United Kingdom
Characterising the Performance of Hydrogen Sensitive Coatings for Nuclear Safety Applications
Sep 2017
Publication
The detection of hydrogen gas is essential in ensuring the safety of nuclear plants. However events at Fukushima Daiichi NPP highlighted the vulnerability of conventional detection systems to extreme events where power may be lost. Herein chemochromic hydrogen sensors have been fabricated using transition metal oxide thin films sensitised with a palladium catalyst to provide passive hydrogen detection systems that would be resilient to any plant power failures. To assess their viability for nuclear safety applications these sensors have been gamma-irradiated to four total doses (0 5 20 50 kGy) using a Co-60 gamma radioisotope. Optical properties of both un-irradiated and irradiated samples were investigated to compare the effect of increased radiation dose on the sensors resultant colour change. The results suggest that gamma irradiation at the levels examined (>5 kGy) has a significant effect on the initial colour of the thin films and has a negative effect on the hydrogen sensing abilities.
Communicating Leakage Risk in the Hydrogen Economy: Lessons Already Learned from Geoenergy Industries
Sep 2019
Publication
Hydrogen may play a crucial part in delivering a net zero emissions future. Currently hydrogen production storage transport and utilisation are being explored to scope opportunities and to reduce barriers to market activation. One such barrier could be negative public response to hydrogen technologies. Previous research around socio-technical risks finds that public acceptance issues are particularly challenging for emerging remote technical sensitive uncertain or unfamiliar technologies - such as hydrogen. Thus while the hydrogen value chain could offer a range of potential environmental economic and social benefits each will have perceived risks that could challenge the introduction and subsequent roll-out of hydrogen. These potential issues must be identified and managed so that the hydrogen sector can develop adapt or respond appropriately. Geological storage of hydrogen could present challenges in terms of perceived safety. Valuable lessons can be learned from international research and practice of CO2 and natural gas storage in geological formations (for carbon capture and storage CCS and for power respectively). Here we explore these learnings. We consider the similarities and differences between these technologies and how these may affect perceived risks. We also reflect on lessons for effective communication and community engagement. We draw on this to present potential risks to the perceived safety of - and public acceptability of – the geological storage of hydrogen. One of the key lessons learned from CCS and natural gas storage is that progress is most effective when risk communication and public acceptability is considered from the early stages of technology development.
Best Practice in Numerical Simulation and CFD Benchmarking. Results from the SUSANA Project
Sep 2017
Publication
Correct use of Computational Fluid Dynamics (CFD) tools is essential in order to have confidence in the results. A comprehensive set of Best Practice Guidelines (BPG) in numerical simulations for Fuel Cells and Hydrogen applications has been one of the main outputs of the SUSANA project. These BPG focus on the practical needs of engineers in consultancies and industry undertaking CFD simulations or evaluating CFD simulation results in support of hazard/risk assessments of hydrogen facilities as well as on the needs of regulatory authorities. This contribution presents a summary of the BPG document. All crucial aspects of numerical simulations are addressed such as selection of the physical models domain design meshing boundary conditions and selection of numerical parameters. BPG cover all hydrogen safety relative phenomena i.e. release and dispersion ignition jet fire deflagration and detonation. A series of CFD benchmarking exercises are also presented serving as examples of appropriate modelling strategies.
Promotion Effect of Proton-conducting Oxide BaZr0.1Ce0.7Y0.2O3−δ on the Catalytic Activity of Ni Towards Ammonia Synthesis from Hydrogen and Nitrogen
Aug 2018
Publication
In this report for the first time it has been observed that proton-conducting oxide BaZr0.1Ce0.7Y0.2O3−δ (BZCY) has significant promotion effect on the catalytic activity of Ni towards ammonia synthesis from hydrogen and nitrogen. Renewable hydrogen can be used for ammonia synthesis to save CO2 emission. By investigating the operating parameters of the reaction the optimal conditions for this catalyst were identified. It was found that at 620 °C with a total flow rate of 200 mL min−1 and a H2/N2 mol ratio of 3 an activity of approximately 250 μmol g−1 h−1 can be achieved. This is ten times larger than that for the unpromoted Ni catalyst under the same conditions although the stability of both catalysts in the presence of steam was not good. The specific activity of Ni supported on proton-conducting oxide BZCY is approximately 72 times higher than that of Ni supported on non-proton conductor MgO-CeO2. These promotion effects were suspected to be due to the proton conducting nature of the support. Therefore it is proposed that the use of proton conducting support materials with highly active ammonia synthesis catalysts such as Ru and Fe will provide improved activity of at lower temperatures.
Properties of the Hydrogen Oxidation Reaction on Pt/C catalysts at Optimised High Mass Transport Conditions and its Relevance to the Anode Reaction in PEFCs and Cathode Reactions in Electrolysers
Jul 2015
Publication
Using a high mass transport floating electrode technique with an ultra-low catalyst loading (0.84–3.5 μgPt cm−2) of commonly used Pt/C catalyst (HiSPEC 9100 Johnson Matthey) features in the hydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER) were resolved and defined which have rarely been previously observed. These features include fine structure in the hydrogen adsorption region between 0.18 < V vs. RHE < 0.36 V vs. RHE consisting of two peaks an asymptotic decrease at potentials greater than 0.36 V vs. RHE and a hysteresis above 0.1 V vs. RHE which corresponded to a decrease in the cathodic scan current by up to 50% of the anodic scan. These features are examined as a function of hydrogen and proton concentration anion type and concentration potential scan limit and temperature. We provide an analytical solution to the Heyrovsky–Volmer equation and use it to analyse our results. Using this model we are able to extract catalytic properties (without mass transport corrections; a possible source of error) by simultaneously fitting the model to HOR curves in a variety of conditions including temperature hydrogen partial pressure and anion/H+ concentration. Using our model we are able to rationalise the pH and hydrogen concentration dependence of the hydrogen reaction. This model may be useful in application to fuel cell and electrolyser simulation studies.
Modelling the UK Energy System: Practical Insights for Technology Development and Policy Making
Jun 2014
Publication
The Energy Technologies Institute (ETI) has developed an internationally peer-reviewed model of the UK’s national energy system extending across power heat transport and infrastructure. The Energy System Modelling Environment (ESME) is a policy neutral system-wide optimisation model. It models the key technology and engineering choices taking account of cost engineering spatial and temporal factors.
Key points:
Key points:
- A system-wide perspective informed by modelling is highly relevant because complex energy systems are made more inter-dependent by emissions reduction objectives
- Efforts to cut emissions are substitutable across a national energy system encompassing power heat transport and infrastructure.
- Energy systems are subject to key decision points and it is important to make the right choices in major long lived investments
- Policy makers should place policy in a system-wide context.
- Decarbonisation can be achieved affordably (at around 0.6% of GDP) provided that the most cost effective technologies and strategies to reduce emissions are deployed
- A broad portfolio of technologies is needed to deliver emissions reductions with bio-energy and carbon capture and storage of particular system-wide importance
Future Cost and Performance of Water Electrolysis: An Expert Elicitation Study
Nov 2017
Publication
The need for energy storage to balance intermittent and inflexible electricity supply with demand is driving interest in conversion of renewable electricity via electrolysis into a storable gas. But high capital cost and uncertainty regarding future cost and performance improvements are barriers to investment in water electrolysis. Expert elicitations can support decision-making when data are sparse and their future development uncertain. Therefore this study presents expert views on future capital cost lifetime and efficiency for three electrolysis technologies: alkaline (AEC) proton exchange membrane (PEMEC) and solid oxide electrolysis cell (SOEC). Experts estimate that increased R&D funding can reduce capital costs by 0–24% while production scale-up alone has an impact of 17–30%. System lifetimes may converge at around 60000–90000 h and efficiency improvements will be negligible. In addition to innovations on the cell-level experts highlight improved production methods to automate manufacturing and produce higher quality components. Research into SOECs with lower electrode polarisation resistance or zero-gap AECs could undermine the projected dominance of PEMEC systems. This study thereby reduces barriers to investment in water electrolysis and shows how expert elicitations can help guide near-term investment policy and research efforts to support the development of electrolysis for low-carbon energy systems.
Effect of Microstructural and Environmental Variables on Ductility of Austenitic Stainless Steels
Sep 2019
Publication
Austenitic stainless steels are used extensively in harsh environments including for high-pressure gaseous hydrogen service. However the tensile ductility of this class of materials is very sensitive to materials and environmental variables. While tensile ductility is generally insufficient to qualify a material for hydrogen service ductility is an effective tool to explore microstructural and environmental variables and their effects on hydrogen susceptibility to inform understanding of the mechanisms of hydrogen effects in metals and to provide insight to microstructural variables that may improve relative performance. In this study hydrogen precharging was used to simulate high-pressure hydrogen environments to evaluate hydrogen effects on tensile properties. Several austenitic stainless steels were considered including both metastable and stable alloys. Room temperature and subambient temperature tensile properties were evaluated with three different internal hydrogen contents for type 304L and 316L austenitic stainless steels and one hydrogen content for XM-11. Significant ductility loss was observed for both metastable and stable alloys suggesting the stability of the austenitic phase is not sufficient to characterize the effects of hydrogen. Internal hydrogen does influence the character of deformation which drives local damage accumulation and ultimately fracture for both metastable and stable alloys. While a quantitative description of hydrogen-assisted fracture in austenitic stainless steels remains elusive these observations underscore the importance of the hydrogen-defect interactions and the accumulation of damage at deformation length scales.
Ignited Releases of Liquid Hydrogen
Jan 2014
Publication
If the hydrogen economy is to progress more hydrogen fuelling stations are required. In the short term in the absence of a hydrogen distribution network these fuelling stations will have to be supplied by liquid hydrogen (LH2) road tanker. Such a development will increase the number of tanker offloading operations significantly and these may need to be performed in close proximity to the general public.<br/>Several research projects have been undertaken already at HSL with the aim of identifying and addressing hazards relating to the storage and transport of bulk LH2 that are associated with hydrogen refuelling stations located in urban environments.<br/>The first phase of the research was to produce a position paper on the hazards of LH2 (Pritchard and Rattigan 2009). This was published as an HSE research report RR769 in 2010. <br/>The second phase developed an experimental and modelling strategy for issues associated with LH2 spills and was published as an internal report HSL XS/10/06. The subsequent experimental work is a direct implementation of that strategy. LH2 was first investigated experimentally (Royle and Willoughby 2012 HSL XS/11/70) as large-scale spills of LH2 at a rate of 60 litres per minute. Measurements were made on unignited releases which included the concentration of hydrogen in air thermal gradients in the concrete substrate liquid pool formation and temperatures within the pool. Computational modelling on the un-ignited spills was also performed (Batt and Webber 2012 HSL MSU/12/01).<br/>The experimental work on ignited releases of LH2 detailed in this report is a direct continuation of the work performed by Royle and Willoughby.<br/>The aim of this work was to determine the hazards and severity of a realistic ignited spill of LH2 focussing on; flammability limits of an LH2 vapour cloud flame speeds through an LH2 vapour cloud and subsequent radiative heat and overpressures after ignition. The results of the experimentation will inform the wider hydrogen community and contribute to the development of more robust modelling tools. The results will also help to update and develop guidance for codes and standards.
Optimal Design and Operation of Integrated Wind-hydrogen-electricity Networks for Decarbonising the Domestic Transport Sector in Great Britain
Nov 2015
Publication
This paper presents the optimal design and operation of integrated wind-hydrogen-electricity networks using the general mixed integer linear programming energy network model STeMES (Samsatli and Samsatli 2015). The network comprises: wind turbines; electrolysers fuel cells compressors and expanders; pressurised vessels and underground storage for hydrogen storage; hydrogen pipelines and electricity overhead/underground transmission lines; and fuelling stations and distribution pipelines.<br/>The spatial distribution and temporal variability of energy demands and wind availability were considered in detail in the model. The suitable sites for wind turbines were identified using GIS by applying a total of 10 technical and environmental constraints (buffer distances from urban areas rivers roads airports woodland and so on) and used to determine the maximum number of new wind turbines that can be installed in each zone.<br/>The objective is the minimisation of the total cost of the network subject to satisfying all of the demands of the domestic transport sector in Great Britain. The model simultaneously determines the optimal number size and location of each technology whether to transmit the energy as electricity or hydrogen the structure of the transmission network the hourly operation of each technology and so on. The cost of distribution was estimated from the number of fuelling stations and length of the distribution pipelines which were determined from the demand density at the 1 km level.<br/>Results indicate that all of Britain's domestic transport demand can be met by on-shore wind through appropriately designed and operated hydrogen-electricity networks. Within the set of technologies considered the optimal solution is: to build a hydrogen pipeline network in the south of England and Wales; to supply the Midlands and Greater London with hydrogen from the pipeline network alone; to use Humbly Grove underground storage for seasonal storage and pressurised vessels at different locations for hourly balancing as well as seasonal storage; for Northern Wales Northern England and Scotland to be self-sufficient generating and storing all of the hydrogen locally. These results may change with the inclusion of more technologies such as electricity storage and electric vehicles.
Physics of Spontaneous Ignition of High-Pressure Hydrogen Release and Transition to Jet Fire
Sep 2009
Publication
The main objective of this study is an insight into physical phenomena underlying spontaneous ignition of hydrogen at sudden release from high pressure storage and its transition into the sustained jet fire. This paper describes modelling and large eddy simulation (LES) of spontaneous ignition dynamics in a tube with a rupture disk separating high pressure hydrogen storage and the atmosphere. Numerical experiments carried out by a LES model have provided an insight into the physics of the spontaneous ignition phenomenon. It is demonstrated that a chemical reaction commences in a boundary layer within the tube and propagates throughout the tube cross-section after that. Simulated by the LES model dynamics of flame formation outside the tube has reproduced experimental observation of combustion by high-speed photography including vortex induced “flame separation". It is concluded that the model developed can be applied for hydrogen safety engineering in particular for development of innovative pressure relief devices.
Hy4Heat Understanding Commercial Appliances - Work Package 5
Nov 2020
Publication
The 'Hydrogen for Heat' (Hy4Heat) programme aims to support the UK Government in its ambitions to decarbonise the UK energy sector in line with the targets of the Climate Change Act 2008 by attempting to evaluate and de-risk the natural gas to hydrogen network conversion option. The impact on the commercial sector is an important factor in understanding the feasibility of utilising hydrogen to decarbonise heat in the UK. The overall objective of the market research study Work Package 5 (WP5) was to determine if it is theoretically possible to successfully convert the commercial sector to hydrogen. This work will contribute to the understanding of the scale type and capacity of gas heating appliances within the sector providing a characterisation of the market and determining the requirements and feasibility for successfully transitioning them to hydrogen in the future.
This report and any attachment is freely available on the Hy4Heat website here. The report can also be downloaded directly by clicking on the pdf icon above
This report and any attachment is freely available on the Hy4Heat website here. The report can also be downloaded directly by clicking on the pdf icon above
Flow Loop Test for Hydrogen
Jul 2020
Publication
National Grid (NG) needs to understand the implications that a hydrogen rich gas mix may have on the existing pipeline network. The primary network consists extensively of X52 steel pipe sections welded together using girth welds. Different welding specifications that have been used in the past 40 years and girth welds with different specifications may behave differently when coming into contact with hydrogen gas.
The aim of the flow loop test programme is to begin to evaluate the durability of pipeline materials in the context of future proofing of gas grid service where the gas mix may include a significant proportion of hydrogen. One specific objective is to investigate the resistance to hydrogen embrittlement of a conventional steel (X52) with commonly used girth welds. The primary concern is that the phenomenon of hydrogen embrittlement may cause unexpected or early failure mechanisms especially in older pipe sections with less stringent girth weld specifications.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
The aim of the flow loop test programme is to begin to evaluate the durability of pipeline materials in the context of future proofing of gas grid service where the gas mix may include a significant proportion of hydrogen. One specific objective is to investigate the resistance to hydrogen embrittlement of a conventional steel (X52) with commonly used girth welds. The primary concern is that the phenomenon of hydrogen embrittlement may cause unexpected or early failure mechanisms especially in older pipe sections with less stringent girth weld specifications.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Vapour Cloud Explosions from the Ignition of Methane, Hydrogen, Air Mixtures in a Congested Region
Sep 2007
Publication
To facilitate the transition to the hydrogen economy the EU project NATURALHY is studying the potential for the existing natural gas pipeline networks to transport hydrogen together with natural gas to end-users. Hydrogen may then be extracted for hydrogen fuel-cell applications or the mixture used directly by consumers in existing gas-fired equipment with the benefit of lower carbon emissions. The existing gas pipeline networks are designed constructed and operated to safely transport natural gas mostly methane. However hydrogen has significantly different properties that may adversely affect both the integrity of the network and thereby increase the likelihood of an accidental leak and the consequences if the leak finds a source of ignition. Consequently a major part of the NATURALHY project is focused on assessing how much hydrogen could be introduced into the network without adversely impacting on the safety of the network and the risk to the public. Hydrogen is more reactive than natural gas so the severity of an explosion following an accidental leak may be increased. This paper describes field-scale experiments conducted to measure the overpressures generated by ignition of methane/hydrogen/air mixtures in a congested but unconfined region. Such regions may be found in the gas handling and metering stations of the pipeline networks. The 3 m x 3 m x 2 m high congested region studied contained layers of pipes. The composition of the methane/hydrogen mixture used was varied from 0% hydrogen to 100% hydrogen. On the basis of the experiments performed the maximum overpressures generated by methane/hydrogen mixtures with 25% (by volume) or less hydrogen content are not likely to be much more than those generated by methane alone. Greater percentages of hydrogen did significantly increase the explosion overpressure.
Hydrogen and Fuel Cell Stationary Applications: Key Findings of Modelling and Experimental Work in the Hyper Project
Sep 2009
Publication
Síle Brennan,
A. Bengaouer,
Marco Carcassi,
Gennaro M. Cerchiara,
Andreas Friedrich,
O. Gentilhomme,
William G. Houf,
N. Kotchourko,
Alexei Kotchourko,
Sergey Kudriakov,
Dmitry Makarov,
Vladimir V. Molkov,
Efthymia A. Papanikolaou,
C. Pitre,
Mark Royle,
R. W. Schefer,
G. Stern,
Alexandros G. Venetsanos,
Anke Veser,
Deborah Willoughby,
Jorge Yanez and
Greg H. Evans
"This paper summarises the modelling and experimental programme in the EC FP6 project HYPER. A number of key results are presented and the relevance of these findings to installation permitting guidelines (IPG) for small stationary hydrogen and fuel cell systems is discussed. A key aim of the activities was to generate new scientific data and knowledge in the field of hydrogen safety and where possible use this data as a basis to support the recommendations in the IPG. The structure of the paper mirrors that of the work programme within HYPER in that the work is described in terms of a number of relevant scenarios as follows: 1. high pressure releases 2. small foreseeable releases 3. catastrophic releases and 4. the effects of walls and barriers. Within each scenario the key objectives activities and results are discussed.<br/>The work on high pressure releases sought to provide information for informing safety distances for high-pressure components and associated fuel storage activities on both ignited and unignited jets are reported. A study on small foreseeable releases which could potentially be controlled through forced or natural ventilation is described. The aim of the study was to determine the ventilation requirements in enclosures containing fuel cells such that in the event of a foreseeable leak the concentration of hydrogen in air for zone 2 ATEX is not exceeded. The hazard potential of a possibly catastrophic hydrogen leakage inside a fuel cell cabinet was investigated using a generic fuel cell enclosure model. The rupture of the hydrogen feed line inside the enclosure was considered and both dispersion and combustion of the resulting hydrogen air mixture were examined for a range of leak rates and blockage ratios. Key findings of this study are presented. Finally the scenario on walls and barriers is discussed; a mitigation strategy to potentially reduce the exposure to jet flames is to incorporate barriers around hydrogen storage equipment. Conclusions of experimental and modelling work which aim to provide guidance on configuration and placement of these walls to minimise overall hazards is presented. "
Hydrogen Releases Ignited in a Simulated Vehicle Refuelling Environment
Sep 2007
Publication
If the general public is to use hydrogen as a vehicle fuel customers must be able to handle hydrogen with the same degree of confidence and with comparable risk as conventional liquid and gaseous fuels. The hazards associated with jet releases from leaks in a vehicle-refuelling environment must be considered if hydrogen is stored and used as a high-pressure gas since a jet release in a confined or congested area could result in an explosion. As there was insufficient knowledge of the explosion hazards a study was initiated to gain a better understanding of the potential explosion hazard consequences associated with high-pressure leaks from refuelling systems. This paper describes two experiments with a dummy vehicle and dispenser units to represent refuelling station congestion. The first represents a ‘worst-case’ scenario where the vehicle and dispensers are enveloped by a 5.4 m x 6.0 m x 2.5 m high pre-mixed hydrogen-air cloud. The second is an actual high-pressure leak from storage at 40 MPa (400 bar) representing an uncontrolled full-bore failure of a vehicle refuelling hose. In both cases an electric spark ignited the flammable cloud. Measurements were made of the explosion overpressure generated its evolution with time and its decay with distance. The results reported provide a direct demonstration of the explosion hazard from an uncontrolled leak; they will also be valuable for validating explosion models that will be needed to assess configurations and conditions beyond those studied experimentally.
Numerical Simulation of Detonation Failure and Re-initiation in Bifurcated Tubes
Oct 2015
Publication
A numerical approach is developed to simulate detonation propagation attenuation failure and re-initiation in hydrogen–air mixture. The aim is to study the condition under which detonations may fail or re-initiate in bifurcated tubes which is important for risk assessment in industrial accidents. A code is developed to solve compressible multidimensional transient reactive Navier–Stokes equations. An Implicit Large Eddy Simulation approach is used to model the turbulence. The code is developed and tested to ensure both deflagrations (when detonation fails) and detonations are simulated correctly. The code can correctly predict the flame properties as well as detonation dynamic parameters. The detonation propagation predictions in bifurcated tubes are validated against the experimental work of Wang et al. [12] and found to be in good agreement with experimental observations.
Smart Systems and Heat: Decarbonising Heat for UK homes
Nov 2015
Publication
Around 20% of the nation’s carbon emissions are generated by domestic heating. Analysis of the many ways the energy system might be adapted to meet carbon targets shows that the elimination of emissions from buildings is more cost effective than deeper cuts in other energy sectors such as transport. This effectively means that alternatives need to be found for domestic natural gas heating systems. Enhanced construction standards are ensuring that new buildings are increasingly energy efficient but the legacy building stock of around 26 million homes has relatively poor thermal performance and over 90% are expected to still be in use in 2050. Even if building replacement was seen as desirable the cost is unaffordable and the carbon emissions associated with the construction would be considerable.
YouTube link to accompanying video
YouTube link to accompanying video
FutureGrid: Project Progress Report
Dec 2021
Publication
The facility will be built from a range of decommissioned transmission assets to create a representative whole-network which will be used to trial hydrogen and will allow for accurate results to be analysed. Blends of hydrogen up to 100% will then be tested at transmission pressures to assess how the assets perform.<br/>The hydrogen research facility will remain separate from the main National Transmission System allowing for testing to be undertaken in a controlled environment with no risk to the safety and reliability of the existing gas transmission network.<br/>Ofgem’s Network Innovation Competition will provide £9.07m of funding with the remaining amount coming from the project partners.<br/>The aim is to start construction in 2021 with testing beginning in 2022.
The Importance of Economies of Scale, Transport Costs and Demand Patterns in Optimising Hydrogen Fuelling Infrastructure: An Exploration with SHIPMod (Spatial Hydrogen Infrastructure Planning Model)
Jul 2013
Publication
Hydrogen is widely recognised as an important option for future road transportation but a widespread infrastructure must be developed if the potential for hydrogen is to be achieved. This paper and related appendices which can be downloaded as Supplementary material present a mixed-integer linear programming model (called SHIPMod) that optimises a hydrogen supply chains for scenarios of hydrogen fuel demand in the UK including the spatial arrangement of carbon capture and storage infrastructure. In addition to presenting a number of improvements on past practice in the literature the paper focuses attention on the importance of assumptions regarding hydrogen demand. The paper draws on socio-economic data to develop a spatially detailed scenario of possible hydrogen demand. The paper then shows that assumptions about the level and spatial dispersion of hydrogen demand have a significant impact on costs and on the choice of hydrogen production technologies and distribution mechanisms.
Numerical Modelling of Hazards of Hydrogen Storage
Sep 2017
Publication
For the general public to use hydrogen as a vehicle fuel they must be able to handle hydrogen with the same degree of confidence as conventional liquid and gaseous fuels. The hazards associated with jet releases from accidental leaks in a vehicle-refuelling environment must be considered if hydrogen is stored and used as a high-pressure gas since a jet release can result in a fire or explosion. This paper describes the work done by us in modelling some of the consequences of accidental releases of hydrogen implemented in our Fire Explosion Release Dispersion (FRED) software. The new dispersion model is validated against experimental data available in the open literature. The model predictions of hydrogen gas concentration as a function of distance are in good agreement with experiments. In addition FRED has been used to model the consequence of the bursting of a vessel containing compressed hydrogen. The results obtained from FRED i.e. overpressure as a function of distance match well in comparison to experiments. Overall it is concluded that FRED can model the consequences of an accidental release of hydrogen and the blast waves generated from bursting of vessel containing compressed hydrogen
Modelling of Hydrogen Jet Fires Using CFD
Sep 2011
Publication
The computational fluid dynamics (CFD) software FLACS has primarily been developed to model dispersion and explosion phenomena; however models for the simulation of jet fires are under development. The aim is to be able to predict industrial fires efficiently and with good precision. Newly developed models include e.g. flame models for non-premixed flames discrete transfer radiation model as well as soot models. Since the time scales for fire simulations are longer than for explosions the computational speed is important. The recent development of non-compressible and parallel solvers in FLACS may therefore be important to ensure efficiency. Hydrogen flames may be invisible will generate no soot and tend to radiate less than hydrocarbon fuels. Due to high pressure storage the flame lengths can be significant. Simpler jet flame relations can not predict the jet flame interaction with objects and barriers and thus the heat loads on impacted objects. The development of efficient and precise CFD-tools for hydrogen fires is therefore important. In this paper the new models for the simulation of fire are described. These models are currently under development and this manuscript describes the current status of the work. Jet fire experiments performed by Health and Safety Laboratories (HSL) both free jets and impinging jets will also be simulated to evaluate the applicability and validity of the new fire models.
Development of a Hydrogen and Fuel Cell Vehicle Emergency Response National Template
Sep 2013
Publication
The California Fuel Cell Partnership (CaFCP) is currently working with key stakeholders like the US Department of Energy (DOE) and National Fire Protection Association (NFPA) to develop a national template for educating and training first responders about hydrogen fuel cell-powered vehicles (FCV) and hydrogen fuelling infrastructure. Currently there are several existing programs that either have some related FCV/hydrogen material or have plans to incorporate this in the future. To create a robust national emergency responder (ER) program the strongest elements from these existing programs are considered for incorporation into the template. Working with the key stakeholders the national template will be evaluated on a regular basis to ensure accurate and up to date information and resources and effective teaching techniques for the emergency response community. This paper describes the evaluation process discusses elements of the template and reports on the steps and progress to implementation; all in the effort to effectively support the emergency response community as hydrogen infrastructure develops and FCVs are leased or sold.
Ia-HySafe Standard Benchmark Exercise Sbep-V21- Hydrogen Release and Accumulation within a Non-Ventilated Ambient Pressure Garage at Low Release Rates
Sep 2011
Publication
The successful Computational Fluid Dynamics (CFD) benchmarking activity originally started within the EC-funded Network of Excellence HySafe (2004-2009) continues within the research topics of the recently established “International Association of Hydrogen Safety” (IA-HySafe). The present contribution reports the results of the standard benchmark problem SBEP-V21. Focus is given to hydrogen dispersion and accumulation within a non-ventilated ambient pressure garage both during the release and post-release periods but for very low release rates as compared to earlier work (SBEP-V3). The current experiments were performed by CEA at the GARAGE facility under highly controlled conditions. Helium was vertically released from the centre of the 5.76 m (length) x 2.96 m (width) x 2.42 m (height) facility 22 cm from the floor from a 29.7 mm diameter opening at a volumetric rate of 18 L/min (0.027 g/s equivalent hydrogen release rate compared to 1 g/s for SBEP-V3) and for a period of 3740 seconds. Helium concentrations were measured with 57 catharometric sensors at various locations for a period up to 1.1 days. The simulations were performed using a variety of CFD codes and turbulence models. The paper compares the results predicted by the participating partners and attempts to identify the reasons for any observed disagreements.
Numerical Simulation of Diverging Detonation in Hydrogen Air Mixtures
Oct 2015
Publication
Propagation and stability of diverging cylindrical detonation in hydrogen air mixture is numerically simulated and the mechanism of the transverse waves is analysed. For the numerical modelling a new solver based on compressible transient reactive Navier–Stokes equations is developed which can the simulate detonation propagation and extinction in hydrogen-air mixture. A single step reaction mechanism is tuned to ensure the detonation and deflagration properties (in case of detonation failure) can be simulated accurately. The solver is used for modelling various detonation scenarios in particular cylindrical diverging-detonations because most of accidental industrial detonations start from a spark and then a diverging-detonation propagates outwards. The diverging detonation its cellular structure and adoption with the increased surface area at the detonation front as well as interactions with obstacles leading to detonation failure and re-initiation are studied.
Numerical Simulation of Deflagration-to-detonation Transition in Hydrogen-air Mixtures with Concentration Gradients
Oct 2015
Publication
Flame acceleration in inhomogeneous combustible gas mixture has largely been overlooked despite being relevant to many accidental scenarios. The present study aims to validate our newly developed density-based solver ExplosionFoam for flame acceleration and deflagration-to-detonation transition. The solver is based on the open source computational fluid dynamics (CFD) platform OpenFOAM®. For combustion it uses the hydrogen-air single-step chemistry and the corresponding transport coefficients developed by the authors. Numerical simulations have been conducted for the experimental set up of Ettner et al. [1] which involves flame acceleration and DDT in both homogeneous hydrogen-air mixture as well as an inhomogeneous mixture with concentration gradients in an obstucted channel. The predictions demonstrate good quantitative agreement with the experimental measurements in flame tip position speed and pressure profiles. Qualitatively the numerical simulations reproduce well the flame acceleration and DDT phenomena observed in the experiment. The results have shown that in the computed cases DDT is induced by the interaction of the precursor inert shock wave with the wall close to high hydrogen concentration rather than with the obstacle. Some vortex pairs appear ahead of the flame due to the interaction between the obstacles and the gas flow caused by combustion-induced expansion but they soon disappear after the flame passes through them. Hydrogen cannot be completely consumed especially in the fuel rich region. This is of additional safety concern as the unburned hydrogen can potentially re-ignite once more fresh air is available in an accidental scenario causing subsequent explosions. The results demonstrate the potential of the newly developed density based solver for modelling flame acceleration and DDT in both homogeneous/inhomogeneous hydrogen-air mixture. Further validation needs to be carried out for other mixtures and large-scale cases.
Modelling and Simulation of High-pressure Hydrogen Jets Using H2FC European Cyber-laboratory
Oct 2015
Publication
The Hydrogen and Fuel Cell (H2FC) European research infrastructure cyber-laboratory is a software suite containing ‘modelling’ and ‘engineering’ tools encompassing a wide range of H2FC processes and systems. One of the core aims of the H2FC Cyber-laboratory has been the creation of a state-of-the-art hydrogen CFD modelling toolbox. This paper describes the implementation and validation of this new CFD modelling toolbox in conjunction with a selection of the available ‘Safety’ engineering tools to analyse a high pressure hydrogen release and dispersion scenario. The experimental work used for this validation was undertaken by Shell and the Health and Safety Laboratory (UK). The overall goal of this work is to provide and make readily available a Cyber-laboratory that will be worth maintaining after the end of the H2FC project for the benefit of both the FCH scientific community and industry. This paper therefore highlights how the H2FC Cyber-laboratory which is offered as an open access platform can be used to replicate and analyse real-world scenarios using both numerical engineering tools and through the implementation of CFD modelling techniques.
Safe Operation of Combined Cycle Gas Turbine and Gas Engine Systems Using Hydrogen Rich Fuels
Oct 2015
Publication
This paper describes work performed by a consortium led by the UK Health and Safety Laboratory(HSL)to identify the safe operating conditions for combined cycle power generating systems running on high hydrogen fuels. The work focuses on hydrogen and high hydrogen syngas and biogas waste-stream fuel mixtures which may prove hazardous in the event of a turbine or engine flame out resulting in a flammable fuel mixture entering the hot exhaust system and igniting. The paper describes the project presenting some initial results from this work including the development of large scale experimental facilities on the550 acre HSL site near Buxton Derbyshire UK. It describes the large scale experimental facility which utilises the exhaust gas from a Rolls-Royce Viper jet-engine (converted to run on butane) feeding into a 12 m long 0.60 m diameter instrumented tube at a pre-combustion velocity of 22 m/s. A variable geometry simulated heat exchanger with a 40 %2blockage ratio is present in the tube. Flammable mixtures injected into the tube close to the Viper outlet together with make-up oxygen are then ignited. Extensive optical ionisation temperature and pressure sensors are employed along the length of the tube to measure the pressures and flame speeds resulting from the combustion event. Some preliminary results from the test programme are discussed including deflagration to detonation transitions at high equivalence ratios.
A Comparison Exercise on the CFD Detonation Simulation in Large Scale Confined Volumes
Sep 2009
Publication
The use of hydrogen as an energy carrier is going to widen exponentially in the next years. In order to ensure the public acceptance of the new fuel not only the environmental impact has to be excellent but also the risk management of its handling and storage must be improved. As a part of modern risk assessment procedure CFD modeling of the accident scenario development must provide reliable data on the possible pressure loads resulted from explosion processes. The expected combustion regimes can be ranged from slow flames to deflagration-to-detonation transition and even to detonation. In the last case the importance of the reliability of simulation results is particularly high since detonation is usually considered as a worst case state of affairs. A set of large-scale detonation experiments performed in Kurchatov Institute at RUT facility was selected as benchmark. RUT has typical industry-relevant characteristic dimensions. The CFD codes possibilities to correctly describe detonation in mixtures with different initial and boundary conditions were surveyed. For the modeling two detonation tests HYD05 and HYD09 were chosen; both tests were carried out in uniform hydrogen/air mixtures; first one with concentration of 20.0% vol. and the second one with 25.5% vol. In the present exercise three CFD codes using a number of different models were used to simulate these experiments. A thorough inter-comparison between the CFD results including codes models and obtained pressure predictions was carried out and reported. The results of this inter comparison should provide a solid basis for the further code development and detonation models’ validation thus improving CFD predictive capabilities.
Hydrogen Venting Under Variable Flow Conditions
Sep 2011
Publication
Safety distances for hydrogen plumes are currently derived using models developed for hydrocarbon releases. It is well known that hydrogen behaves in a significantly different manner to that of hydrocarbons when released to atmosphere. There are two main aspects involved with the development of safety distances for credible hydrogen releases; the intensity of the thermal radiation from such a plume should it be ignited and the distance downwind from the release point to the point where a flammable mixture with air no longer exists. A number of distinct areas of venting behaviour were investigated; Thermal radiation from ignited plumes from vertical open ended vent pipes Far field radiation measurements for direct comparison with models Thermal radiation from ignited plumes from vertical vent pipes terminating in a T-piece Thermal radiation measurements from ignited hydrogen with a 45 vent termination Hydrogen concentration measurements with a T-piece.
Analysis of Wind to Hydrogen Production and Carbon Capture Utilisation and Storage Systems for Novel Production of Chemical Energy Carriers
Apr 2022
Publication
As the offshore energy landscape transitions to renewable energy useful decommissioned or abandoned oil and gas infrastructure can be repurposed in the context of the circular economy. Oil and gas platforms for example offer opportunity for hydrogen (H2) production by desalination and electrolysis of sea water using offshore wind power. However as H2 storage and transport may prove challenging this study proposes to react this H2 with the carbon dioxide (CO2) stored in depleted reservoirs. Thus producing a more transportable energy carriers like methane or methanol in the reservoir. This paper presents a novel thermodynamic analysis of the Goldeneye reservoir in the North Sea in Aspen Plus. For Goldeneye which can store 30 Mt of CO2 at full capacity if connected to a 4.45 GW wind farm it has the potential to produce 2.10 Mt of methane annually and abate 4.51 Mt of CO2 from wind energy in the grid.
Self-ignition of Hydrogen-nitrogen Mixtures During High-pressure Release Into Air
Oct 2015
Publication
This paper demonstrates experimental and numerical study on spontaneous ignition of H2–N2 mixtures during high-pressure release into air through the tubes of various diameters and lengths. The mixtures included 5% and 10% (vol.) N2 addition to hydrogen being at initial pressure in range of 4.3–15.9 MPa. As a point of reference pure hydrogen release experiments were performed with use of the same experimental stand experimental procedure and extension tubes. The results showed that N2 addition may increase the initial pressure necessary to self-ignite the mixture as much as 2.12 or 2.85 – times for 5% and 10% N2 addition respectively. Additionally simulations were performed with use of Cantera code (0-D) based on the ideal shock tube assumption and with the modified KIVA3V code (2-D) to establish the main factors responsible for ignition and sustained combustion during the release.
Integration of Experimental Facilities: A Joint Effort for Establishing a Common Knowledge Base in Experimental Work on Hydrogen Safety
Sep 2009
Publication
With regard to the goals of the European HySafe Network research facilities are essential for the experimental investigation of relevant phenomena for testing devices and safety concepts as well as for the generation of validation data for the various numerical codes and models. The integrating activity ‘Integration of Experimental Facilities (IEF)’ has provided basic support for jointly performed experimental work within HySafe. Even beyond the funding period of the NoE HySafe in the 6th Framework Programme IEF represents a long lasting effort for reaching sustainable integration of the experimental research capacities and expertise of the partners from different research fields. In order to achieve a high standard in the quality of experimental data provided by the partners emphasis was put on the know-how transfer between the partners. The strategy for reaching the objectives consisted of two parts. On the one hand a documentation of the experimental capacities has been prepared and analysed. On the other hand a communication base has been established by means of biannual workshops on experimental issues. A total of 8 well received workshops has been organised covering topics from measurement technologies to safety issues. Based on the information presented by the partners a working document on best practice including the joint experimental knowledge of all partners with regard to experiments and instrumentation was created. Preserving the character of a working document it was implemented in the IEF wiki website which was set up in order to provide a central communication platform. The paper gives an overview of the IEF network activities over the last 5 years.
Pressure Effects of an Ignited Release from Onboard Storage in a Garage with a Single Vent
Sep 2017
Publication
This work is driven by the need to understand the hazards resulting from the rapid ignited release of hydrogen from onboard storage tanks through a thermally activated pressure relief device (TPRD) inside a garage-like enclosure with low natural ventilation i.e. the consequences of a jet fire which has been immediately ignited. The resultant overpressure is of particular interest. Previous work [1] focused on an unignited release in a garage with minimum ventilation. This initial work demonstrated that high flow rates of unignited hydrogen through a thermally activated pressure relief device (TPRD) in ventilated enclosures with low air change per hour can generate overpressures above the limit of 10- 15 kPa which a typical civil structure like a garage could withstand. This is due to the pressure peaking phenomenon. Both numerical and phenomenological models were developed for an unignited release and this has been recently validated experimentally [2]. However it could be expected that the majority of unexpected releases through a TPRD may be ignited; leading to even greater overpressures and to date whilst there has been some work on fires in enclosures the pressure peaking phenomenon for an ignited release has yet to be studied or compared with that for an equivalent unignited release. A numerical model for ignited releases in enclosures has been developed and computational fluid dynamics has then been used to examine the pressure dynamics of an ignited hydrogen release in a real scale garage. The scenario considered involves a high mass flow rate release from an onboard hydrogen storage tank at 700 bar through a 3.34 mm diameter orifice representing the TPRD in a small garage with a single vent equivalent in area to small window. It is shown that whilst this vent size garage volume and TPRD configuration may be considered “safe” from overpressures in the event of an unignited release the overpressure resulting from an ignited release is two orders of magnitude greater and would destroy the structure. Whilst further investigation is needed the results clearly indicate the presence of a highly dangerous situation which should be accounted for in regulations codes and standards. The hazard relates to the volume of hydrogen released in a given timeframe thus the application of this work extends beyond TPRDs and is relevant where there is a rapid ignited release of hydrogen in an enclosure with limited ventilation.
Guidelines and Recommendations for Indoor Use of Fuel Cells and Hydrogen Systems
Oct 2015
Publication
Deborah Houssin-Agbomson,
Simon Jallais,
Elena Vyazmina,
Guy Dang-Nhu,
Gilles Bernard-Michel,
Mike Kuznetsov,
Vladimir V. Molkov,
Boris Chernyavsky,
Volodymyr V. Shentsov,
Dmitry Makarov,
Randy Dey,
Philip Hooker,
Daniele Baraldi,
Evelyn Weidner,
Daniele Melideo,
Valerio Palmisano,
Alexandros G. Venetsanos,
Jan Der Kinderen and
Béatrice L’Hostis
Hydrogen energy applications often require that systems are used indoors (e.g. industrial trucks for materials handling in a warehouse facility fuel cells located in a room or hydrogen stored and distributed from a gas cabinet). It may also be necessary or desirable to locate some hydrogen system components/equipment inside indoor or outdoor enclosures for security or safety reasons to isolate them from the end-user and the public or from weather conditions.<br/>Using of hydrogen in confined environments requires detailed assessments of hazards and associated risks including potential risk prevention and mitigation features. The release of hydrogen can potentially lead to the accumulation of hydrogen and the formation of a flammable hydrogen-air mixture or can result in jet-fires. Within Hyindoor European Project carried out for the EU Fuel Cells and Hydrogen Joint Undertaking safety design guidelines and engineering tools have been developed to prevent and mitigate hazardous consequences of hydrogen release in confined environments. Three main areas are considered: Hydrogen release conditions and accumulation vented deflagrations jet fires and including under-ventilated flame regimes (e.g. extinguishment or oscillating flames and steady burns). Potential RCS recommendations are also identified.
Operation of UK Gas Appliances with Hydrogen Blended Natural Gas
Sep 2019
Publication
The HyDeploy project has undertaken a programme of work to assess the effect of hydrogen addition on the safety and performance of gas appliances and installations. A representative set of eight appliances have been assessed in laboratory experiments with a range of test gases that explored high and low Wobbe Number and hydrogen concentrations up to 28.4 % mol/mol. Tests have demonstrated that the addition of hydrogen does not affect the key hazard areas of CO production light back flame out or the operation of flame failure devices. It was identified that for some designs of gas fire appliances the operation of the oxygen depletion sensors may be affected by the addition of hydrogen and further studies in this area are planned. A laboratory based study was supported by an onsite testing programme where 133 installations were assessed for gas tightness appliance combustion safety and operation against normal line natural gas G20 reference gas and two hydrogen blended gases. Where installations were gas tight for natural gas analysis showed that no additional leakage occurred with hydrogen blended gases. There were also no issues identified with the combustion performance of appliances and onsite results were in line with those obtained in the laboratory testing programme.
Computational Analysis of Hydrogen Diffusion in Polycrystalline Nickel and Anisotropic Polygonal Micro, Nano Grain Size Effects
Sep 2013
Publication
The effect of irregular polygonal grain size and random grain boundary on hydrogen diffusion in polycrystalline nickel is investigated. Hydrogen diffusion behavior in micropolycrystalline nickel is compared with that in nanopolycrystalline nickel through numerical analysis. The two dimensional computational finite element microstructural and nanostructural analyses are based on Fick's law corresponding to heterogeneous polycrystalline model geometry. The heterogeneous polycrystalline model consists of random irregular polygonal grains. These grains are divided into internal grain and grain boundary regions the size of which is determined from the grain size. The computational analysis results show that hydrogen diffusion in nanostructural irregular polycrystalline nickel is higher in magnitude than the microstructural irregular polycrystalline nickel. However models of voids traps and micro and nano clustered grains are yet to be included.
Vented Hydrogen Deflagrations in an ISO Container
Sep 2017
Publication
The commercial deployment of hydrogen will often involve housing portable hydrogen fuel cell power units in 20-foot or 40-foot shipping containers. Due to the unique properties of hydrogen hazards identification and consequence analysis is essential to safe guard the installations and design measures to mitigate potential hazards. In the present study the explosion of a premixed hydrogen-air cloud enclosed in a 20-foot container of 20’ x 8’ x 8’.6” is investigated in detail numerically. Numerical simulations have been performed using HyFOAM a dedicated solver for vented hydrogen explosions developed in-house within the frame of the open source computational fluid dynamics (CFD) code OpenFOAM toolbox. The flame wrinkling combustion model is used for modelling turbulent deflagrations. Additional sub-models have been added to account for lean combustion properties of hydrogen-air mixtures. The predictions are validated against the recent experiments carried out by Gexcon as part of the HySEA project supported by the Fuel Cells and Hydrogen 2 Joint Undertaking (FCH 2 JU) under the Horizon 2020 Framework Programme for Research and Innovation. The effects of congestion within the containers on the generated overpressures are also investigated.
Socio-economic Analysis and Quantitative Risk Assessment Methodology for Safety Design of Onboard Storage Systems
Sep 2017
Publication
Catastrophic rupture of onboard hydrogen storage in a fire is a safety concern. Different passive e.g. fireproofing materials the thermally activated pressure relief device (TPRD) and active e.g. initiation of TPRD by fire sensors safety systems are being developed to reduce hazards from and associated risks of high-pressure hydrogen storage tank rupture in a fire. The probability of such low-frequency highconsequences event is a function of fire resistance rating (FRR) i.e. the time before tank without TPRD ruptures in a fire the probability of TPRD failure etc. This safety issue is “confirmed” by observed recently cases of CNG tanks rupture due to blocked or failed to operate TPRD etc. The increase of FRR by any means decreases the probability of tank rupture in a fire particularly because of fire extinction by first responders on arrival at an accident scene.<br/>This study of socio-economic effects of safety applies a quantitative risk assessment (QRA) methodology to an example of hydrogen vehicles with passive tank protection system on roads in London.<br/>The risk is defined here through the cost of human loss per fuel cell hydrogen vehicle (FCHV) fire accident and fatality rate per FCHV per year. The first step in the methodology is the consequence analysis based on validated deterministic engineering tools to estimate the main identified hazards: overpressure in the blast wave at different distances and the thermal hazards from a fireball in the case of catastrophic tank rupture in a fire. The population can be exposed to slight injury serious injury and fatality after an accident. These effects are determined based on criteria by Health and Safety Executive (UK) and a cost metrics is applied to the number of exposed people in these three harm categories to estimate the cost per an accident. The second step in the methodology is either the frequency or the probability analysis. Probabilities of a vehicle fire and failure of the thermally activated pressure relief device are taken from published sources. A vulnerability probit function is employed to calculate the probability of emergency operations’ failure to prevent tank rupture as a function of a storage tank FRR and time of fire brigade arrival. These later results are integrated to estimate the tank rupture frequency and fatality rate. The risk is presented as a function of fire resistance rating.<br/>The QRA methodology allows to calculate the cost of human loss associated with an FCHV fire accident and demonstrates how the increase of FRR of onboard storage as a safety engineering measure would improve socio-economics of FCHV deployment and public acceptance of the technology.
Mn-based Borohydride Synthesized by Ball-milling KBH4 and MnCl2 for Hydrogen Storage
Dec 2013
Publication
In this work a mixed-cation borohydride (K2Mn(BH4)4) with P21/n structure was successfully synthesized by mechanochemical milling of the 2KBH4–MnCl2 sample under argon. The structural and thermal decomposition properties of the borohydride compounds were investigated using XRD Raman spectroscopy FTIR TGA-MS and DSC. Apart from K2Mn(BH4)4 the KMnCl3 and unreacted KBH4 compounds were present in the milled 2KBH4–MnCl2. The two mass loss regions were observed for the milled sample: one was from 100 to 160 °C with a 1.6 ± 0.1 wt% loss (a release of majority hydrogen and trace diborane) which was associated with the decomposition of K2Mn(BH4)4 to form KBH4 boron and finely dispersed manganese; the other was from 165 to 260 °C with a 1.9 ± 0.1 wt% loss (only hydrogen release) which was due to the reaction of KBH4 with KMnCl3 to give KCl boron finely dispersed manganese. Simultaneously the formed KCl could dissolve in KBH4 to yield a K(BH4)xCl1−x solid solution and also react with KMnCl3 to form a new compound K4MnCl6.
Numerical Modelling of Flame Acceleration and Transition to Detonation in Hydrogen & Air Mixtures with Concentration Gradient
Sep 2017
Publication
Hydrogen gas explosions in homogeneous reactive mixtures have been widely studied both experimentally and numerically. However in practice combustible mixtures are usually inhomogeneous and subject to both vertical and horizontal concentration gradients. There is still very limited understanding of the hydrogen explosion characteristics in such situations. The present numerical investigation aims to study the effect of mixture concentration gradient on the process of Deflagration to Detonation Transition and the effect of different hydrogen concentration gradient in the obstructed channel of hydrogen/air mixtures. An obstructed channel with 30% blockage ratio (BR=30) and three different average hydrogen concentrations of 20 % 30% and 35% have been considered using a specially developed density-based solver within the OpenFOAM toolbox. A high-resolution grid was built with the using adaptive mesh refinement technique providing 10 grid points in half reaction length. The numerical results are in reasonably good agreement with the experimental observations [1]. These studies show that the concentration gradient has a considerable effect on the accelerated flame tip speed and the location of transition to detonation in the obstructed channel. In all the three cases the first localised explosion occurred near the bottom wall where the shock and flame interacted and the mixture was most lean; and the second localised explosion occurred at the top wall due to the reflection of shock and flame front and later develops to form the leading detonation wave. The increase in the fuel concentration was found to increase the flame acceleration (FA) and having a faster transition to detonation.
Safety Issues of the Liquefaction, Storage and Transportation of Liquid Hydrogen
Sep 2013
Publication
The objectives of the IDEALHY project which receives funding from the European Union’s 7th Framework Programme (FP7/2007-2013) for the Fuel Cells and Hydrogen Joint Technology Initiative under grant agreement No. 278177 are to design a novel process that will significantly increase the efficiency of hydrogen liquefaction and be capable of delivering liquid hydrogen at a rate that is an order of magnitude greater than current plants. The liquid hydrogen could then be delivered to refueling stations in road tankers. As part of the project the safety management of the new large scale process and the transportation of liquid hydrogen by road tanker into urban areas are being considered. Effective safety management requires that the hazards are identified and well understood. This paper describes the scope of the safety work within IDEALHY and presents the output of the work completed so far. Initially a review of available experimental data on the hazards posed by releases of liquid hydrogen was undertaken which identified that generally there is a dearth of data relevant to liquid hydrogen releases. Subsequently HAZIDs have been completed for the new liquefaction process storage of liquid hydrogen and its transportation by road. This included a review of incidents relevant to these activities. The principal causes of the incidents have been analysed. Finally the remaining safety work for the IDEALHY project is outlined.
Calibration of Hydrogen Coriolis Flow Meters Using Nitrogen and Air and Investigation of the Influence of Temperature on Measurement Accuracy
Feb 2021
Publication
The performance of four Coriolis flow meters designed for use in hydrogen refuelling stations was evaluated with air and nitrogen by three members of the MetroHyVe JRP consortium; NEL METAS and CESAME EXADEBIT.<br/>A wide range of conditions were tested overall with gas flow rates ranging from (0.05–2) kg/min and pressures ranging from (20–86) bar. The majority of tests were conducted at nominal pressures of either 20 bar or 40 bar in order to match the density of hydrogen at 350 bar and 20 °C or 700 bar and −40 °C. For the conditions tested pressure did not have a noticeable influence on meter performance.<br/>When the flow meters were operated at ambient temperatures and within the manufacturer's recommended flow rate ranges errors were generally within ±1%. Errors within ±0.5% were achievable for the medium to high flow rates.<br/>The influence of temperature on meter performance was also studied with testing under both stable and transient conditions and temperatures as low as −40 °C.<br/>When the tested flow meters were allowed sufficient time to reach thermal equilibrium with the incoming gas temperature effects were limited. The magnitude and spread of errors increased but errors within ±2% were achievable at moderate to high flow rates. Conversely errors as high as 15% were observed in tests where logging began before temperatures stabilised and there was a large difference in temperature between the flow meter and the incoming gas.<br/>One of the flow meters tested with nitrogen was later installed in a hydrogen refuelling station and tested against the METAS Hydrogen Field Test Standard (HFTS). Under these conditions errors ranged from 0.47% to 0.91%. Testing with nitrogen at the same flow rates yielded errors of −0.61% to −0.82%.
Hydrogen and Decarbonisation of Gas- False Dawn or Silver Bullet?
Mar 2020
Publication
This Insight continues the OIES series considering the future of gas. The clear message from previous papers is that on the (increasingly certain) assumption that governments in major European gas markets remain committed to decarbonisation targets the existing natural gas industry is under threat. It is therefore important to develop a decarbonisation narrative leading to a low- or zero-carbon gas implementation plan.
Previous papers have considered potential pathways for gas to decarbonise specifically considering biogas and biomethane and power-to-gas (electrolysis) . This paper goes on to consider the potential for production transport and use of hydrogen in the decarbonising energy system. Previous papers predominately focused on Europe which has been leading the way in decarbonisation. Hydrogen is now being considered more widely in various countries around the world so this paper reflects that wider geographical coverage.
Since the term ‘hydrogen economy’ was first used in 1970 there have been a number of ‘false dawns’ with bold claims for the speed of transition to hydrogen. This Insight argues that this time for some applications at least there are grounds for optimism about a future role for decarbonised hydrogen but the lesson from history is that bold claims need to be examined carefully and treated with some caution. There are no easy or low-cost solutions to decarbonisation of the energy system and this is certainly the case for possible deployment of low-carbon hydrogen. A key challenge is to demonstrate the technical commercial economic and social acceptability of various possibilities at scale. Hydrogen will certainly play a role in decarbonisation of the energy system although the size of the role may be more limited than envisaged in some more optimistic projections.
Open document on OIES website
Previous papers have considered potential pathways for gas to decarbonise specifically considering biogas and biomethane and power-to-gas (electrolysis) . This paper goes on to consider the potential for production transport and use of hydrogen in the decarbonising energy system. Previous papers predominately focused on Europe which has been leading the way in decarbonisation. Hydrogen is now being considered more widely in various countries around the world so this paper reflects that wider geographical coverage.
Since the term ‘hydrogen economy’ was first used in 1970 there have been a number of ‘false dawns’ with bold claims for the speed of transition to hydrogen. This Insight argues that this time for some applications at least there are grounds for optimism about a future role for decarbonised hydrogen but the lesson from history is that bold claims need to be examined carefully and treated with some caution. There are no easy or low-cost solutions to decarbonisation of the energy system and this is certainly the case for possible deployment of low-carbon hydrogen. A key challenge is to demonstrate the technical commercial economic and social acceptability of various possibilities at scale. Hydrogen will certainly play a role in decarbonisation of the energy system although the size of the role may be more limited than envisaged in some more optimistic projections.
Open document on OIES website
HyDeploy Report: Gas Characteristics (Leakage, Dispersion and Flammability)
Sep 2018
Publication
The Health and Safety Laboratory (HSL) has carried out an investigation into the gas characteristics that may influence the leakage dispersion and flammability hazards associated with blended natural gas-hydrogen mixtures containing up to 20 % mol/mol hydrogen. The work was carried out under contract to Cadent & Northern Gas Networks as part of the HyDeploy project which was commissioned to investigate the feasibility of using blended hydrogen-natural gas mixtures in UK mains gas distribution networks.
Under the HyDeploy project a demonstration scheme is being carried out at Keele University in which it is planned to inject up to 20 % mol/mol hydrogen. Keele is Britain’s largest campus university and an ideal test site for a demonstration scheme as its gas distribution network is largely independent of the national gas network but still subject to UK gas industry procedural controls. It is anticipated that a successful demonstration scheme will facilitate the use of blended natural gas-hydrogen mixtures throughout the UK leading to significant reductions in carbon dioxide emissions. The project is being led by Cadent & Northern Gas Networks and also involves ITM Power Progressive Energy Keele University and HSL in consortium.
Click the supplements tab to view the other documents in this report
Under the HyDeploy project a demonstration scheme is being carried out at Keele University in which it is planned to inject up to 20 % mol/mol hydrogen. Keele is Britain’s largest campus university and an ideal test site for a demonstration scheme as its gas distribution network is largely independent of the national gas network but still subject to UK gas industry procedural controls. It is anticipated that a successful demonstration scheme will facilitate the use of blended natural gas-hydrogen mixtures throughout the UK leading to significant reductions in carbon dioxide emissions. The project is being led by Cadent & Northern Gas Networks and also involves ITM Power Progressive Energy Keele University and HSL in consortium.
Click the supplements tab to view the other documents in this report
HyDeploy Report: Quantitative Risk Assessment of the Field Trial of Hydrogen Injection into the Keele University Gas Distribution System
Oct 2018
Publication
A consortium comprising Cadent Northern Gas Networks Keele University Health and Safety Laboratory ITM Power and Progressive Energy is undertaking the research project HyDeploy. The project funded under the UK Network Innovation Competition scheme aims to demonstrate that natural gas containing levels of hydrogen beyond the upper limit set out in Schedule 3 of in the Gas Safety (Management) Regulations (GSMR) can be distributed and utilised safely and efficiently in a section of the UK distribution network. It will conclude with a field trial in which hydrogen will be injected into part of a private gas distribution system owned and operated by Keele University. Dave Lander Consulting Limited and Kiwa Ltd are providing technical support to the HyDeploy project and this report presents the results of Quantified Risk Assessment (QRA) for the proposed field trial. The QRA is intended to support an application by Keele University for exemption from the legal requirement to only convey gas that is compliant with the requirements of Schedule 3 of the GSMR. The QRA is aimed at demonstrating that the field trial will not result in a material increase in risk to persons within Keele University affected by the proposed field trial.<br/>Check the supplements tab for the other documents from this report
Zero-In on NI-Heat Exploring Pathways Towards Heat Decarbonisation in Northern Ireland
Jul 2020
Publication
Northern Ireland has achieved its 2020 targets in the electricity sector ahead of time with 46.8% of its electricity demand supplied by renewable generators. When it comes to heat the progress is less impressive – 68% of domestic heating is provided by oil and only around 2500 customers use low carbon heat generators in their homes. In addition 22% of consumers live in fuel poverty. Fuel poverty support programmes still propose the replacement of old oil boilers with new models or with gas boilers where a connection to the grid is possible.<br/>Failure of the commercial RHI scheme and the knock-on effect of the closure of the domestic RHI scheme caused significant damage to the industry and to the reputation of low carbon heat technologies leaving NI consumers without any explicit supporting mechanisms for low carbon heat supply. Decreases in carbon emissions from the heat sector are mainly achieved through switching from oil to gas heating. Gas infrastructure is under development in NI and promises to reach 60% of customers by 2022.
H21- Consumer and Gas Network Metering Phase 1: A Review of the Worldwide Hydrogen Meter Technologies and Applications
Feb 2018
Publication
There is no inherent property of hydrogen that makes it unsuitable for metering at distribution or transmission pressures. Towns gas containing large percentages of hydrogen was used for many years in the UK and continues to be in use in Hong Kong and Singapore. Many manufacturers sell their ordinary mechanical gas meters as suitable for hydrogen in a laboratory or industrial situation; unfortunately lack of demand has meant that none of these meters seem to have certified under appropriate metering regulations for gaseous hydrogen (e.g. the Measuring Instruments Directive)<br/>Some of the more sophisticated modern inferential meters (e.g. thermal or ultrasonic) currently designed specifically for natural gas (or LPG if suitably calibrated) are likely to unsuitable for repurposing directly to hydrogen but none of the problems appear fundamental or insuperable. The largest potential hurdle probably surrounds the physical size of current meters. A hydrogen appliance will consume about 3.3 more hydrogen than natural gas (on a volumetric basis) and using traditional designs this would have been measured through a meter probably too large to fit within an existing meter box. Unless unsolved such an increase in size would add materially to any hydrogen re-purposing programme.<br/>The meter trade thus need to be challenged to come up with a hydrogen meter that is the same physical size as a natural gas meter on a power rating basis (i.e. in kW). Ultrasonic and thermal mass meters should be included in the necessary Research and Development programme.<br/>A meter test programme is suggested that will provide evidence to meter manufacturers that the metering of hydrogen is not inherently difficult and thus convince them to make the necessary investments and/or approach the GDNO’s for assistance with such a programme.
HyDeploy Report: Keele Information
Jun 2018
Publication
Keele University was chosen as the site for the HyDeploy project as it was seen as the site offered a high degree of control regarding safety functions high availability of operational data and minimal supply chain interfaces given that Keele University is the supplier transporter and distributer of natural gas at the site. The site was offered to the project as a living laboratory in line with the university's ambition to be at the forefront of energy innovation through the Smart Energy Network Demonstrator (SEND). Evidenced within this report is the supporting data that confirms the rationale for selecting Keele University and the necessary data to profile the section of the gas network which hydrogen will be injected into. The gas network at Keele University is segregated via the governor stations which regulate pressure within the network. The section of network which has been chosen for the HyDeploy project is the G3 network which is regulated by the G3 governor.
Hydrogen Gas Quality for Gas Network Injection: State of the Art of Three Hydrogen Production Methods
Jun 2021
Publication
The widescale distribution of hydrogen through gas networks is promoted as a viable and cost-efficient option for optimising its application in heat industry and transport. It is a key step towards achieving decarbonisation targets in the UK. A key consideration before the injection of hydrogen into the UK gas networks is an assessment of the difference in hydrogen contaminants presence from different production methods. This information is essential for gas regulation and for further purification requirements. This study investigates the level of ISO 14687 Grade D contaminants in hydrogen from steam methane reforming proton exchange membrane water electrolysis and alkaline electrolysis. Sampling and analysis of hydrogen were carried out by the National Physical Laboratory following ISO 21087 guidance. The results of analysis indicated the presence of nitrogen in hydrogen from electrolysis and water carbon dioxide and particles in all samples analysed. The contaminants were at levels below or at the threshold limits set by ISO 14687 Grade D. This indicates that the investigated production methods are not a source of contaminants for the eventual utilisation of hydrogen in different applications including fuel cell electric vehicles (FCEV’s). The gas network infrastructure will require a similar analysis to determine the likelihood of contamination to hydrogen gas.
Fuel Cell Industry Review 2019 - The Year of the Gigawatt
Jan 2020
Publication
E4tech’s 6th annual review of the global fuel cell industry is now available here. Using primary data straight from the main players and free to download it quantifies shipments by fuel cell type by application and by region of deployment and summarises industry developments over the year.
2019 saw shipments globally grow significantly to 1.1 GW. Numbers grew slightly to around 70000 units. The growth in capacity came mainly from cars Hyundai with its NEXO and Toyota with its Mirai together accounting for around two-thirds of shipments by capacity. Unit numbers are still dominated by Japan’s ene-Farm cogeneration appliances at around 45000 shipments. Large numbers of trucks and buses are now manufactured and shipped in China though numbers deployed are limited by the availability of refuelling infrastructure. But growth in China is uncertain as policy changes are under discussion.
2020 looks like it will be an even bigger year again dominated by Hyundai and Toyota. The Japanese fuel cell market is expected also to grow partly on the back of the Tokyo ‘Hydrogen Olympics’. Korea is another growth story buoyed by its latest roadmap which aims to shift large swathes of its economy to hydrogen energy by 2040. Elsewhere much of the supply chain development is in heavy duty vehicles and big supply chain players like Cummins Weichai and Michelin are making significant investments.
2019 saw shipments globally grow significantly to 1.1 GW. Numbers grew slightly to around 70000 units. The growth in capacity came mainly from cars Hyundai with its NEXO and Toyota with its Mirai together accounting for around two-thirds of shipments by capacity. Unit numbers are still dominated by Japan’s ene-Farm cogeneration appliances at around 45000 shipments. Large numbers of trucks and buses are now manufactured and shipped in China though numbers deployed are limited by the availability of refuelling infrastructure. But growth in China is uncertain as policy changes are under discussion.
2020 looks like it will be an even bigger year again dominated by Hyundai and Toyota. The Japanese fuel cell market is expected also to grow partly on the back of the Tokyo ‘Hydrogen Olympics’. Korea is another growth story buoyed by its latest roadmap which aims to shift large swathes of its economy to hydrogen energy by 2040. Elsewhere much of the supply chain development is in heavy duty vehicles and big supply chain players like Cummins Weichai and Michelin are making significant investments.
A Comparative Review of Alternative Fuels for the Maritime Sector: Economic, Technology, and Policy Challenges for Clean Energy Implementation
Oct 2021
Publication
Global maritime transportation is responsible for around 3% of total anthropogenic green‐ house gas emissions and significant proportions of SOx NOx and PM emissions. Considering the predicted growth in shipping volumes to 2050 greenhouse gas emissions from ships must be cut by 75–85% per ton‐mile to meet Paris Agreement goals. This study reviews the potential of a range of alternative fuels for decarbonisation in maritime. A systematic literature review and information synthesis method was applied to evaluate fuel characteristics production pathways utilization technologies energy efficiency lifecycle environmental performance economic viability and cur‐ rent applicable policies. Alternative fuels are essential to decarbonisation in international shipping. However findings suggest there is no single route to deliver the required greenhouse gas emissions reductions. Emissions reductions vary widely depending on the production pathways of the fuel. Alternative fuels utilising a carbon‐intensive production pathway will not provide decarbonisation instead shifting emissions elsewhere in the supply chain. Ultimately a system‐wide perspective to creating an effective policy framework is required in order to promote the adoption of alternative propulsion technologies.
Investing in Hydrogen: Ready, Set, Net Zero
Sep 2020
Publication
Achieving the UK's net zero target by 2050 will be a challenge. Hydrogen can make a substantial contribution but it needs investment and policy support to establish demand increase the scale of deployment and reduce costs. The Ten Point Plan for a Green Industrial Revolution confirms the government’s commitment to drive the growth of low carbon hydrogen in the UK through a range of measures. This includes publishing its hydrogen strategy and setting out revenue mechanisms to attract private investment as well as allocating further support for hydrogen production and hydrogen applications in heating.
We have created a bespoke model to help understand the cost of hydrogen in the UK across the value chain under different pathways. Our analysis highlights areas for cost reduction and identifies factors that could make hydrogen more attractive to investors.
You can read the full report on the Deloitte website at this link
We have created a bespoke model to help understand the cost of hydrogen in the UK across the value chain under different pathways. Our analysis highlights areas for cost reduction and identifies factors that could make hydrogen more attractive to investors.
You can read the full report on the Deloitte website at this link
Hydrogen Production by Fluidized Bed Reactors: A Quantitative Perspective Using the Supervised Machine Learning Approach
Jul 2021
Publication
The current hydrogen generation technologies especially biomass gasification using fluidized bed reactors (FBRs) were rigorously reviewed. There are involute operational parameters in a fluidized bed gasifier that determine the anticipated outcomes for hydrogen production purposes. However limited reviews are present that link these parametric conditions with the corresponding performances based on experimental data collection. Using the constructed artificial neural networks (ANNs) as the supervised machine learning algorithm for data training the operational parameters from 52 literature reports were utilized to perform both the qualitative and quantitative assessments of the performance such as the hydrogen yield (HY) hydrogen content (HC) and carbon conversion efficiency (CCE). Seven types of operational parameters including the steam-to-biomass ratio (SBR) equivalent ratio (ER) temperature particle size of the feedstock residence time lower heating value (LHV) and carbon content (CC) were closely investigated. Six binary parameters have been identified to be statistically significant to the performance parameters (hydrogen yield (HY)) hydrogen content (HC) and carbon conversion efficiency (CCE) by analysis of variance (ANOVA). The optimal operational conditions derived from the machine leaning were recommended according to the needs of the outcomes. This review may provide helpful insights for researchers to comprehensively consider the operational conditions in order to achieve high hydrogen production using fluidized bed reactors during biomass gasification.
HyDeploy2: Materials Summary and Interpretation
May 2021
Publication
During the exemption application process the original report was evaluated as part of a regulatory review and responses to questions submitted for further consideration. These have been addressed in this revised version (revision 1) in the form of an addendum. The addendum includes the question raised its number and the response to it. The area of the main body of the report to which each question and response refers is indicated by square brackets and the addendum number e.g. [A1].<br/>Through analysis of the literature and results of the practical testing the susceptibility of materials present in the Winlaton trial site to hydrogen degradation has been assessed with consideration of the Winlaton operating conditions (up to 20% H2 at total blend pressures of 20 mbar – 2 bar). The aim of this report has been to determine whether there are any components which have been identified at the Winlaton trial site which could have a significantly increased risk of failure due to their exposure to hydrogen during the one year trial. Where possible direct supporting data has been used to make assessments on the likelihood of failure; in other cases the assessment was aided by collaborative expert opinion in the fields of mechanical engineering materials science and the domestic gas industry.<br/>Click on the supplements tab to view the other documents from this report
HyDeploy2: Summary of Procedures for the Trial Network
Jun 2021
Publication
The assessment of appropriate operational procedures to govern the injection of a hydrogen/natural gas blend into Northern Gas Networks’ (NGN) Winlaton gas distribution network was a key requirement of the HyDeploy2 project. To perform this assessment the review was broken down into two areas procedures upstream of the emergency control valve (owned by NGN) and procedures downstream of the Emergency Control Valve (procedures which would be performed by Gas Safe registered individuals). Assessment of the upstream procedures was led by NGN (own and carry out all upstream procedures on NGN’s gas network) and assessment of the downstream procedures was led by Blue Flame Associates (an industry expert on downstream gas procedures).<br/>Methodologies were adopted to be able to highlight procedures that could potentially be used on the Winlaton trial network during the hydrogen blended gas injection period and if they were impacted by the changing of the gas within the network from natural gas to hydrogen blended gas. This method determined that for downstream gas procedures a total of 56 gas procedures required expert review resulting in 80 technical questions to be assessed and for the upstream gas procedures a total of 80 gas procedures required expert review resulting in 266 technical questions to be assessed.<br/>The operational procedures assessment has led to a determination as to whether a change is or is not required for relevant operational procedures where a basis of concern existed with respect to the injection of hydrogen blended gas. Any requirements to modify an existing procedure has been given in this report referencing the source as to where the detailed analysis for the change/no change recommendation has been given.<br/>The assessment took into account the associated experimental and research carried out as part of the HyDeploy and HyDeploy2 projects such as the assessment of gas characteristics materials impact appliance survey of assets on the Winlaton network and impact of hydrogen blended gas on gas detection equipment references to these studies have been given accordingly to associated impacted operational procedures.<br/>The conclusion of the assessment is that for upstream gas procedures there are some operational procedures that are unchanged some that require an increase in the frequency as to how often they are performed and some procedures which require a technical modification. For downstream domestic gas procedures all procedures applicable to a domestic gas installation were deemed to not be detrimentally affected by the introduction of a 20 mol% hydrogen blend.<br/>For upstream gas procedures an appropriate training package will be built off the back of the results presented in this report and disseminated accordingly to all relevant Operatives that will be responsible for the safety operation and maintenance of the Winlaton network during the hydrogen blend injection period. For downstream gas procedures the Gas Safe community have been fully engaged and informed about the trial.<br/>Click on the supplements tab to view the other documents from this report
Investment Frameworks for Development of CCUS in the UK
Jul 2019
Publication
The CCUS Advisory Group (CAG) established in March 2019 is an industry-led group considering the critical challenges facing the development of CCUS market frameworks and providing insight into potential solutions. The CAG brings together experts from across the CCUS industry finance and legal sectors.<br/>The CAG has examined a range of business models focusing on industrial CCUS power production CO? transport and storage and hydrogen production. It has considered how the proposed business models interact in order to minimise issues such as cross-chain risk and has considered issues such as delivery capability. The conclusions of the CAG can be found in this report.
HyDeploy2 : Trial Management
May 2021
Publication
The trial management philosophy of the Winlaton trial within HyDeploy2 has been developed to enable the overall objectives of the project to be achieved; the safe demonstration of operating a Gas Distribution Network (GDN) on a blend of natural gas and hydrogen. The approach taken to develop the management philosophy of the Winlaton trial has been to continue the trial management strategies deployed for the Keele trial under HyDeploy albeit with site specific modifications where necessary. This document provides an overview of the management and governance processes associated with the trial itself.<br/>Click on the supplement tab to view the other documents from this report
North East Network & Industrial Cluster Development – Summary Report A Consolidated Summary Report by SGN & Wood
Nov 2021
Publication
In response to the global climate emergency governments across the world are aiming to lower greenhouse gas emissions to slow the damaging effects of climate change.<br/>The Scottish Government has set a target of net zero emissions by 2045. Already a global leader in renewable energy and low-carbon technology deployment Scotland’s energy landscape is set to undergo more change as it moves toward becoming carbon-neutral. Key to that change will be the transition from natural gas to zero-carbon gases like hydrogen and biomethane.<br/>Scotland’s north-east and central belt are home to some of its largest industrial carbon emitters. The sector’s reliance on natural gas means that it emits 11.9Mt of CO2 emissions per year says NECCUS: the equivalent of 2.6 million cars or roughly all the cars in Scotland. Most homes and businesses across Scotland also use natural gas for heating.<br/>Our North-East Network and Industrial Cluster project is laying the foundations for the rapid decarbonisation of this high-emitting sector. We’ve published a report outlining the practical steps needed to rapidly decarbonise a significant part of Scotland’s homes and industry. It demonstrates how hydrogen can play a leading role in delivering the Scottish Government’s target of one million homes with low carbon heat by 2030.<br/>The research published with global consulting and engineering advisor Wood sets out a transformational and accelerated pathway to 100% hydrogen for Scotland’s gas networks which you can see on the map below. It also details the feasibility of a CO2 collection network to securely capture transport and store carbon dioxide emissions deep underground.
HyDeploy2: Network Information and Maps
Jun 2021
Publication
Winlaton site was chosen as the site for the HyDeploy 2 North East trial as it was seen as the site that offered a high degree of variability with regards materials on the network size of network and statistical representation of housing. The Winlaton trial network is an estate of the wider Winlaton gas network situated in Blaydon near Gateshead. The Winlaton trial network has been isolated from the wider Winlaton gas network where it was previously supplied from and will be supplied with the blended gas from NGN’s Low Thornley gas depot with the installation of a brand-new pressure regulating district governor.<br/>The data contained within this report outlines the expected seasonal gas demand on the Winlaton trial network and the associated leakage and repair history for the network. No unusual repairs or leakage behaviour has been observed on this network. A DSEAR assessment has been conducted on the governor station ensuring ATEX compliance. The network isolation and reinforcement requirements are also given in this report highlighting the necessary actions to isolate the trial network from the wider Winlaton gas network. The NGN Safety Case outlines the risks associated with the operation of a gas grid and the ALARP mitigations developed to minimise them and what response is necessary in case such risks are realised. The existing safety case will be amended to account for the infrastructural operational and commercial changes associated with the HyDeploy 2 project. The report also contains a detailed register of all the assets on the Winlaton trial network this data set was used to inform the scientific research programme and specifically to allow an assessment to be carried out with regards to the operability of the existing and newly installed assets on the Winlaton trial network with respect to the blended gas.<br/>Click on supplement tab to view the other documents from this report
Materials for End to End Hydrogen Roadmap
Jun 2021
Publication
This report is commissioned by the Henry Royce Institute for advanced materials as part of its role around convening and supporting the UK advanced materials community to help promote and develop new research activity. The overriding objective is to bring together the advanced materials community to discuss analyse and assimilate opportunities for emerging materials research for economic and societal benefit. Such research is ultimately linked to both national and global drivers namely Transition to Zero Carbon Sustainable Manufacture Digital & Communications Circular Economy as well as Health & Wellbeing.
This paper can be download from their website
This paper can be download from their website
Homes of the Future: Unpacking Public Perceptions to Power the Domestic Hydrogen Transition
Apr 2022
Publication
Decarbonization in several countries is now linked to the prospect of implementing a national hydrogen economy. In countries with extensive natural gas infrastructure hydrogen may provide a real opportunity to decarbonize space heating. While this approach may prove technically and economically feasible in the longterm it is unclear whether consumers will be willing to adopt hydrogen-fueled appliances for heating and cooking should techno-economic feasibility be achieved. In response this paper develops an analytical framework for examining hydrogen acceptance which links together socio-technical barriers and social acceptance factors. Applying this framework the study synthesizes the existing knowledge on public perceptions of hydrogen and identifies critical knowledge gaps which should be addressed to support domestic hydrogen acceptance. The paper demonstrates that a future research agenda should account for the interactions between acceptance factors at the attitudinal socio-political market community and behavioral level. The analysis concludes that hydrogen is yet to permeate the public consciousness due to a lack of knowledge and awareness owing to an absence of information dissemination. In response consumer engagement in energy markets and stronger public trust in key stakeholders will help support social acceptance as the hydrogen transition unfolds. Affordability may prove the most critical barrier to the large-scale adoption of hydrogen homes while the disruptive impacts of the switchover and distributional injustice represent key concerns. As a starting point the promise of economic environmental and community benefits must be communicated and fulfilled to endorse the value of hydrogen homes.
Hy4Heat Progress Report
Jan 2021
Publication
Hy4Heat’s mission is to establish if it is technically possible safe and convenient to replace natural gas (methane) with hydrogen in residential and commercial buildings and gas appliances. This will enable the government to determine whether to proceed to a community trial.
There is growing international consensus that hydrogen will be essential to successfully tackling climate change. So BEIS is working to develop hydrogen as a strategic decarbonised energy carrier for the UK which will be an essential element of the UK’s efforts to transform and decarbonise our energy system in line with our legally binding 2050 net zero commitment. Hydrogen can be used across multiple end-use sectors including industry transport heat and power. BEIS is looking to support and develop low carbon hydrogen production methods which will position hydrogen as a highly effective decarbonisation option particularly in hard-to electrify sectors and processes.
At the end of 2017 BEIS appointed Arup to be the programme manager for the Hy4Heat programme. Arup partnered with technical and industry specialists: Kiwa Gastec Progressive Energy Embers and Yo Energy and together the team oversees the programme and technical management of all the work packages. For the past three years Hy4Heat has been exploring whether replacing natural gas (methane) with hydrogen for domestic heating and cooking is feasible and could be part of a plausible potential pathway to help meet heat decarbonisation targets. To do this the programme has been seeking to provide the technical performance usability and safety evidence to demonstrate whether hydrogen can be used for heat in buildings.
This report and any attachment is freely available on the Hy4Heat website here. The report can also be downloaded directly by clicking on the pdf icon above.
There is growing international consensus that hydrogen will be essential to successfully tackling climate change. So BEIS is working to develop hydrogen as a strategic decarbonised energy carrier for the UK which will be an essential element of the UK’s efforts to transform and decarbonise our energy system in line with our legally binding 2050 net zero commitment. Hydrogen can be used across multiple end-use sectors including industry transport heat and power. BEIS is looking to support and develop low carbon hydrogen production methods which will position hydrogen as a highly effective decarbonisation option particularly in hard-to electrify sectors and processes.
At the end of 2017 BEIS appointed Arup to be the programme manager for the Hy4Heat programme. Arup partnered with technical and industry specialists: Kiwa Gastec Progressive Energy Embers and Yo Energy and together the team oversees the programme and technical management of all the work packages. For the past three years Hy4Heat has been exploring whether replacing natural gas (methane) with hydrogen for domestic heating and cooking is feasible and could be part of a plausible potential pathway to help meet heat decarbonisation targets. To do this the programme has been seeking to provide the technical performance usability and safety evidence to demonstrate whether hydrogen can be used for heat in buildings.
This report and any attachment is freely available on the Hy4Heat website here. The report can also be downloaded directly by clicking on the pdf icon above.
Kinetics Study and Modelling of Steam Methane Reforming Process Over a NiO/Al2O3 Catalyst in an Adiabatic Packed Bed Reactor
Dec 2016
Publication
Kinetic rate data for steam methane reforming (SMR) coupled with water gas shift (WGS) over an 18 wt. % NiO/α-Al2O3 catalyst are presented in the temperature range of 300–700 °C at 1 bar. The experiments were performed in a plug flow reactor under the conditions of diffusion limitations and away from the equilibrium conditions. The kinetic model was implemented in a one-dimensional heterogeneous mathematical model of catalytic packed bed reactor developed on gPROMS model builder 4.1.0®. The mathematical model of SMR process was simulated and the model was validated by comparing the results with the experimental values. The simulation results were in excellent agreement with the experimental results. The effect of various operating parameters such as temperature pressure and steam to carbon ratio on fuel and water conversion (%) H2 yield (wt. % of CH4) and H2 purity was modelled and compared with the equilibrium values.
City Blood: A Visionary Infrastructure Solution for Household Energy Provision through Water Distribution Networks
May 2013
Publication
This paper aims to expand current thinking about the future of energy and water utility provision by presenting a radical idea: it proposes a combined delivery system for household energy and water utilities which is inspired by an analogy with the human body. It envisions a multi-functional infrastructure for cities of the future modelled on the human circulatory system. Red blood cells play a crucial role as energy carriers in biological energy distribution; they are suspended in the blood and distributed around the body to fuel the living cells. So why not use an analogous system e an urban circulatory system or “city blood” e to deliver energy and water simultaneously via one dedicated pipeline system? This paper focuses on analysing the scientific technological and economic feasibilities and hurdles which would need to be overcome in order to achieve this idea.<br/>We present a rationale for the requirement of an improved household utility delivery infrastructure and discuss the inspirational analogy; the technological components required to realise the vignette are also discussed. We identify the most significant advance requirement for the proposal to succeed: the utilisation of solid or liquid substrate materials delivered through water pipelines; their benefits and risks are discussed.
Numerical Investigation of Hydrogen-air Deflagrations in a Repeated Pipe Congestion
Sep 2019
Publication
Emerging hydrogen energy technologies are creating new avenues for bring hydrogen fuel usage into larger public domain. Identification of possible accidental scenarios and measures to mitigate associated hazards should be well understood for establishing best practice guidelines. Accidentally released hydrogen forms flammable mixtures in a very short time. Ignition of such a mixture in congestion and confinements can lead to greater magnitudes of overpressure catastrophic for both structure and people around. Hence understanding of the permissible level of confinements and congestion around the hydrogen fuel handling and storage unit is essential for process safety. In the present study numerical simulations have been performed for the hydrogen-air turbulent deflagration in a well-defined congestion of repeated pipe rig experimentally studied by [1]. Large Eddy Simulations (LES) have been performed using the in-house modified version of the OpenFOAM code. The Flame Surface Wrinkling Model in the LES context is used for modelling deflagrations. Numerical predictions concerning the effects of hydrogen concentration and congestion on turbulent deflagration overpressure are compared with the measurements [1] to provide validation of the code. Further insight about the flame propagation and trends of the generated overpressures over the range of concentrations are discussed.
Development of Water Electrolysis in the European Union
Feb 2014
Publication
In view of the recent interest in the transformation of renewable energy into a new energy vector that did not produce by combustion greenhouse gases emissions the Fuel Cells and Hydrogen Joint Undertaking (FCH JU) commissioned this report to a consultancy to get a better understanding of the industrial perspectives of water electrolysis in Europe. and the role that public support has in that evolution.
Catalytic Transfer Hydrogenolysis as an Efficient Route in Cleavage of Lignin and Model Compounds
Aug 2018
Publication
Cleavage of aromatic ether bonds through hydrogenolysis is one of the most promising routes for depolymerisation and transformation of lignin into value-added chemicals. Instead of using pressurized hydrogen gas as hydrogen source some reductive organic molecules such as methanol ethanol isopropanol as well as formates and formic acid can serve as hydrogen donor is the process called catalytic transfer hydrogenolysis. This is an emerging and promising research field but there are very few reports. In this paper a comprehensive review of the works is presented on catalytic transfer hydrogenolysis of lignin and lignin model compounds aiming to breakdown the aromatic ethers including α-O-4 β-O-4 and 4-O-5 linkages with focus on reaction mechanisms. The works are organised regarding to different hydrogen donors used to gain an in-depth understanding of the special role of various hydrogen donors in this process. Perspectives on current challenges and opportunities of future research to develop catalytic transfer hydrogenolysis as a competitive and unique strategy for lignin valorisation are also provided.
Exploring the Evidence on Potential Issues Associated with Trialling Hydrogen Heating in Communities
Dec 2020
Publication
Replacing natural gas with hydrogen in an everyday setting – piping hydrogen to homes and businesses through the existing gas network – is a new and untested proposition. At the same time piloting this proposition is an essential ingredient to a well-managed low carbon transition.<br/>The Department of Business Energy and Industrial Strategy (BEIS) has commissioned CAG Consultants to undertake a literature review and conduct a set of four focus groups to inform the development of work to assess issues associated with setting up a hypothetical community hydrogen trial. This report sets out the findings from the research and presents reflections on the implications of the findings for any future community hydrogen heating trials.<br/>The literature review was a short focused review aimed at identifying evidence relevant to members of the public being asked to take part in a hypothetical community trial. Based primarily on Quick Scoping Review principles the review involved the analysis of evidence from 26 items of literature. The four focus groups were held in-person in two city locations Manchester and Birmingham in November 2019. They involved consumers who either owned or rented houses (i.e. not flats) connected to the gas grid. Two of the focus groups involved owner-occupiers one was with private landlords and the other was with a mixture of tenants (private social and student).<br/>This report was produced in October 2019 and published in December 2020.
Cohesive Zone Modelling of Hydrogen Assisted Fatigue Crack Growth: The Role of Trapping
Apr 2022
Publication
We investigate the influence of microstructural traps in hydrogen-assisted fatigue crack growth. To this end a new formulation combining multi-trap stress-assisted diffusion mechanism-based strain gradient plasticity and a hydrogen- and fatigue-dependent cohesive zone model is presented and numerically implemented. The results show that the ratio of loading frequency to effective diffusivity governs fatigue crack growth behaviour. Increasing the density of beneficial traps not involved in the fracture process results in lower fatigue crack growth rates. The combinations of loading frequency and carbide trap densities that minimise embrittlement susceptibility are identified providing the foundation for a rational design of hydrogen-resistant alloys.
Contrasting European Hydrogen Pathways: An Analysis of Differing Approaches in Key Markets
Mar 2021
Publication
European countries approach the market ramp-up of hydrogen very differently. In some cases the economic and political starting points differ significantly. While the probability is high that some countries such as Germany or Italy will import hydrogen in the long term other countries such as United Kingdom France or Spain could become hydrogen exporters. The reasons for this are the higher potential for renewable energies but also a technology-neutral approach on the supply side.
Deep Decarbonisation Pathways for Scottish Industries: Research Report
Dec 2020
Publication
The following report is a research piece outlining the potential pathways for decarbonisation of Scottish Industries. Two main pathways are considered hydrogen and electrification with both resulting in similar costs and levels of carbon reduction.
The Role of Hydrogen in Achieving Net Zero: Parliamentary Inquiry
Mar 2021
Publication
A key component of the Government's recently announced ‘Ten Point Plan for a Green Industrial Revolution’ is 'Driving the Growth of Low Carbon Hydrogen'. The plan outlined a range of measures to support the development and adoption of hydrogen including a £240 million 'Net Zero Hydrogen Fund'. Noting this and the further £81 million allocated for hydrogen heating trials in the 2020 Spending Review the House of Commons Science and Technology Committee is today launching a new inquiry into the role of hydrogen in achieving Net Zero.
Following recommendations from the Committee on Climate Change that the Government develop a strategy for hydrogen use and should aim for largescale hydrogen trials to begin in the early 2020s the Committee seeks to ensure that the Government's intended plan will be suitable and effective. The Committee will also assess the infrastructure required for hydrogen as a Net Zero fuel and examine progress made so far internationally to determine the viability of hydrogen as a significant contributor to achieving Net Zero.
All documents are in the Supplements tab above.
Following recommendations from the Committee on Climate Change that the Government develop a strategy for hydrogen use and should aim for largescale hydrogen trials to begin in the early 2020s the Committee seeks to ensure that the Government's intended plan will be suitable and effective. The Committee will also assess the infrastructure required for hydrogen as a Net Zero fuel and examine progress made so far internationally to determine the viability of hydrogen as a significant contributor to achieving Net Zero.
All documents are in the Supplements tab above.
Energy Innovation Needs Assessment: Hydrogen & Fuel Cells
Nov 2019
Publication
The Energy Innovation Needs Assessment (EINA) aims to identify the key innovation needs across the UK’s energy system to inform the prioritisation of public sector investment in low-carbon innovation. Using an analytical methodology developed by the Department for Business Energy & Industrial Strategy (BEIS) the EINA takes a system level approach and values innovations in a technology in terms of the system-level benefits a technology innovation provides. This whole system modelling in line with BEIS’s EINA methodology was delivered by the Energy Systems Catapult (ESC) using the Energy System Modelling Environment (ESMETM) as the primary modelling tool.
To support the overall prioritisation of innovation activity the EINA process analyses key technologies in more detail. These technologies are grouped together into sub-themes according to the primary role they fulfil in the energy system. For key technologies within a sub-theme innovations and business opportunities are identified. The main findings at the technology level are summarised in sub-theme reports. An overview report will combine the findings from each sub-theme to provide a broad system-level perspective and prioritisation.
This EINA analysis is based on a combination of desk research by a consortium of economic and engineering consultants and stakeholder engagement. The prioritisation of innovation and business opportunities presented is informed by a workshop organised for each sub-theme assembling key stakeholders from the academic community industry and government.
This report was commissioned prior to advice being received from the CCC on meeting a net zero target and reflects priorities to meet the previous 80% target in 2050. The newly legislated net zero target is not expected to change the set of innovation priorities rather it will make them all more valuable overall. Further work is required to assess detailed implications.
To support the overall prioritisation of innovation activity the EINA process analyses key technologies in more detail. These technologies are grouped together into sub-themes according to the primary role they fulfil in the energy system. For key technologies within a sub-theme innovations and business opportunities are identified. The main findings at the technology level are summarised in sub-theme reports. An overview report will combine the findings from each sub-theme to provide a broad system-level perspective and prioritisation.
This EINA analysis is based on a combination of desk research by a consortium of economic and engineering consultants and stakeholder engagement. The prioritisation of innovation and business opportunities presented is informed by a workshop organised for each sub-theme assembling key stakeholders from the academic community industry and government.
This report was commissioned prior to advice being received from the CCC on meeting a net zero target and reflects priorities to meet the previous 80% target in 2050. The newly legislated net zero target is not expected to change the set of innovation priorities rather it will make them all more valuable overall. Further work is required to assess detailed implications.
Power-to-gas for Injection into the Gas Grid: What Can We Learn from Real-life Projects, Economic Assessments and Systems Modelling
Sep 2018
Publication
Power-to-gas is a key area of interest for decarbonisation and increasing flexibility in energy systems as it has the potential both to absorb renewable electricity at times of excess supply and to provide backup energy at times of excess demand. By integrating power-to-gas with the natural gas grid it is possible to exploit the inherent linepack flexibility of the grid and shift some electricity variability onto the gas grid. Furthermore provided the gas injected into the gas grid is low-carbon such as hydrogen from renewable power-to-gas then overall greenhouse gas emissions from the gas grid can be reduced.<br/>This work presents the first review of power-to-gas to consider real-life projects economic assessments and systems modelling studies and to compare them based on scope assumptions and outcomes. The review focuses on power-to-gas for injection into the gas grid as this application has specific economic technical and modelling opportunities and challenges.<br/>The review identified significant interest in and potential for power-to-gas in combination with the gas grid however there are still challenges to overcome to find profitable business cases and manage local and system-wide technical issues. Whilst significant modelling of power-to-gas has been undertaken more is needed to fully understand the impacts of power-to-gas and gas grid injection on the operational behaviour of the gas grid taking into account dynamic and spatial effects.
A Manganese Hydride Molecular Sieve for Practical Hydrogen Storage Under Ambient Conditions
Dec 2018
Publication
A viable hydrogen economy has thus far been hampered by the lack of an inexpensive and convenient hydrogen storage solution meeting all requirements especially in the areas of long hauls and delivery infrastructure. Current approaches require high pressure and/or complex heat management systems to achieve acceptable storage densities. Herein we present a manganese hydride molecular sieve that can be readily synthesized from inexpensive precursors and demonstrates a reversible excess adsorption performance of 10.5 wt% and 197 kgH2 m-3 at 120 bar at ambient temperature with no loss of activity after 54 cycles. Inelastic neutron scattering and computational studies confirm Kubas binding as the principal mechanism. The thermodynamically neutral adsorption process allows for a simple system without the need for heat management using moderate pressure as a toggle. A storage material with these properties will allow the DOE system targets for storage and delivery to be achieved providing a practical alternative to incumbents such as 700 bar systems which generally provide volumetric storage values of 40 kgH2 m-3 or less while retaining advantages over batteries such as fill time and energy density. Reasonable estimates for production costs and loss of performance due to system implementation project total energy storage costs roughly 5 times cheaper than those for 700 bar tanks potentially opening doors for increased adoption of hydrogen as an energy vector.
Energy Saving Technologies and Mass-thermal Network Optimization for Decarbonized Iron and Steel Industry: A Review
Jul 2020
Publication
The iron and steel industry relies significantly on primary energy and is one of the largest energy consumers in the manufacturing sector. Simultaneously numerous waste heat is lost and discharged directly into the environment in the process of steel production. Thus considering conservation of energy energy-efficient improvement should be a holistic target for iron and steel industry. The research gap is that almost all the review studies focus on the primary energy saving measures in iron and steel industry whereas few work summarize the secondary energy saving technologies together with former methods. The objective of this paper is to develop the concept of mass-thermal network optimization in iron and steel industry which unrolls a comprehensive map to consider current energy conservation technologies and low grade heat recovery technologies from an overall situation. By presenting an overarching energy consumption in the iron and steel industry energy saving potentials are presented to identify suitable technologies by using mass-thermal network optimization. Case studies and demonstration projects around the world are also summarized. The general guideline is figured out for the energy optimization in iron and steel industry while the improved mathematical models are regarded as the future challenge.
Performing While Transforming: The Role of Transmission Companies in the Energy Transition
Jun 2020
Publication
As the world prepares to exit from the COVID-19 crisis the pace of the global power revolution is expected to accelerate. A new publication from the World Energy Council in collaboration with PwC underscores the imperative for electricity grid owners and operators to fundamentally transform themselves to secure a role in a more integrated flexible and smarter electricity system in the energy transition to a low carbon future.
“Performing While Transforming: The Role of Transmission Companies in the Energy Transition” is based on in-depth interviews with CEOs and senior leaders from 37 transmission companies representing 35 countries and over 4 million kilometres – near global coverage - of the transmission network. While their roles will evolve transmission companies will remain at the heart of the electricity grid and need to balance the challenges of keeping the lights on while transforming themselves for the future.
The publication explores the various challenges affecting how transmission companies prepare and re-think their operations and business models and leverages the insights from interviewees to highlight four recommendations for transmission companies to consider in their journey:
“Performing While Transforming: The Role of Transmission Companies in the Energy Transition” is based on in-depth interviews with CEOs and senior leaders from 37 transmission companies representing 35 countries and over 4 million kilometres – near global coverage - of the transmission network. While their roles will evolve transmission companies will remain at the heart of the electricity grid and need to balance the challenges of keeping the lights on while transforming themselves for the future.
The publication explores the various challenges affecting how transmission companies prepare and re-think their operations and business models and leverages the insights from interviewees to highlight four recommendations for transmission companies to consider in their journey:
- Focus on the future through enhanced forecasting and scenario planning
- Shape the ecosystem by collaborating with new actors and enhancing interconnectivity
- Embrace automation and technology to optimise processes and ensure digital delivery
- Transform organisation to attract new talent and maintain social licence with consumers
The Path to Net Zero and Progress on Reducing Emissions in Wales
Dec 2020
Publication
These two joint reports required under the Environment (Wales) Act 2016 provide ministers with advice on Wales’ climate targets between now and 2050 and assess progress on reducing emissions to date. Our advice to the Welsh Government is set out in two parts:
Advice Report: The path to a Net Zero Wales provides recommendations on the actions that are needed in Wales including the legislation of a Net Zero target and package of policies to deliver it.
Progress Report: Reducing emissions in Wales looks back at the progress made in Wales since the 2016 Environment (Wales) Act was passed and assesses whether Wales is on track to meet its currently legislated emissions reductions targets.
This work is based on an extensive programme of analysis consultation and consideration by the Committee and its staff building on the evidence published last year for our Net Zero report. It is compatible with our advice on the UK’s Sixth Carbon Budget. In support of the advice in this report we have also published:
Advice Report: The path to a Net Zero Wales provides recommendations on the actions that are needed in Wales including the legislation of a Net Zero target and package of policies to deliver it.
Progress Report: Reducing emissions in Wales looks back at the progress made in Wales since the 2016 Environment (Wales) Act was passed and assesses whether Wales is on track to meet its currently legislated emissions reductions targets.
This work is based on an extensive programme of analysis consultation and consideration by the Committee and its staff building on the evidence published last year for our Net Zero report. It is compatible with our advice on the UK’s Sixth Carbon Budget. In support of the advice in this report we have also published:
- All the charts and data behind the report as well as a separate dataset for the scenarios which sets out more details and data on the pathways than can be included in this report.
- A public Call for Evidence several new research projects three expert advisory groups and deep dives into the roles of local authorities and businesses.
Numerical Analysis of VPSA Technology Retrofitted to Steam Reforming Hydrogen Plants to Capture CO2 and Produce Blue H2
Feb 2022
Publication
The increasing demand for energy and commodities has led to escalating greenhouse gas emissions the chief of which is represented by carbon dioxide (CO2). Blue hydrogen (H2) a lowcarbon hydrogen produced from natural gas with carbon capture technologies applied has been suggested as a possible alternative to fossil fuels in processes with hard-to-abate emission sources including refining chemical petrochemical and transport sectors. Due to the recent international directives aimed to combat climate change even existing hydrogen plants should be retrofitted with carbon capture units. To optimize the process economics of such retrofit it has been proposed to remove CO2 from the pressure swing adsorption (PSA) tail gas to exploit the relatively high CO2 concentration. This study aimed to design and numerically investigate a vacuum pressure swing adsorption (VPSA) process capable of capturing CO2 from the PSA tail gas of an industrial steam methane reforming (SMR)-based hydrogen plant using NaX zeolite adsorbent. The effect of operating conditions such as purge-to-feed ratio and desorption pressure were evaluated in relation to CO2 purity CO2 recovery bed productivity and specific energy consumption. We found that conventional cycle configurations namely a 2-bed 4-step Skarstrom cycle and a 2-bed 6-step modified Skarstrom cycle with pressure equalization were able to concentrate CO2 to a purity greater than 95% with a CO2 recovery of around 77% and 90% respectively. Therefore the latter configuration could serve as an efficient process to decarbonize existing hydrogen plants and produce blue H2.
Magnesium Based Materials for Hydrogen Based Energy Storage: Past, Present and Future
Jan 2019
Publication
Volodymyr A. Yartys,
Mykhaylo V. Lototskyy,
Etsuo Akiba,
Rene Albert,
V. E. Antonov,
Jose-Ramón Ares,
Marcello Baricco,
Natacha Bourgeois,
Craig Buckley,
José Bellosta von Colbe,
Jean-Claude Crivello,
Fermin Cuevas,
Roman V. Denys,
Martin Dornheim,
Michael Felderhoff,
David M. Grant,
Bjørn Christian Hauback,
Terry D. Humphries,
Isaac Jacob,
Petra E. de Jongh,
Jean-Marc Joubert,
Mikhail A. Kuzovnikov,
Michel Latroche,
Mark Paskevicius,
Luca Pasquini,
L. Popilevsky,
Vladimir M. Skripnyuk,
Eugene I. Rabkin,
M. Veronica Sofianos,
Alastair D. Stuart,
Gavin Walker,
Hui Wang,
Colin Webb,
Min Zhu and
Torben R. Jensen
Magnesium hydride owns the largest share of publications on solid materials for hydrogen storage. The “Magnesium group” of international experts contributing to IEA Task 32 “Hydrogen Based Energy Storage” recently published two review papers presenting the activities of the group focused on magnesium hydride based materials and on Mg based compounds for hydrogen and energy storage. This review article not only overviews the latest activities on both fundamental aspects of Mg-based hydrides and their applications but also presents a historic overview on the topic and outlines projected future developments. Particular attention is paid to the theoretical and experimental studies of Mg-H system at extreme pressures kinetics and thermodynamics of the systems based on MgH2 nanostructuring new Mg-based compounds and novel composites and catalysis in the Mg based H storage systems. Finally thermal energy storage and upscaled H storage systems accommodating MgH2 are presented.
What is Needed to Deliver Carbon-neutral Heat Using Hydrogen and CCS?
Sep 2020
Publication
In comparison with the power sector large scale decarbonisation of heat has received relatively little attention at the infrastructural scale despite its importance in the global CO2 emissions landscape. In this study we focus on the regional transition of a heating sector from natural gas-based infrastructure to H2 using mathematical optimisation. A discrete spatio-temporal description of the geographical region of Great Britain was used in addition to a detailed description of all network elements for illustrating the key factors in the design of nation-wide H2 and CO2 infrastructure. We have found that the synergistic deployment of H2 production technologies such as autothermal reforming of methane and biomass gasification with CO2 abatement technologies such as carbon capture and storage (CCS) are critical in achieving cost-effective decarbonisation. We show that both large scale underground H2 storage and water electrolysis provide resilience and flexibility to the heating system competing on cost and deployment rates. The optimal regions for siting H2 production infrastructure are characterised by proximity to: (1) underground H2 storage (2) high demands for H2 (3) geological storage for CO2. Furthermore cost-effective transitions based on a methane reforming pathway may necessitate regional expansions in the supply of natural gas with profound implications for security of supply in nations that are already highly reliant potentially creating an infrastructure lock-in during the near term. We found that the total system cost comprising both investment and operational elements is mostly influenced by the natural gas price followed by biomass price and CapEx of underground caverns. Under a hybrid Regulated Asset Base (RAB) commercial framework with private enterprises delivering production infrastructure the total cost of heat supply over the infrastructure lifetime is estimated as 5.2–8.6 pence per kW h. Due to the higher cost relative to natural gas a Contract for Difference payment between d20 per MW h and d53 per MW h will be necessary for H2-derived heat to be competitive in the market.
Spatially Resolved Optimization for Studying the Role of Hydrogen for Heat Decarbonization Pathways
Apr 2018
Publication
This paper studies the economic feasibility of installing hydrogen networks for decarbonizing heat in urban areas. The study uses the Heat Infrastructure and Technology (HIT) spatially resolved optimization model to trade-off energy supply infrastructure and end-use technology costs for the most important heat-related energy vectors: gas heat electricity and hydrogen. Two model formulations are applied to a UK urban area: one with an independent hydrogen network and one that allows for retrofitting the gas network into hydrogen. Results show that for average hydrogen price projections cost-effective pathways for heat decarbonization toward 2050 include heat networks supplied by a combination of district-level heat pumps and gas boilers in the domestic and commercial sectors and hydrogen boilers in the domestic sector. For a low hydrogen price scenario when retrofitting the gas network into hydrogen a cost-effective pathway is replacing gas by hydrogen boilers in the commercial sector and a mixture of hydrogen boilers and heat networks supplied by district-level heat pumps gas and hydrogen boilers for the domestic sector. Compared to the first modelled year CO2 emission reductions of 88% are achieved by 2050. These results build on previous research on the role of hydrogen in cost-effective heat decarbonization pathways.
The Fuel Cell Industry Review 2020
Jan 2020
Publication
The Fuel Cell Industry Review 2020 offers data analysis and commentary on key events in the industry in 2020. Now in its seventh year the Review has been compiled by a team led by E4tech - a specialist energy strategy consultancy with deep expertise in the hydrogen and fuel cell sector (see www.e4tech.com).
Despite the title of this publication we’ve said before that the fuel cell ‘industry’ is not a single industry at all. As those inside it know it is divided by different materials stages of maturity applications and regions – all contributors to the fact it has taken time to get going. But it does seem to be getting traction. Part of that is down to decades of hard work and investment in R&D technology improvement and demonstrations. Thankfully part of it is also down to changes in external conditions. Improving air quality is increasingly non-negotiable. Reducing greenhouse gas emissions likewise. And all while maintaining economic development and opportunity.
The growth spurt of the battery industry allied with some of the drivers above has catalysed thinking in where and how fuel cells can fit. Countries and regions which did not support batteries early on are scrambling to catch up and wish not to risk a repeat of their errors with fuel cells. So support is being targeted at industrial development and competitiveness as well as solving societal problems. Which in turn is helping industry to decide on and take investment steps: Weichai’s 20000 unit per annum PEM factory in China; Daimler and Volvo setting up their fuel cell truck JV; CHEM Energy building a factory for remote systems in S Africa."
Despite the title of this publication we’ve said before that the fuel cell ‘industry’ is not a single industry at all. As those inside it know it is divided by different materials stages of maturity applications and regions – all contributors to the fact it has taken time to get going. But it does seem to be getting traction. Part of that is down to decades of hard work and investment in R&D technology improvement and demonstrations. Thankfully part of it is also down to changes in external conditions. Improving air quality is increasingly non-negotiable. Reducing greenhouse gas emissions likewise. And all while maintaining economic development and opportunity.
The growth spurt of the battery industry allied with some of the drivers above has catalysed thinking in where and how fuel cells can fit. Countries and regions which did not support batteries early on are scrambling to catch up and wish not to risk a repeat of their errors with fuel cells. So support is being targeted at industrial development and competitiveness as well as solving societal problems. Which in turn is helping industry to decide on and take investment steps: Weichai’s 20000 unit per annum PEM factory in China; Daimler and Volvo setting up their fuel cell truck JV; CHEM Energy building a factory for remote systems in S Africa."
The Future Role of Gas in Transport
Mar 2021
Publication
This is a Network Innovation Allowance funded project overseen by a steering group comprising the UK and Ireland gas network operators (Cadent Gas Networks Ireland National Grid Northern Gas Networks SGN Wales and West). The project follows on from previous studies that modelled the role of green gases in decarbonising the GB economy. The role of this study is to understand the transition from the GB economy today to a decarbonised economy in 2050 focusing on how the transition is achieved and the competing and complementary nature of different low and zero emission fuels and technologies over time.
While the project covers the whole economy it focuses on transport especially trucks as an early adopter of green gases and as a key enabler of the transition. The study and resulting report are aimed at the gas industry and government and tries to build a green gas decarbonisation narrative supported by a wide range of stakeholders in order clarify the path ahead and thereby focus future efforts on delivering decarbonisation through green gases as quickly as possible.
The objectives of the study are:
Green gases
This report discusses the future role of ‘green gases’ which are biomethane and hydrogen produced from low- and zero-carbon sources each produced via two main methods:
Biomethane from Anaerobic Digestion (AD): A mature technology for turning biological material into a non-fossil form of natural gas (methane). AD plants produce biogas which must then be upgraded to biomethane.
Biomethane from Bio-Substitute Natural Gas (Bio-SNG): This technology is at an earlier stage of development than AD but has the potential to unlock other feedstocks for biomethane production such as waste wood and residual household waste.
Blue Hydrogen: Hydrogen from reformation of natural gas which produces hydrogen and carbon monoxide. 90-95% of the carbon is captured and stored making this a low-carbon form of hydrogen.
Green Hydrogen: Water is split into hydrogen and oxygen via electrolysis using electricity generated by renewables. No carbon emissions are produced so this is zero-carbon hydrogen."
While the project covers the whole economy it focuses on transport especially trucks as an early adopter of green gases and as a key enabler of the transition. The study and resulting report are aimed at the gas industry and government and tries to build a green gas decarbonisation narrative supported by a wide range of stakeholders in order clarify the path ahead and thereby focus future efforts on delivering decarbonisation through green gases as quickly as possible.
The objectives of the study are:
- Analyse the complete supply chain production distribution and use of electricity biomethane bio-SNG and hydrogen to understand the role of each fuel and the timeline for scaling up of their use.
- Develop a narrative based on these findings to show how the use of these fuels scales up over time and how they compete and complement one another.
Green gases
This report discusses the future role of ‘green gases’ which are biomethane and hydrogen produced from low- and zero-carbon sources each produced via two main methods:
Biomethane from Anaerobic Digestion (AD): A mature technology for turning biological material into a non-fossil form of natural gas (methane). AD plants produce biogas which must then be upgraded to biomethane.
Biomethane from Bio-Substitute Natural Gas (Bio-SNG): This technology is at an earlier stage of development than AD but has the potential to unlock other feedstocks for biomethane production such as waste wood and residual household waste.
Blue Hydrogen: Hydrogen from reformation of natural gas which produces hydrogen and carbon monoxide. 90-95% of the carbon is captured and stored making this a low-carbon form of hydrogen.
Green Hydrogen: Water is split into hydrogen and oxygen via electrolysis using electricity generated by renewables. No carbon emissions are produced so this is zero-carbon hydrogen."
Energy Essentials: A Guide to Hydrogen
Jan 2020
Publication
Climate change and air quality concerns have pushed clean energy up the global agenda. As we switch over to new cleaner technologies and fuels our experience of using power heat and transport are going to change transforming the way we live work and get from A to B. Explore this guide to find out what hydrogen is how it is made transported and used what the experience would be like in the home for transport and for businesses and discover what the future of hydrogen might be.
Visit the Energy Institute website for more information
Visit the Energy Institute website for more information
Gas Future Scenarios Project- Final Report: A Report on a Study for the Energy Networks Association Gas Futures Group
Nov 2010
Publication
When looking out to 2050 there is huge uncertainty surrounding how gas will be consumed transported and sourced in Great Britain (GB). The extent of the climate change challenge is now widely accepted and the UK Government has introduced a legislative requirement for aggressive reductions in carbon dioxide (CO2) emissions out to 2050. In addition at European Union (EU) level a package of measures has been implemented to reduce greenhouse gas emissions improve energy efficiency and significantly increase the share of energy produced from renewable sources by 2020. These policy developments naturally raise the question of what role gas has to play in the future energy mix.
To help inform this debate the Energy Networks Association Gas Futures Group (ENA GFG) commissioned Redpoint and Trilemma to undertake a long-range scenario-based modelling study of the future utilisation of gas out to 2050 and the consequential impacts of this for gas networks. Our modelling assumptions draw heavily on the Department of Energy and Climate Change (DECC) 2050 Pathways analysis and we consider that our conclusions are fully compatible with both DECC‟s work and current EU policy objectives.
Link to document
To help inform this debate the Energy Networks Association Gas Futures Group (ENA GFG) commissioned Redpoint and Trilemma to undertake a long-range scenario-based modelling study of the future utilisation of gas out to 2050 and the consequential impacts of this for gas networks. Our modelling assumptions draw heavily on the Department of Energy and Climate Change (DECC) 2050 Pathways analysis and we consider that our conclusions are fully compatible with both DECC‟s work and current EU policy objectives.
Link to document
Hydrogen Safety- From Policies to Plans to Practices
Sep 2005
Publication
Safety is an essential element for realizing the “hydrogen economy” – safe operation in all of its aspects from hydrogen production through storage distribution and use; from research development and demonstration to commercialization. As such safety is given paramount importance in all facets of the research development and demonstration of the U.S Department of Energy’s (DOE) Hydrogen Fuel Cells and Infrastructure Technologies (HFCIT) Program Office. The diversity of the DOE project portfolio is self-evident. Projects are performed by large companies small businesses DOE National Laboratories academic institutions and numerous partnerships involving the same. Projects range from research exploring advances in novel hydrogen storage materials to demonstrations of hydrogen refuelling stations and vehicles. Recognizing the nature of its program and the importance of safety planning DOE has undertaken a number of initiatives to encourage and shape safety awareness. The DOE Hydrogen Safety Review Panel was formed to bring a broad cross-section of expertise from the industrial government and academic sectors to help ensure the success of the program as a whole. The Panel provides guidance on safety-related issues and needs reviews individual DOE-supported projects and their safety plans and explores ways to bring learnings to broadly benefit the DOE program. This paper explores the approaches used for providing safety planning guidance to contractors in the context of their own (and varied) policies procedures and practices. The essential elements that should be included in safety plans are described as well as the process for reviewing project safety plans. Discussion of safety planning during the conduct of safety review site visits is also shared. Safety planning-related learnings gathered from project safety reviews and the Panel’s experience in reviewing safety plans are discussed.
Numerical Study of a Highly Under-Expanded Hydrogen Jet
Sep 2005
Publication
Numerical simulations are carried out for a highly under-expanded hydrogen jet resulting from an accidental release of high-pressure hydrogen into the atmospheric environment. The predictions are made using two independent CFD codes namely CFX and KIVA. The KIVA code has been substantially modified by the present authors to enable large eddy simulation (LES). It employs a oneequation sub-grid scale (SGS) turbulence model which solves the SGS kinetic energy equation to allow for more relaxed equilibrium requirement and to facilitate high fidelity LES calculations with relatively coarser grids. Instead of using the widely accepted pseudo-source approach the complex shock structures resulting from the high under-expansion is numerically resolved in a small computational domain above the jet exit. The computed results are used as initial conditions for the subsequent hydrogen jet simulation. The predictions provide insight into the shock structure and the subsequent jet development. Such knowledge is valuable for studying the ignition characteristics of high-pressure hydrogen jets in the safety context.
A Temperature Controlled Mechanical Test Facility to Ensure Safe Materials Performance in Hydrogen at 1000 Bar
Sep 2007
Publication
Increasingly car manufacturers are turning to high pressure hydrogen storage for on-board power applications. Many prototypes use costly materials and fabrication methods such as Type 316L austenitic stainless steel and processes such as TIG (GTA) welding. There is a need to move to less expensive options without compromising safety to assist in developing economic vehicles. It is important that the behaviour of new/modified materials and joints (including those fabricated by new technologies) is understood at anticipated service temperatures and hydrogen pressure as the consequences of poor material choice could be severe. The greatest detrimental effect of gaseous hydrogen on the mechanical properties of metallic materials is commonly observed under conditions of dynamic plastic strain. Under such conditions an atomically clean surface is produced where hydrogen molecules will dissociate and penetrate the material. Thus static load test methods with hydrogen charging are not reliable for engineering data generation. To meet the need for dynamically straining material in a pressurised hydrogen environment TWI has developed a facility to load specimens in a high pressure environment for tensile toughness and fatigue testing. The design of this has involved a number of innovative steps. This paper outlines the requirements and the design and construction issues that were encountered when installing a facility which can not only perform tests at up to 1000bar (100MPa) but also for temperatures between –150°C to +85°C.
Effect of Carbon Dioxide, Argon and Hydrocarbon Fuels on the Stability of Hydrogen Jet Flames
Sep 2005
Publication
Experimental studies were carried out to examine the lift-off and blow-out stability of H2/CO2 H2/Ar H2/C3H8 and H2/CH4 jet flames. The experiments were carried out using a burner with a 2mm inner diameter. The flame structures were recorded by direct filming and also by a schlieren apparatus. The experiments showed that the four gases affected the lift-off and blow-out stability of the hydrogen differently. The experiments showed that propane addition to an initially attached flame always produced lifted flame and the flame was blown out at higher jet velocity. The blow-out velocity decreased as the increasing in propane concentration. Direct blow-off of hydrogen/propane was never observed. Methane addition resulted in a relatively stable flame comparing with the carbon dioxide and propane addition. Comparisons of the stability of H2/C3H8 H2/CH4 and H2/CO2 flames showed that H2/C3H8 produced the highest lift-off height. Propane is much more effective in lift-off and blow out hydrogen flames. The study carried out a chemical kinetic analysis of H2/CO2 H2/Ar H2/C3H8 and H2/CH4 flames for a comparison of effect of chemical kinetics on flame stability.
An Inter-Comparison Exercise on the Capabilities of CFD Models to Predict the Short and Long Term Distribution and Mixing of Hydrogen in a Garage
Sep 2007
Publication
Alexandros G. Venetsanos,
E. Papanikolaou,
J. García,
Olav Roald Hansen,
Matthias Heitsch,
Asmund Huser,
Wilfried Jahn,
Jean-Marc Lacome,
Thomas Jordan,
H. S. Ledin,
Dmitry Makarov,
Prankul Middha,
Etienne Studer,
Andrei V. Tchouvelev,
Franck Verbecke,
M. M. Voort,
Andrzej Teodorczyk and
M. A. Delichatsios
The paper presents the results of the CFD inter-comparison exercise SBEP-V3 performed within the activity InsHyde internal project of the HYSAFE network of excellence in the framework of evaluating the capability of various CFD tools and modelling approaches in predicting the physical phenomena associated to the short and long term mixing and distribution of hydrogen releases in confined spaces. The experiment simulated was INERIS-TEST-6C performed within the InsHyde project by INERIS consisting of a 1 g/s vertical hydrogen release for 240 s from an orifice of 20 mm diameter into a rectangular room (garage) of dimensions 3.78x7.2x2.88 m in width length and height respectively. Two small openings at the front and bottom side of the room assured constant pressure conditions. During the test hydrogen concentration time histories were measured at 12 positions in the room for a period up to 5160 s after the end of release covering both the release and the subsequent diffusion phases. The benchmark was organized in two phases. The first phase consisted of blind simulations performed prior to the execution of the tests. The second phase consisted of post calculations performed after the tests were concluded and the experimental results made available. The participation in the benchmark was high: 12 different organizations (2 non-HYSAFE partners) 10 different CFD codes and 8 different turbulence models. Large variation in predicted results was found in the first phase of the benchmark between the various modelling approaches. This was attributed mainly to differences in turbulence models and numerical accuracy options (time/space resolution and discretization schemes). During the second phase of the benchmark the variation between predicted results was reduced.
An Intercomparison Exercise on the Capabilities of CFD Models to Predict Distribution and Mixing of H2 in a Closed Vessel.
Sep 2005
Publication
This paper presents a compilation and discussion of the results supplied by HySafe partners participating in the Standard Benchmark Exercise Problem (SBEP) V1 which is based on an experiment on hydrogen release mixing and distribution inside a vessel. Each partner has his own point of view of the problem and uses a different approach to the solution. The main characteristics of the models employed for the calculations are compared. The comparison between results together with the experimental data when available is made. Relative deviations of each model from the experimental values are also included. Explanations and interpretations of the results are presented together with some useful conclusions for future work.
Gas Build-up in a Domestic Property Following Releases of Methane/Hydrogen Mixtures
Sep 2007
Publication
The EC funded Naturalhy project is investigating the possibility of promoting the swift introduction of hydrogen as a fuel by mixing hydrogen with natural gas and transporting this mixture by means of the existing natural gas pipeline system to end-users. Hydrogen may then be extracted for use in hydrogen fuel cell applications or the mixture may be used directly in conventional gas-fired equipment. This means that domestic customers would receive a natural gas (methane)/hydrogen mixture delivered to the home. As the characteristics of hydrogen are different from natural gas there may be an increased risk to end-users in the event of an accidental release of gas from internal pipe work or appliances. Consequently part of the Naturalhy project is aimed at assessing the potential implications on the safety of the public which includes end-users in their homes. In order to understand the nature of any gas accumulation which may form and identify the controlling parameters a series of large scale experiments have been performed to study gas accumulations within a 3 m by 3 m by 2.3 m ventilated enclosure representing a domestic room. Gas was released vertically upwards at a pressure typical of that experienced in a domestic environment from hole sizes representative of leaks and breaks in pipe work. The released gas composition was varied and included methane and a range of methane/hydrogen mixtures containing up to 50% hydrogen. During the experiments gas concentrations throughout the enclosure and the external wind conditions were monitored with time. The experimental data is presented. Analysis of the data and predictions using a model developed to interpret the experimental data show that both buoyancy and wind driven ventilation are important.
Hydrogen Deblending in the GB Network - Feasibility Study Report
Nov 2020
Publication
The UK government has committed to reducing greenhouse gas emissions to net zero by 2050. All future energy modelling identifies a key role for hydrogen (linked to CCUS) in providing decarbonised energy for heat transport industry and power generation. Blending hydrogen into the existing natural gas pipeline network has already been proposed as a means of transporting low carbon energy. However the expectation is that a gas blend with maximum hydrogen content of 20 mol% can be used without impacting consumers’ end use applications. Therefore a transitional solution is needed to achieve a 100% hydrogen future network.
Deblending (i.e. separation of the blended gas stream) is a potential solution to allow the existing gas transmission and distribution network infrastructure to transport energy as a blended gas stream. Deblending can provide either hydrogen natural gas or blended gas for space heating transport industry and power generation applications. If proven technically and economically feasible utilising the existing gas transmission and distribution networks in this manner could avoid the need for investment in separate gas and hydrogen pipeline networks during the transition to a future fully decarbonised gas network.
The Energy Network Association (ENA) “Gas Goes Green” programme identifies deblending could play a critical role in the transition to a decarbonised gas network. Gas separation technologies are well-established and mature and have been used and proven in natural gas processing for decades. However these technologies have not been used for bulk gas transportation in a transmission and distribution network setting. Some emerging hydrogen separation technologies are currently under development. The main hydrogen recovery and purification technologies currently deployed globally are:
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Deblending (i.e. separation of the blended gas stream) is a potential solution to allow the existing gas transmission and distribution network infrastructure to transport energy as a blended gas stream. Deblending can provide either hydrogen natural gas or blended gas for space heating transport industry and power generation applications. If proven technically and economically feasible utilising the existing gas transmission and distribution networks in this manner could avoid the need for investment in separate gas and hydrogen pipeline networks during the transition to a future fully decarbonised gas network.
The Energy Network Association (ENA) “Gas Goes Green” programme identifies deblending could play a critical role in the transition to a decarbonised gas network. Gas separation technologies are well-established and mature and have been used and proven in natural gas processing for decades. However these technologies have not been used for bulk gas transportation in a transmission and distribution network setting. Some emerging hydrogen separation technologies are currently under development. The main hydrogen recovery and purification technologies currently deployed globally are:
- Cryogenic separation
- Membrane separation
- Pressure Swing Adsorption (PSA)
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Measurement Challenges for Hydrogen Vehicles
Apr 2019
Publication
Uptake of hydrogen vehicles is an ideal solution for countries that face challenging targets for carbon dioxide reduction. The advantage of hydrogen fuel cell electric vehicles is that they behave in a very similar way to petrol engines yet they do not emit any carbon containing products during operation. The hydrogen industry currently faces the dilemma that they must meet certain measurement requirements (set by European legislation) but cannot do so due to a lack of available methods and standards. This paper outlines the four biggest measurement challenges that are faced by the hydrogen industry including flow metering quality assurance quality control and sampling.
Estimation of an Allowable Hydrogen Permeation Rate From Road Vehicle Compressed Gaseous Hydrogen Storage Systems In Typical Garages- Part 3
Sep 2009
Publication
The formation of a flammable hydrogen-air mixture is a major safety concern especially for closed space. This hazardous situation can arise when considering permeation from a car equipped with a composite compressed hydrogen tank with a non-metallic liner in a closed garage. In the following paper a scenario is developed and analysed with a simplified approach and a numerical simulation in order to estimate the evolution of hydrogen concentration. The system is composed of typical size garage and hydrogen car’s tank. Some parameters increasing permeation rate (i.e. tank’s material thickness and pressure) have been chosen to have a conservative approach. A close look on the top of tank surface showed that the concentration grows as square root of time and does not exceed 8.2×10-3 % by volume. Also a simplified comparative analysis estimated that the buoyancy of hydrogen-air mixture prevails on the diffusion 35 seconds after permeation starts in good agreement with simulation where time is at about 80 seconds. Finally the numerical simulations demonstrated that across the garage height the hydrogen is nearly distributed linearly and the difference in hydrogen concentration at the ceiling and floor is negligible (i.e. 3×10-3 %).
Roadmap to Hydrogen in the NTS - National Grid Gas Transmission
Jan 2020
Publication
DNV GL believes that the National Transmission System (NTS) will be central to the future of decarbonised energy in the UK. The future NTS could transmit natural gas hydrogen blends of the two and carbon dioxide. New pipelines will be built however a large cost-saving is available if the existing NTS assets can also be re-purposed. To move towards this future National Grid Gas Transmission wants to develop a project to trial injection hydrogen into the NTS. This is an opportunity to show that National Grid is part of the solution to achieving Net Zero. The trial will demonstrate to the Government and public that re-purposing the NTS is cost-effective safe and involves minimal disruption.
This report sets out a roadmap of projects to provide the knowledge needed for the trial. The roadmap was developed by assessing the knowledge required and how much of it already existed. The knowledge already available is summarised in this report with references to where further details can be found. Gaps in the knowledge are then described. The roadmap consists of projects to conduct work to close the knowledge gaps. The results are summarised in the figures below and in the box to the right.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
This report sets out a roadmap of projects to provide the knowledge needed for the trial. The roadmap was developed by assessing the knowledge required and how much of it already existed. The knowledge already available is summarised in this report with references to where further details can be found. Gaps in the knowledge are then described. The roadmap consists of projects to conduct work to close the knowledge gaps. The results are summarised in the figures below and in the box to the right.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Spontaneous Ignition of Hydrogen Leaks, a Review of Postulated Mechanisms
Sep 2005
Publication
Over the last century there have been reports of high pressure hydrogen leaks igniting for no apparent reason and several ignition mechanisms have been proposed. Although many leaks have ignited there are also reported leaks where no ignition has occurred. Investigations of ignitions where no apparent ignition source was present have often been superficial with a mechanism postulated which whilst appearing to satisfy the conditions prevailing at the time of the release simply does not stand up to rigorous scientific analysis. Some of these proposed mechanisms have been simulated in a laboratory under superficially identical conditions and appear to be rigorous and scientific but the simulated conditions often do not have the same large release rates or quantities mainly because of physical constraints of a laboratory. Also some of the release scenarios carried out or simulated in laboratories are totally divorced from the realistic situation of most actual leaks. Clearly there are gaps in the knowledge of the exact ignition mechanism for releases of hydrogen particularly at the high pressures likely to be involved in future storage and use. Mechanisms which have been proposed in the past are the reverse Joule-Thomson effect; electrostatic charge generation; diffusion ignition; sudden adiabatic compression; and hot surface ignition. Of these some have been characterized by means of computer simulation rather than by actual experiment and hence are not validated. Consequently there are discrepancies between the theories releases known to have ignited and releases which are known to have not ignited. From this postulated ignition mechanisms which are worthy of further study have been identified and the gaps in information have been highlighted. As a result the direction for future research into the potential for ignition of hydrogen escapes has been identified.
Hydrogen-air Deflagrations in Open Atmosphere- Large Eddy Simulation Analysis of Experimental Data
Sep 2005
Publication
The largest known experiment on hydrogen-air deflagration in the open atmosphere has been analysed by means of the large eddy simulation (LES). The combustion model is based on the progress variable equation to simulate a premixed flame front propagation and the gradient method to decouple the physical combustion rate from numerical peculiarities. The hydrodynamic instability has been partially resolved by LES and unresolved effects have been modelled by Yakhot's turbulent premixed combustion model. The main contributor to high flame propagation velocity is the additional turbulence generated by the flame front itself. It has been modelled based on the maximum flame wrinkling factor predicted by Karlovitz et al. theory and the transitional distance reported by Gostintsev with colleagues. Simulations are in a good agreement with experimental data on flame propagation dynamics flame shape and outgoing pressure wave peaks and structure. The model is built from the first principles and no adjustable parameters were applied to get agreement with the experiment.
No more items...