social Sciences
The project with the support of the HSE’s Science & Research Centre (HSE S&RC) and DNV successfully undertook a programme of work to review the NGN below 7 barg network operating procedures. The project implemented testing and demonstrations on the Phase 2a Microgrid at DNV Spadeadam and Phase 2b Unoccupied Trial site in South Bank on a repurposed NGN network to provide and demonstrate the supporting evidence for the required changes to procedures. Details of the outputs of the HSE S&RC procedure review and the evidence collected by DNV from the testing and demonstration projects is provided in detail in this technical summary report.
Due to the differences in gas characteristics between hydrogen and natural gas changes will be required to some of the operational and maintenance procedures the evidence of which is provided in this report. The Gas Distribution Networks (GDNs) will need to review the findings from this project when implementing the required changes to their operational and maintenance procedures.
Assessment of Hydrogen Gas Turbine-fuel Cell Powerplant for Rotorcraft
Jul 2023
Publication
Conventional turboshaft engines are high power density movers suffering from low efficiency at part power operation and producing significant emissions. This paper presents a design exploration and feasibility assessment of a hybrid hydrogen-fueled powerplant for Urban Air Mobility (UAM) rotorcraft. A multi-disciplinary approach is devised comprising models for rotorcraft performance tank and subsystems sizing and engine performance. The respective trade-offs between payload-range and mission level performance are quantified for kerosene-fueled and hybrid hydrogen tilt-rotor variants. The effects of gas turbine scaling and fuel cell pressurization are evaluated for different hybridization degrees. Gas turbine scaling with hybridization (towards the fuel cell) results in up to 21% benefit in energy consumption relative to the non-scaled case with the benefits being more pronounced at high hybridization degrees. Pressurizing the fuel cell has shown significant potential as cell efficiency can increase up to 10% when pressurized to 6 bar which translates to a 6% increase in overall efficiency. The results indicate that current fuel cells (1 kW/kg) combined with current hydrogen tank technology severely limit the payload range capability of the tilt-rotor. However for advanced fuel cell technology (2.5 kW/kg) and low ranges hybrid powerplant show the potential to reduce energy consumption and reduce emissions footprint.
Modelling Large-scale Hydrogen Uptake in the Mexican Refinery and Power Sectors
Sep 2023
Publication
Due to the emissions reduction commitments that Mexico compromised in the Paris Agreement several clean fuel and renewable energy technologies need to penetrate the market to accomplish the environmental goals. Therefore there is a need to develop achievable and realistic policies for such technologies to ease the decision-making on national energy strategies. Several countries are starting to develop large-scale green hydrogen production projects to reduce the carbon footprint of the multiple sectors within the country. The conversion sectors namely power and refinery are fundamental sectors to decarbonise due to their energy supply role. Nowadays the highest energy consumables of the country are hydrocarbons (more than 90%) causing a particular challenge for deep decarbonisation. The purpose of this study is to use a multi-regional energy system model of Mexico to analyse a decarbonisation scenario in line with the latest National Energy System Development Program. Results show that if the country wants to succeed in reducing 22% of its GHG emissions and 51% of its short-lived climate pollutants emissions green hydrogen could play a role in power generation in regions with higher energy demand growth rates. These results show regarding the power sector that H2 could represent 13.8 GW or 5.1% of the total installed capacity by 2050 while for the refinery sector H2 could reach a capacity of 157 PJ/y which is around 31.8% of the total share and it is mainly driven by the increasing demands of the transport industry and power sectors. Nevertheless as oil would still represent the largest energy commodity CCS technologies would have to be deployed for new and retrofitted refinery facilities.
Cushion Gas in Hydrogen Storage—A Costly CAPEX or a Valuable Resource for Energy Crises?
Dec 2022
Publication
The geological storage of hydrogen is a seasonal energy storage solution and the storage capacity of saline aquifers is most appropriately defined by quantifying the amount of hydrogen that can be injected and reproduced over a relevant time period. Cushion gas stored in the reservoir to support the production of the working gas is a CAPEX which should be reduced to decrease implementation cost for gas storage. The cushion gas to working gas ratio provides a sufficiently accurate reflection of the storage efficiency with higher ratios equating to larger initial investments. This paper investigates how technical measures such as well configurations and adjustments to the operational size and schedule can reduce this ratio and the outcomes can inform optimisation strategies for hydrogen storage operations. Using a simplified open saline aquifer reservoir model hydrogen storage is simulated with a single injection and production well. The results show that the injection process is more sensitive to technical measures than the production process; a shorter perforation and a smaller well diameter increases the required cushion gas for the injection process but has little impact on the production. If the storage operation capacity is expanded and the working gas volume increased the required cushion gas to working gas ratio increases for injection reducing the efficiency of the injection process. When the reservoir pressure has more time to equilibrate less cushion gas is required. It is shown that cushion gas plays an important role in storage operations and that the tested optimisation strategies impart only minor effects on the production process however there is significant need for careful optimisation of the injection process. It is suggested that the recoverable part of the cushion gas could be seen as a strategic gas reserve which can be produced during an energy crisis. In this scenario the recoverable cushion gas could be owned by the state and the upfront costs for gas storage to the operator would be reduced making the implementation of more gas storage and the onset of hydrogen storage more attractive to investors.
Multi-port Coordination: Unlocking Flexibility and Hydrogen Opportunities in Green Energy Networks
Mar 2024
Publication
Seaports are responsible for consuming a large amount of energy and producing a sizeable amount of environmental emissions. However optimal coordination and cooperation present an opportunity to transform this challenge into an opportunity by enabling flexibility in their generation and load units. This paper introduces a coordination framework for exploiting flexibility across multiple ports. The proposed method fosters cooperation between ports in achieving lower environmental emissions while leveraging flexibility to increase their revenue. This platform allows ports to participate in providing flexibility for the energy grid through the introduction of a green port-to-grid concept while optimising their cooperation. Furthermore the proximity to offshore wind farms is considered an opportunity for the ports to investigate their role in harnessing green hydrogen. The proposed method explores the hydrogen storage capability of ports as an opportunity for increasing the techno-economic benefits particularly through coupling them with offshore wind farms. Compared to existing literature the proposed method enjoys a comprehensive logistics-electric model for the ports a novel coordination framework for multi-port flexibility and the potentials of hydrogen storage for the ports. These unique features position this paper a valuable reference for research and industry by demonstrating realistic cooperation among ports in the energy network. The simulation results confirm the effectiveness of the proposed port flexibility coordination from both environmental and economic perspectives.
Research Progress, Trends, and Current State of Development on PEMFC-New Insights from a Bibliometric Analysis and Characteristics of Two Decades of Research Output
Nov 2022
Publication
The consumption of hydrogen could increase by sixfold in 2050 compared to 2020 levels reaching about 530 Mt. Against this backdrop the proton exchange membrane fuel cell (PEMFC) has been a major research area in the field of energy engineering. Several reviews have been provided in the existing corpus of literature on PEMFC but questions related to their evolutionary nuances and research hotspots remain largely unanswered. To fill this gap the current review uses bibliometric analysis to analyze PEMFC articles indexed in the Scopus database that were published between 2000–2021. It has been revealed that the research field is growing at an annual average growth rate of 19.35% with publications from 2016 to 2012 alone making up 46% of the total articles available since 2000. As the two most energy-consuming economies in the world the contributions made towards the progress of PEMFC research have largely been from China and the US. From the research trend found in this investigation it is clear that the focus of the researchers in the field has largely been to improve the performance and efficiency of PEMFC and its components which is evident from dominating keywords or phrases such as ‘oxygen reduction reaction’ ‘electrocatalysis’ ‘proton exchange membrane’ ‘gas diffusion layer’ ‘water management’ ‘polybenzimidazole’ ‘durability’ and ‘bipolar plate’. We anticipate that the provision of the research themes that have emerged in the PEMFC field in the last two decades from the scientific mapping technique will guide existing and prospective researchers in the field going forward.
Maximizing Green Hydrogen Production from Water Electrocatalysis: Modeling and Optimization
Mar 2023
Publication
The use of green hydrogen as a fuel source for marine applications has the potential to significantly reduce the carbon footprint of the industry. The development of a sustainable and cost-effective method for producing green hydrogen has gained a lot of attention. Water electrolysis is the best and most environmentally friendly method for producing green hydrogen-based renewable energy. Therefore identifying the ideal operating parameters of the water electrolysis process is critical to hydrogen production. Three controlling factors must be appropriately identified to boost hydrogen generation namely electrolysis time (min) electric voltage (V) and catalyst amount (µg). The proposed methodology contains the following two phases: modeling and optimization. Initially a robust model of the water electrolysis process in terms of controlling factors was established using an adaptive neuro-fuzzy inference system (ANFIS) based on the experimental dataset. After that a modern pelican optimization algorithm (POA) was employed to identify the ideal parameters of electrolysis duration electric voltage and catalyst amount to enhance hydrogen production. Compared to the measured datasets and response surface methodology (RSM) the integration of ANFIS and POA improved the generated hydrogen by around 1.3% and 1.7% respectively. Overall this study highlights the potential of ANFIS modeling and optimal parameter identification in optimizing the performance of solar-powered water electrocatalysis systems for green hydrogen production in marine applications. This research could pave the way for the more widespread adoption of this technology in the marine industry which would help to reduce the industry’s carbon footprint and promote sustainability.
Ammonia, Methane and Hydrogen for Gas Turbines
Aug 2015
Publication
Ammonia has been identified as a sustainable fuel for transport and power applications. Similar to hydrogen ammonia is a synthetic product that can be obtained either from fossil fuels biomass or other renewable sources. Since the 1960’s considerable research has taken place to develop systems capable of burning the material in gas turbines. However it is not until recently that interest in ammonia has regained some momentum in the energy agenda as it is a carbon free carrier and offers an energy density higher than compressed hydrogen. . Therefore this work examines combustion stability and emissions from gaseous ammonia blended with methane or hydrogen in gas turbines. Experiments were carried out in a High Pressure Combustion Rig under atmospheric conditions employing a bespoke generic swirl burner. OH* Chemiluminescense was used for all trials to determine reactivity of the radical. Emissions were measured and correlated to equilibrium calculations using GASEQ. Results show that efficient combustion can be achieved with high power but at very narrow equivalence ratios using both hydrogen and methane blends. Moreover low concentrations of OH radicals are observed at high hydrogen content probably as a consequence of the high NH2 production.
The ATHENA Framework: Analysis and Design of a Strategic Hydrogen Refuelling Infrastructure
Apr 2023
Publication
With the pressured timescale in determining effective and viable net zero solutions within the transport sector it is important to understand the extent of implementing a new refuelling infrastructure for alternative fuel such as hydrogen. The proposed ATHENA framework entails three components which encapsulates the demand data analysis an optimisation model in determining the minimal cost hydrogen refuelling infrastructure design and an agent-based model simulating the operational system. As a case study the ATHENA framework is applied to Northern England focusing on the design of a hydrogen refuelling infrastructure for heavy goods vehicles. Analysis is performed in calibrating parameters and investigating different scenarios within the optimisation and agent-based simulation models. For this case study the system optimality is limited by the feasible number of tube trailer deliveries per day which suggests an opportunity for alternative delivery methods.
Assessing the Pressure Losses during Hydrogen Transport in the Current Natural Gas Infrastructure Using Numerical Modelling
May 2023
Publication
The UK government aims to transition its modern natural gas infrastructure towards Hydrogen by 2035. Since hydrogen is a much lighter gas than methane it is important to understand the change in parameters when transporting it. While most modern work in this topic looks at the transport of hydrogen-methane mixtures this work focuses on pure hydrogen transport. The aim of this paper is to highlight the change in gas distribution parameters when natural gas is replaced by hydrogen in the existing infrastructure. This study uses analytical models and computational models to compare the flow of hydrogen and methane in a pipe based on pressure loss. The Darcy-Weisbach and Colebrook-White equations were used for the analytical models and the k- ε model was used for the computational approach. The variables considered in the comparison were the pipe material (X52 Steel and MDPE) and pipe diameters (0.01m–1m). It was observed that hydrogen had to be transported 250–270% the velocity of methane to replicate flow for a fixed length of pipe. Furthermore it was noted that MDPE pipes has 2–31% lower pressure losses compared to X52 steel for all diameters when transporting hydrogen at a high velocity. Lastly it was noted that the analytical model and computational model were in agreement with 1–5% error in their findings.
Two-Layer Optimization Planning Model for Integrated Energy Systems in Hydrogen Refueling Original Station
May 2023
Publication
With the aggravation of global environmental pollution problems and the need for energy restructuring hydrogen energy as a highly clean resource has gradually become a hot spot for research in countries around the world. Facing the requirement of distributed hydrogen in refueling the original station for hydrogen transportation and other usage this paper proposes a comprehensive energy system planning model for hydrogen refueling stations to obtain the necessary devices construction the devices’ capacity decisions and the optimal operation behaviors of each device. Comparing to traditional single hydrogen producing technics in the traditional planning model the proposed model in this paper integrates both water-electrolysis-based and methanol-based manufacturing technics. A two-level optimization model is designed for this comprehensive system. The result of the numerical study shows that the proposed model can achieve a better optimal solution for distributed hydrogen production. Also it considers the single producing situation when price of one primary resource is sufficient higher than the other.
Expert Perceptions of Game-changing Innovations towards Net Zero
Dec 2022
Publication
Current technological improvements are yet to put the world on track to net-zero which will require the uptake of transformative low-carbon innovations to supplement mitigation efforts. However the role of such innovations is not yet fully understood; some of these ‘miracles’ are considered indispensable to Paris Agreement-compliant mitigation but their limitations availability and potential remain a source of debate. We evaluate such potentially game-changing innovations from the experts’ perspective aiming to support the design of realistic decarbonisation scenarios and better-informed net-zero policy strategies. In a worldwide survey 260 climate and energy experts assessed transformative innovations against their mitigation potential at-scale availability and/or widescale adoption and risk of delayed diffusion. Hierarchical clustering and multi-criteria decision-making revealed differences in perceptions of core technological innovations with next generation energy storage alternative building materials iron-ore electrolysis and hydrogen in steelmaking emerging as top priorities. Instead technologies highly represented in well-below-2◦C scenarios seemingly feature considerable and impactful delays hinting at the need to re-evaluate their role in future pathways. Experts’ assessments appear to converge more on the potential role of other disruptive innovations including lifestyle shifts and alternative economic models indicating the importance of scenarios including non-technological and demand-side innovations. To provide insights for expert elicitation processes we finally note caveats related to the level of representativeness among the 260 engaged experts the level of their expertise that may have varied across the examined innovations and the potential for subjective interpretation to which the employed linguistic scales may be prone to.
HyDeploy2 Project: Winlaton Trial Report
Sep 2022
Publication
The HyDeploy project seeks to address a key issue for UK customers and UK energy policy makers: how to reduce the carbon emitted from heating homes. The UK has a world class gas distribution grid delivering heat conveniently and safely to over 83% of homes. Emissions can be reduced by lowering the carbon content of gas through blending with hydrogen. This delivers carbon savings without customers requiring disruptive and expensive changes in their homes. It also provides the platform for deeper carbon savings by enabling wider adoption of hydrogen across the energy system. HyDeploy has previously delivered a successful trial demonstrations of repurposing existing UK distribution gas networks (Keele University) to operate on a blend of natural gas and hydrogen (up to 20% mol/mol) showing that carbon savings can be made through the gas networks today whilst continuing to meet the needs of gas consumers without introducing any disruptions.<br/>The ultimate objective of the HyDeploy programme is to see the roll-out of hydrogen blends across the GB gas distribution network unlocking 35 TWh pa of low carbon heat - the equivalent of removing 2.5 million fossil-fuelled cars off the roads. To achieve this the next phase of the programme is to address the remaining evidence gaps that had not been covered by the trial demonstration programmes.<br/>The demonstrations have focussed on the low and medium pressure tiers of the gas distribution network (i.e. injecting into a 2 bar gauge pressure network and distributing the blended gas down to the low pressure network and into people’s homes and commercial buildings and businesses) and predominantly serving domestic appliances.<br/>The remainder of the HyDeploy2 programme will generate an evidence base for GB’s gas distribution network which includes demonstrating the suitability of using hydrogen blended gas in the fields of industrial and commercial users and the performance of materials assets and procedures on the higher pressure tiers (i.e. 7 bar gauge operation and above).<br/>This report captures the details of the Winlaton trial and provides a future look to how the UK can transition from successful hydrogen blending trials to roll-out.
A Review of Liquid Hydrogen Aircraft and Propulsion Technologies
Jan 2024
Publication
Sustainable aviation is a key part of achieving Net Zero by 2050 and is arguably one of the most challenging sectors to decarbonise. Hydrogen has gained unprecedented attention as a future fuel for aviation for use within fuel cell or hydrogen gas turbine propulsion systems. This paper presents a survey of the literature and industrial projects on hydrogen aircraft and associated enabling technologies. The current and predicted technology capabilities are analysed to identify important trends and to assess the feasibility of hydrogen propulsion. Several key enabling technologies are discussed in detail and gaps in knowledge are identified. It is evident that hydrogen propelled aircraft are technologically viable by 2050. However convergence of a number of critical factors is required namely: the extent of industrial collaboration the understanding of environmental science and contrails green hydrogen production and its availability at the point of use and the safety and certification of the aircraft and supporting infrastructure.
Natural Hydrogen in the Energy Transition: Fundamentals, Promise, and Enigmas
Oct 2023
Publication
Beyond its role as an energy vector a growing number of natural hydrogen sources and reservoirs are being discovered all over the globe which could represent a clean energy source. Although the hydrogen amounts in reservoirs are uncertain they could be vast and they could help decarbonize energy-intensive economic sectors and facilitate the energy transition. Natural hydrogen is mainly produced through a geochemical process known as serpentinization which involves the reaction of water with low-silica ferrous minerals. In favorable locations the hydrogen produced can become trapped by impermeable rocks on its way to the atmosphere forming a reservoir. The safe exploitation of numerous natural hydrogen reservoirs seems feasible with current technology and several demonstration plants are being commissioned. Natural hydrogen may show variable composition and require custom separation purification storage and distribution facilities depending on the location and intended use. By investing in research in the mid-term more hydrogen sources could become exploitable and geochemical processes could be artificially stimulated in new locations. In the long term it may be possible to leverage or engineer the interplay between microorganisms and geological substrates to obtain hydrogen and other chemicals in a sustainable manner.
Review of the Production of Turquoise Hydrogen from Methane Catalytic Decomposition: Optimising Reactors for Sustainable Hydrogen Production
May 2024
Publication
Hydrogen is gaining prominence in global efforts to combat greenhouse gas emissions and climate change. While steam methane reforming remains the predominant method of hydrogen production alternative approaches such as water electrolysis and methane cracking are gaining attention. The bridging technology – methane cracking – has piqued scientific interest with its lower energy requirement (74.8 kJ/mol compared to steam methane reforming 206.278 kJ/mol) and valuable by-product of filamentous carbon. Nevertheless challenges including coke formation and catalyst deactivation persist. This review focuses on two main reactor types for catalytic methane decomposition – fixed-bed and fluidised bed. Fixed-bed reactors excel in experimental studies due to their operational simplicity and catalyst characterisation capabilities. In contrast fluidised-bed reactors are more suited for industrial applications where efforts are focused on optimising the temperature gas flow rate and particle characterisation. Furthermore investigations into various fluidised bed regimes aim to identify the most suitable for potential industrial deployment providing insights into the sustainable future of hydrogen production. While the bubbling regime shows promise for upscaling fluidised bed reactors experimental studies on turbulent fluidised-bed reactors especially in achieving high hydrogen yield from methane cracking are limited highlighting the technology’s current status not yet reaching commercialisation.
Visualisation and Quantification of Wind-induced Variability in Hydrogen Clouds Following Releases of Liquid Hydrogen
Sep 2023
Publication
Well characterized experimental data for consequence model validation is important in progressing the use of liquid hydrogen as an energy carrier. In 2019 the Health and Safety Executive (HSE) undertook a series of liquid hydrogen dispersion and combustion experiments as a part of the Pre-normative Research for Safe Use of Liquid Hydrogen (PRESLHY) project. In partnership between the National Renewable Energy Laboratory (NREL) and HSE time and spatially varying hydrogen concentration measurements were made in 25 dispersion experiments and 23 congested ignition experiments associated with PRESLHY WP3 and WP5 respectively. These measurements were undertaken using the hydrogen wide area monitoring system developed by NREL. During the 23 congested ignition experiments high variability was observed in the measured explosion severity during experiments with similar initial conditions. This led to the conclusion that wind including localized gusts had a large influence on the dispersion of the hydrogen and therefore the quantity of hydrogen that was present in the congested region of the explosions. Using the hydrogen concentration measurements taken immediately prior to ignition the hydrogen clouds were visualized in an attempt to rationalize the variability in overpressure between the tests. Gaussian process regression was applied to quantify the variability of the measured hydrogen concentrations. This analysis could also be used to guide modifications in experimental designs for future research on hydrogen combustion behavior.
No more items...