United Kingdom
Next for Net Zero Podcast: Transporting to a Greener World
Oct 2022
Publication
Decarbonisation will need a significant societal shift. The when why and how we travel is going to look very different within a decade. Joining us is Florentine Roy – a leading expert on electric vehicles and Innovation Project Lead at UK Power Networks and Matt Hindle - Head of Net Zero and Sustainability at Wales and West Utilities. Let’s talk about the energy system implications of this massive undertaking and how it can be enabled by innovation in a fair and just way.
The podcast can be found here.
The podcast can be found here.
The Key Techno-Economic and Manufacturing Drivers for Reducing the Cost of Power-to-Gas and a Hydrogen-Enabled Energy System
Jul 2021
Publication
Water electrolysis is a process which converts electricity into hydrogen and is seen as a key technology in enabling a net-zero compatible energy system. It will enable the scale-up of renewable electricity as a primary energy source for heating transport and industry. However displacing the role currently met by fossil fuels might require a price of hydrogen as low as 1 $/kg whereas renewable hydrogen produced using electrolysis is currently 10 $/kg. This article explores how mass manufacturing of proton exchange membrane (PEM) electrolysers can reduce the capital cost and thus make the production of renewable power to hydrogen gas (PtG) more economically viable. A bottom up direct manufacturing model was developed to determine how economies of scale can reduce the capital cost of electrolysis. The results demonstrated that (assuming an annual production rate of 5000 units of 200 kW PEM electrolysis systems) the capital cost of a PEM electrolysis system can reduce from 1990 $/kW to 590 $/kW based on current technology and then on to 431 $/kW and 300 $/kW based on the an installed capacity scale-up of ten- and one-hundred-fold respectively. A life-cycle costing analysis was then completed to determine the importance of the capital cost of an electrolysis system to the price of hydrogen. It was observed that based on current technology mass manufacturing has a large impact on the price of hydrogen reducing it from 6.40 $/kg (at 10 units units per year) to 4.16 $/kg (at 5000 units per year). Further analysis was undertaken to determine the cost at different installed capacities and found that the cost could reduce further to 2.63 $/kg and 1.37 $/kg based on technology scale-up by ten- and one hundred-fold respectively. Based on the 2030 (and beyond) baseline assumptions it is expected that hydrogen production from PEM electrolysis could be used as an industrial process feed stock provide power and heat to buildings and as a fuel for heavy good vehicles (HGVs). In the cases of retrofitted gas networks for residential or industrial heating solutions or for long distance transport it represents a more economically attractive and mass-scale compatible solution when compared to electrified heating or transport solutions.
Ammonia: Zero-carbon Fertiliser, Fuel and Energy Storage
Feb 2020
Publication
This briefing considers the opportunities and challenges associated with the manufacture and future use of zero-carbon ammonia which is referred to in this report as green ammonia. The production of green ammonia has the capability to impact the transition towards zero-carbon through the decarbonisation of its current major use in fertiliser production. Perhaps as significantly it has the following potential uses: • As a medium to store and transport chemical energy with the energy being released either by directly reacting with air or by the full or partial decomposition of ammonia to release hydrogen. • As a transport fuel by direct combustion in an engine or through chemical reaction with oxygen in the air in a fuel cell to produce electricity to power a motor. • To store thermal energy through the absorption of water and through phase changes between material states (for example liquid to gas).
Thermochemical Looping Technologies for Clean Hydrogen Production – Current Status and Recent Advances
Nov 2022
Publication
This review critically analyses various aspects of the most promising thermochemical cycles for clean hydrogen production. While the current hydrogen market heavily relies on fossil-fuel-based platforms the thermochemical water-splitting systems based on the reduction-oxidation (redox) looping reactions have a significant potential to significantly contribute to the sustainable production of green hydrogen at scale. However compared to the water electrolysis techniques the thermochemical cycles suffer from a low technology readiness level (TRL) which retards the commercial implementation of these technologies. This review mainly focuses on identifying the capability of the state-of-the-art thermochemical cycles to deploy large-scale hydrogen production plants and their techno-economic performance. This study also analyzed the potential integration of the hybrid looping systems with the solar and nuclear reactor designs which are evidenced to be more cost-effective than the electrochemical water-splitting methods but it excludes fossil-based thermochemical processes such as gasification steam methane reforming and pyrolysis. Further investigation is still required to address the technical issues associated with implementing the hybrid thermochemical cycles in order to bring them to the market for sustainable hydrogen production.
Blast Wave Generated by Delayed Ignition of Under-Expanded Hydrogen Free Jet at Ambient and Cryogenic Temperatures
Nov 2022
Publication
An under-expanded hydrogen jet from high-pressure equipment or storage tank is a potential incident scenario. Experiments demonstrated that the delayed ignition of a highly turbulent under-expanded hydrogen jet generates a blast wave able to harm people and damage property. There is a need for engineering tools to predict the pressure effects during such incidents to define hazard distances. The similitude analysis is applied to build a correlation using available experimental data. The dimensionless blast wave overpressure generated by delayed ignition and the follow-up deflagration or detonation of hydrogen jets at an any location from the jet ∆Pexp/P0 is correlated to the original dimensionless parameter composed of the product of the dimensionless ratio of storage pressure to atmospheric pressure Ps/P0 and the ratio of the jet release nozzle diameter to the distance from the centre of location of the fast-burning near-stoichiometric mixture on the jet axis (30% of hydrogen in the air by volume) to the location of a target (personnel or property) d/Rw. The correlation is built using the analysis of 78 experiments regarding this phenomenon in the wide range of hydrogen storage pressure of 0.5–65.0 MPa and release diameter of 0.5–52.5 mm. The correlation is applicable to hydrogen free jets at ambient and cryogenic temperatures. It is found that the generated blast wave decays inversely proportional to the square of the distance from the fast-burning portion of the jet. The correlation is used to calculate the hazard distances by harm thresholds for five typical hydrogen applications. It is observed that in the case of a vehicle with onboard storage tank at pressure 70 MPa the “no-harm” distance for humans reduces from 10.5 m to 2.6 m when a thermally activated pressure relief device (TPRD) diameter decreases from 2 mm to a diameter of 0.5 mm.
US-UK Scientific Forum on Sustainable Energy: Electrical Storage in Support of the Grid, Forum Report
Sep 2022
Publication
The effort to meet the ambitious targets of the Paris agreement is challenging many governments. The US and UK governments might have different approaches to achieving the targets but both will rely heavily on renewable energy sources such as wind and solar to power their economies. However these sources of power are unpredictable and ways will have to be developed to store renewable energy for hours days weeks seasons and maybe even years before it is used. As the disruptive and increasingly deadly impacts of climate change are being felt across the world the need to move to more sustainable sources of energy and to identify viable ways to store that energy has never been more important.<br/>This was the subject of the US–UK Science Forum on electrical storage in support of the grid which was held online from 17 – 18 March 2021. Co-organised by the Royal Society and the National Academy of Sciences it brought together a diverse group of 60 scientists policy makers industry leaders regulators and other key stakeholders for a wide-ranging discussion on all aspects of energy storage from the latest research in the field to the current status of deployment. It also considered the current national and international economic and policy contexts in which these developments are taking place. A number of key points emerged from the discussion. First it is clear that renewable energy will play an increasingly important role in the US and UK energy systems of the future and energy storage at a multi-terawatt hour scale has a vital role to play. Of course this will evolve differently to some extent in both countries and elsewhere according to the various geographical technological economic political social and regulatory environments. Second international collaboration is critical – no single nation will solve this problem alone. As two of the world’s leading scientific nations largest economies and per capita CO2 emitters with a long track record of collaboration the US and UK are well placed to play a vital role in addressing this critical challenge. As the discussion highlighted a wide range of energy storage technologies are now emerging and becoming increasingly available many of which have the potential to be critical components of a future net-zero energy system. A crucial next phase is in ensuring that these are technically developed as well as economically and political viable. This will require the support of a wide range of these potential solutions to ensure that their benefits remain widely available and to avoid costly ‘lock-in’. Scientists and science academies have a critical role to play in analysing technology options their combinations and their potential roles in future sustainable energy systems and in working with policymakers to incentivise investment and deployment.
Next for Net Zero Podcast: Unlock & Understand, Achieving a More Sustainable Future
Sep 2022
Publication
This episode examines how we are tackling a sustainable future – with Net Zero hurtling towards us at great pace. We’re around a year on from the pledges made at COP26 the UK’s Green Recovery initiative is well under way and by next year Britain is aiming to blend up to 20 per cent hydrogen into its gas networks. So now is the time to continue to unlock new insight and understand further the realities of both the challenges and opportunities ahead.
The podcast can be found here.
The podcast can be found here.
Techno Environmental Assessment of Flettner Rotor as Assistance Propulsion System for LH2 Tanker Ship Fuelled by Hydrogen
Nov 2022
Publication
This study presents a novel design and development of a 280000 m3 liquefied hydrogen tanker ship by implementing a set of 6 Flettner rotors as an assistance propulsion system in conjunction with a combined-cycle gas turbine fuelled by hydrogen as a prime mover. The study includes assessment of the technical and environmental aspects of the developed design. Furthermore an established method was applied to simulate the LH2 tanker in different voyages and conditions to investigate the benefits of harnessing wind energy to assist combined-cycle gas turbine in terms of performance and emission reduction based on engine behaviour for different voyages under loaded and unloaded normal as well as 6 % degraded engine and varying ambient conditions. The results indicate that implementing a set of 6 Flettner rotors for the LH2 tanker ship has the potential to positively impact the performance and lead to environmental benefits. A maximum contribution power of around 1.8 MW was achieved in the winter season owing to high wind speed and favourable wind direction. This power could save approximately 3.6 % of the combined-cycle gas turbine total output power (50 MW) and cause a 3.5 % reduction in NOx emissions.
Sustainable Synthetic Carbon Based Fuels for Transport
Sep 2019
Publication
The report considers two types of sustainable synthetic fuels: electro fuels (efuels) and synthetic biofuels. Efuels are made by combining hydrogen (from for example the electrolysis of water) with carbon dioxide (from direct air capture or a point source). Synthetic biofuels can be made from biological material (for example waste from forestry) or from further processing biofuels (for example ethanol).<br/>Whilst synthetic fuels can be “dropped in” to existing engines they are currently more expensive than fossil fuels and in the case of efuels could be thought of as an inefficient use of renewable electricity. However where renewable electricity is cheap and plentiful the manufacture and export of bulk efuels might make economic sense.<br/>Key research challenges identified include improving the fundamental understanding of catalysis; the need to produce cheap low-carbon hydrogen at scale; and developing sources of competitively priced low carbon energy are key to the development of synthetic efuels and biofuels. The UK has the research skills and capacity to improve many of these process steps such as in catalysis and biotechnology and to provide a further area of UK leadership in low-carbon energy.
Steady State Analysis of Gas Networks with Distributed Injection of Alternative Gas
Jun 2015
Publication
A steady state analysis method was developed for gas networks with distributed injection of alternative gas. A low pressure gas network was used to validate the method. Case studies were carried out with centralized and decentralized injection of hydrogen and upgraded biogas. Results show the impact of utilizing a diversity of gas supply sources on pressure distribution and gas quality in the network. It is shown that appropriate management of using a diversity of gas supply sources can support network management while reducing carbon emissions.
A System-Approach to Data can Help Install Trust and Enable a Net Zero Future
Mar 2021
Publication
Carbon capture and storage (CCS) and hydrogen will be a catalyst to deeply decarbonize the world’s energy system but not for another 15 years according to DNV’s Energy Transition Outlook. Many aspects from policy to technology developments can help to scale these technologies and accelerate the timeline.<br/>In the report A System-Approach to Data can Help Install Trust and Enable a Net Zero Future DNV considers what role data could play to support the initiation execution and operation of CCS and hydrogen projects.<br/>The research is based on interviews with representatives from across the UK energy supply chain. It focuses in particular on the emerging carbon and hydrogen industries and the cross sectoral challenges they face. It explores how data can facilitate the flow of the product both with respect to fiscal and technical risk matters.<br/>The report is intended for anyone involved in or has an interest in CCUS or hydrogen projects and in how data eco-systems will support the efficient operation and the transition to net-zero.<br/>DNV produced the report for and in partnership with the ODI an organization that advocates for the innovative use of open data to affect positive change across the globe.
Towards a Sustainable Hydrogen Economy: Optimisation-based Framework for Hydrogen Infrastructure Development
Sep 2016
Publication
This work studies the development of a sustainable hydrogen infrastructure that supports the transition towards a low-carbon transport system in the United Kingdom (UK). The future hydrogen demand is forecasted over time using a logistic diffusion model which reaches 50% of the market share by 2070. The problem is solved using an extension of SHIPMod an optimisation-based framework that consists of a multi-period spatially-explicit mixed-integer linear programming (MILP) formulation. The optimisation model combines the infrastructure elements required throughout the different phases of the transition namely economies of scale road and pipeline transportation modes and carbon capture and storage (CCS) technologies in order to minimise the present value of the total infrastructure cost using a discounted cash-flow analysis. The results show that the combination of all these elements in the mathematical formulation renders optimal solutions with the gradual infrastructure investments over time required for the transition towards a sustainable hydrogen economy.
Spatially Resolved Model for Studying Decarbonisation Pathways for Heat Supply and Infrastructure Trade-offs
Jun 2017
Publication
Heat decarbonisation is one of the main challenges of energy system decarbonisation. However existing energy planning models struggle to compare heat decarbonisation approaches because they rarely capture trade-offs between heat supply end-use technologies and network infrastructure at sufficient spatial resolution. A new optimisation model is presented that addresses this by including trade-offs between gas electricity and heat infrastructure together with related supply and end-use technologies with high spatial granularity. The model is applied in case studies for the UK. For the case modelled it is shown that electrification of heat is most cost-effective via district level heat pumps that supply heat networks instead of individual building heat pumps. This is because the cost of reinforcing the electricity grid for installing individual heat pumps does not sufficiently offset heat infrastructure costs. This demonstrates the importance of considering infrastructure trade-offs. When modelling the utilisation of a decarbonised gas the penetration of heat networks and location of district level heat supply technologies was shown to be dependent on linear heat density and on zone topology. This shows the importance of spatial aspects. Scenario-specific linear heat density thresholds for heat network penetration were identified. For the base case penetration of high temperature heat networks was over 50% and 60% by 2050 for linear heat densities over 1500 and 2500 kWh/m. For the case when medium heat temperature networks were additionally available a mix of both networks was observed. Medium temperature heat network penetration was over 20% 30% and 40% for linear heat densities of over 1500 2500 and 3000 kWh/m while high temperature heat network penetration was over 20% and 30% for linear heat densities of under 2000 and 1500 kWh/m respectively.
Neutron Scattering and Hydrogen Storage
Nov 2009
Publication
Hydrogen has been identified as a fuel of choice for providing clean energy for transport and other applications across the world and the development of materials to store hydrogen efficiently and safely is crucial to this endeavour. Hydrogen has the largest scattering interaction with neutrons of all the elements in the periodic table making neutron scattering ideal for studying hydrogen storage materials. Simultaneous characterisation of the structure and dynamics of these materials during hydrogen uptake is straightforward using neutron scattering techniques. These studies will help us to understand the fundamental properties of hydrogen storage in realistic conditions and hence design new hydrogen storage materials.
Possible Hydrogen Transitions in the UK: Critical Uncertainties and Possible Decision Points
Jun 2012
Publication
Many energy system optimization studies show that hydrogen may be an important part of an optimal decarbonisation mix but such analyses are unable to examine the uncertainties associated with breaking the ‘locked-in’ nature of incumbent systems. Uncertainties around technical learning rates; consumer behaviour; and the strategic interactions of governments automakers and fuel providers are particularly acute. System dynamics and agent-based models and studies of historical alternative fuel transitions have furthered our understanding of possible transition dynamics but these types of analysis exclude broader systemic issues concerning energy system evolution (e.g. supplies and prices of low-carbon energy) and the politics of transitions. This paper presents a hybrid approach to assessing hydrogen transitions in the UK by linking qualitative scenarios with quantitative energy systems modelling using the UK MARKAL model. Three possible transition pathways are explored each exploring different uncertainties and possible decision points with modelling used to inform and test key elements of each scenario. The scenarios draw on literature review and participatory input and the scenario structure is based on archetypal transition dynamics drawn from historical energy system transitions reflecting insights relating to innovation system development and resistance to change. Conclusions are drawn about appropriate policy responses.
Green Ammonia as a Spatial Energy Vector: A Review
May 2021
Publication
Green hydrogen is considered a highly promising vector for deep decarbonisation of energy systems and is forecast to represent 20% of global energy use by 2050. In order to secure access to this resource Japan Germany and South Korea have announced plans to import hydrogen; other major energy consumers are sure to follow. Ammonia a promising hydrogen derivative may enable this energy transport by densifying hydrogen at relatively low cost using well-understood technologies. This review seeks to describe a global green ammonia import/export market: it identifies benefits and limitations of ammonia relative to other hydrogen carriers the costs of ammonia production and transport and the constraints on both supply and demand. We find that green ammonia as an energy vector is likely to be critical to future energy systems but that gaps remain in the literature. In particular rigorous analysis of production and transport costs are rarely paired preventing realistic assessments of the delivered cost of energy or the selection of optimum import/export partners to minimise the delivered cost of ammonia. Filling these gaps in the literature is a prerequisite to the development of robust hydrogen and ammonia strategies and to enable the formation of global import and export markets of green fuel
Controlled Autoignition of Hydrogen in a Direct-injection Optical Engine
Mar 2021
Publication
Research into novel internal combustion engines requires consideration of the diversity in future fuels in an attempt to reduce drastically CO2 emissions from vehicles and promote energy sustainability. Hydrogen has been proposed as a possible fuel for future internal combustion engines and can be produced from renewable sources. Hydrogen’s wide flammability range allows higher engine efficiency than conventional fuels with both reduced toxic emissions and no CO2 gases. Most previous work on hydrogen engines has focused on spark-ignition operation. The current paper presents results from an optical study of controlled autoignition (or homogeneous charge compression ignition) of hydrogen in an engine of latest spark-ignition pentroof combustion chamber geometry with direct injection of hydrogen (100 bar). This was achieved by a combination of inlet air preheating in the range 200–400 C and residual gas recirculated internally by negative valve overlap. Hydrogen fuelling was set to various values of equivalence ratio typically in the range / = 0.40–0.63. Crank-angle resolved flame chemiluminescence images were acquired for a series of consecutive cycles at 1000 RPM in order to calculate in-cylinder rates of flame expansion and motion. Planar Laser Induced Fluorescence (LIF) of OH was also applied to record more detailed features of the autoignition pattern. Single and double (i.e. ‘split’ per cycle) hydrogen injection strategies were employed in order to identify the effect of mixture preparation on autoignition’s timing and spatial development. An attempt was also made to review relevant in-cylinder phenomena from the limited literature on hydrogen-fuelled spark-ignition optical engines and make comparisons were appropriate.
The Role of Renewable Hydrogen and Inter-seasonal Storage in Decarbonising Heat – Comprehensive Optimisation of Future Renewable Energy Value Chains
Nov 2018
Publication
Demands for space and water heating constitute a significant proportion of the total energy demands in Great Britain and are predominantly satisfied through natural gas which makes the heat sector a large emitter of carbon dioxide. Renewable hydrogen which can be injected into the gas grid or used directly in processes for generating heat and/or electricity is being considered as a low-carbon alternative energy carrier to natural gas because of its suitability for large-scale long- and short-term storage and low transportation losses all of which help to overcome the intermittency and seasonal variations in renewables. This requires new infrastructures for production storage transport and utilisation of renewable hydrogen – a hydrogen value chain – the design of which involves many interdependent decisions such as: where to locate wind turbines; where to locate electrolysers close to wind generation or close to demands; whether to transport energy as electricity or hydrogen and how; where to locate storage facilities; etc. This paper presents the Value Web Model a novel and comprehensive spatio-temporal mixed-integer linear programming model that can simultaneously optimise the design planning and operation of integrated energy value chains accounting for short-term dynamics inter-seasonal storage and investments out to 2050. It was coupled with GIS modelling to identify candidate sites for wind generation and used to optimise a number of scenarios for the production of hydrogen from onshore and offshore wind turbines in order to satisfy heat demands. The results show that over a wide range of scenarios the optimal pathway to heat is roughly 20% hydrogen and 80% electricity. Hydrogen storage both in underground caverns and pressurised tanks is a key enabling technology.
Effect of State of Charge on Type IV Hydrogen Storage Tank Rupture in a Fire
Sep 2021
Publication
The use of hydrogen storage tanks at 100% of nominal working pressure NWP is expected only after refuelling. Driving between refuellings is characterised by the state of charge SoC<100%. There is experimental evidence that Type IV tanks tested in a fire at initial pressures below one-third of its NWP depending on a fire source were leaking without rupture. This paper aims at understanding this phenomenon and the development of a predictive model. The numerical research has demonstrated that the heat transfer from fire through the composite overwrap is sufficient to melt the polymer liner. This initiates hydrogen microleaks through the composite wall before it loses the load-bearing ability when the resin degrades deep enough to cause the tank to rupture. The dependence of tank fire-resistance rating (FRR) on the SoC is presented for tanks of volume in the range 36-244 L. The tank wall thickness non-uniformity i.e. thinner composite at the dome area is identified as a serious issue for tank’s fire resistance that must be addressed by tank manufacturers and OEMs. The effect of the burst pressure ratio on FRR is investigated. It is concluded that thermal parameters of the composite wall i.e. decomposition heat and temperatures play a vital role in simulations of tank failure and thus FRR.
Hydrogen Informed Gurson Model for Hydrogen Embrittlement Simulation
Jul 2019
Publication
Hydrogen-microvoid interactions were studied via unit cell analyses with different hydrogen concentrations. The absolute failure strain decreases with hydrogen concentration but the failure loci were found to follow the same trend dependent only on stress triaxiality in other words the effects of geometric constraint and hydrogen on failure are decoupled. Guided by the decoupling principle a hydrogen informed Gurson model is proposed. This model is the first practical hydrogen embrittlement simulation tool based on the hydrogen enhanced localized plasticity (HELP) mechanism. It introduces only one additional hydrogen related parameter into the Gurson model and is able to capture hydrogen enhanced internal necking failure of microvoids with accuracy; its parameter calibration procedure is straightforward and cost efficient for engineering purpose
No more items...