United Kingdom
Characterising the Performance of Hydrogen Sensitive Coatings for Nuclear Safety Applications
Sep 2017
Publication
The detection of hydrogen gas is essential in ensuring the safety of nuclear plants. However events at Fukushima Daiichi NPP highlighted the vulnerability of conventional detection systems to extreme events where power may be lost. Herein chemochromic hydrogen sensors have been fabricated using transition metal oxide thin films sensitised with a palladium catalyst to provide passive hydrogen detection systems that would be resilient to any plant power failures. To assess their viability for nuclear safety applications these sensors have been gamma-irradiated to four total doses (0 5 20 50 kGy) using a Co-60 gamma radioisotope. Optical properties of both un-irradiated and irradiated samples were investigated to compare the effect of increased radiation dose on the sensors resultant colour change. The results suggest that gamma irradiation at the levels examined (>5 kGy) has a significant effect on the initial colour of the thin films and has a negative effect on the hydrogen sensing abilities.
Communicating Leakage Risk in the Hydrogen Economy: Lessons Already Learned from Geoenergy Industries
Sep 2019
Publication
Hydrogen may play a crucial part in delivering a net zero emissions future. Currently hydrogen production storage transport and utilisation are being explored to scope opportunities and to reduce barriers to market activation. One such barrier could be negative public response to hydrogen technologies. Previous research around socio-technical risks finds that public acceptance issues are particularly challenging for emerging remote technical sensitive uncertain or unfamiliar technologies - such as hydrogen. Thus while the hydrogen value chain could offer a range of potential environmental economic and social benefits each will have perceived risks that could challenge the introduction and subsequent roll-out of hydrogen. These potential issues must be identified and managed so that the hydrogen sector can develop adapt or respond appropriately. Geological storage of hydrogen could present challenges in terms of perceived safety. Valuable lessons can be learned from international research and practice of CO2 and natural gas storage in geological formations (for carbon capture and storage CCS and for power respectively). Here we explore these learnings. We consider the similarities and differences between these technologies and how these may affect perceived risks. We also reflect on lessons for effective communication and community engagement. We draw on this to present potential risks to the perceived safety of - and public acceptability of – the geological storage of hydrogen. One of the key lessons learned from CCS and natural gas storage is that progress is most effective when risk communication and public acceptability is considered from the early stages of technology development.
Best Practice in Numerical Simulation and CFD Benchmarking. Results from the SUSANA Project
Sep 2017
Publication
Correct use of Computational Fluid Dynamics (CFD) tools is essential in order to have confidence in the results. A comprehensive set of Best Practice Guidelines (BPG) in numerical simulations for Fuel Cells and Hydrogen applications has been one of the main outputs of the SUSANA project. These BPG focus on the practical needs of engineers in consultancies and industry undertaking CFD simulations or evaluating CFD simulation results in support of hazard/risk assessments of hydrogen facilities as well as on the needs of regulatory authorities. This contribution presents a summary of the BPG document. All crucial aspects of numerical simulations are addressed such as selection of the physical models domain design meshing boundary conditions and selection of numerical parameters. BPG cover all hydrogen safety relative phenomena i.e. release and dispersion ignition jet fire deflagration and detonation. A series of CFD benchmarking exercises are also presented serving as examples of appropriate modelling strategies.
Promotion Effect of Proton-conducting Oxide BaZr0.1Ce0.7Y0.2O3−δ on the Catalytic Activity of Ni Towards Ammonia Synthesis from Hydrogen and Nitrogen
Aug 2018
Publication
In this report for the first time it has been observed that proton-conducting oxide BaZr0.1Ce0.7Y0.2O3−δ (BZCY) has significant promotion effect on the catalytic activity of Ni towards ammonia synthesis from hydrogen and nitrogen. Renewable hydrogen can be used for ammonia synthesis to save CO2 emission. By investigating the operating parameters of the reaction the optimal conditions for this catalyst were identified. It was found that at 620 °C with a total flow rate of 200 mL min−1 and a H2/N2 mol ratio of 3 an activity of approximately 250 μmol g−1 h−1 can be achieved. This is ten times larger than that for the unpromoted Ni catalyst under the same conditions although the stability of both catalysts in the presence of steam was not good. The specific activity of Ni supported on proton-conducting oxide BZCY is approximately 72 times higher than that of Ni supported on non-proton conductor MgO-CeO2. These promotion effects were suspected to be due to the proton conducting nature of the support. Therefore it is proposed that the use of proton conducting support materials with highly active ammonia synthesis catalysts such as Ru and Fe will provide improved activity of at lower temperatures.
Properties of the Hydrogen Oxidation Reaction on Pt/C catalysts at Optimised High Mass Transport Conditions and its Relevance to the Anode Reaction in PEFCs and Cathode Reactions in Electrolysers
Jul 2015
Publication
Using a high mass transport floating electrode technique with an ultra-low catalyst loading (0.84–3.5 μgPt cm−2) of commonly used Pt/C catalyst (HiSPEC 9100 Johnson Matthey) features in the hydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER) were resolved and defined which have rarely been previously observed. These features include fine structure in the hydrogen adsorption region between 0.18 < V vs. RHE < 0.36 V vs. RHE consisting of two peaks an asymptotic decrease at potentials greater than 0.36 V vs. RHE and a hysteresis above 0.1 V vs. RHE which corresponded to a decrease in the cathodic scan current by up to 50% of the anodic scan. These features are examined as a function of hydrogen and proton concentration anion type and concentration potential scan limit and temperature. We provide an analytical solution to the Heyrovsky–Volmer equation and use it to analyse our results. Using this model we are able to extract catalytic properties (without mass transport corrections; a possible source of error) by simultaneously fitting the model to HOR curves in a variety of conditions including temperature hydrogen partial pressure and anion/H+ concentration. Using our model we are able to rationalise the pH and hydrogen concentration dependence of the hydrogen reaction. This model may be useful in application to fuel cell and electrolyser simulation studies.
Modelling the UK Energy System: Practical Insights for Technology Development and Policy Making
Jun 2014
Publication
The Energy Technologies Institute (ETI) has developed an internationally peer-reviewed model of the UK’s national energy system extending across power heat transport and infrastructure. The Energy System Modelling Environment (ESME) is a policy neutral system-wide optimisation model. It models the key technology and engineering choices taking account of cost engineering spatial and temporal factors.
Key points:
Key points:
- A system-wide perspective informed by modelling is highly relevant because complex energy systems are made more inter-dependent by emissions reduction objectives
- Efforts to cut emissions are substitutable across a national energy system encompassing power heat transport and infrastructure.
- Energy systems are subject to key decision points and it is important to make the right choices in major long lived investments
- Policy makers should place policy in a system-wide context.
- Decarbonisation can be achieved affordably (at around 0.6% of GDP) provided that the most cost effective technologies and strategies to reduce emissions are deployed
- A broad portfolio of technologies is needed to deliver emissions reductions with bio-energy and carbon capture and storage of particular system-wide importance
Future Cost and Performance of Water Electrolysis: An Expert Elicitation Study
Nov 2017
Publication
The need for energy storage to balance intermittent and inflexible electricity supply with demand is driving interest in conversion of renewable electricity via electrolysis into a storable gas. But high capital cost and uncertainty regarding future cost and performance improvements are barriers to investment in water electrolysis. Expert elicitations can support decision-making when data are sparse and their future development uncertain. Therefore this study presents expert views on future capital cost lifetime and efficiency for three electrolysis technologies: alkaline (AEC) proton exchange membrane (PEMEC) and solid oxide electrolysis cell (SOEC). Experts estimate that increased R&D funding can reduce capital costs by 0–24% while production scale-up alone has an impact of 17–30%. System lifetimes may converge at around 60000–90000 h and efficiency improvements will be negligible. In addition to innovations on the cell-level experts highlight improved production methods to automate manufacturing and produce higher quality components. Research into SOECs with lower electrode polarisation resistance or zero-gap AECs could undermine the projected dominance of PEMEC systems. This study thereby reduces barriers to investment in water electrolysis and shows how expert elicitations can help guide near-term investment policy and research efforts to support the development of electrolysis for low-carbon energy systems.
Effect of Microstructural and Environmental Variables on Ductility of Austenitic Stainless Steels
Sep 2019
Publication
Austenitic stainless steels are used extensively in harsh environments including for high-pressure gaseous hydrogen service. However the tensile ductility of this class of materials is very sensitive to materials and environmental variables. While tensile ductility is generally insufficient to qualify a material for hydrogen service ductility is an effective tool to explore microstructural and environmental variables and their effects on hydrogen susceptibility to inform understanding of the mechanisms of hydrogen effects in metals and to provide insight to microstructural variables that may improve relative performance. In this study hydrogen precharging was used to simulate high-pressure hydrogen environments to evaluate hydrogen effects on tensile properties. Several austenitic stainless steels were considered including both metastable and stable alloys. Room temperature and subambient temperature tensile properties were evaluated with three different internal hydrogen contents for type 304L and 316L austenitic stainless steels and one hydrogen content for XM-11. Significant ductility loss was observed for both metastable and stable alloys suggesting the stability of the austenitic phase is not sufficient to characterize the effects of hydrogen. Internal hydrogen does influence the character of deformation which drives local damage accumulation and ultimately fracture for both metastable and stable alloys. While a quantitative description of hydrogen-assisted fracture in austenitic stainless steels remains elusive these observations underscore the importance of the hydrogen-defect interactions and the accumulation of damage at deformation length scales.
Ignited Releases of Liquid Hydrogen
Jan 2014
Publication
If the hydrogen economy is to progress more hydrogen fuelling stations are required. In the short term in the absence of a hydrogen distribution network these fuelling stations will have to be supplied by liquid hydrogen (LH2) road tanker. Such a development will increase the number of tanker offloading operations significantly and these may need to be performed in close proximity to the general public.<br/>Several research projects have been undertaken already at HSL with the aim of identifying and addressing hazards relating to the storage and transport of bulk LH2 that are associated with hydrogen refuelling stations located in urban environments.<br/>The first phase of the research was to produce a position paper on the hazards of LH2 (Pritchard and Rattigan 2009). This was published as an HSE research report RR769 in 2010. <br/>The second phase developed an experimental and modelling strategy for issues associated with LH2 spills and was published as an internal report HSL XS/10/06. The subsequent experimental work is a direct implementation of that strategy. LH2 was first investigated experimentally (Royle and Willoughby 2012 HSL XS/11/70) as large-scale spills of LH2 at a rate of 60 litres per minute. Measurements were made on unignited releases which included the concentration of hydrogen in air thermal gradients in the concrete substrate liquid pool formation and temperatures within the pool. Computational modelling on the un-ignited spills was also performed (Batt and Webber 2012 HSL MSU/12/01).<br/>The experimental work on ignited releases of LH2 detailed in this report is a direct continuation of the work performed by Royle and Willoughby.<br/>The aim of this work was to determine the hazards and severity of a realistic ignited spill of LH2 focussing on; flammability limits of an LH2 vapour cloud flame speeds through an LH2 vapour cloud and subsequent radiative heat and overpressures after ignition. The results of the experimentation will inform the wider hydrogen community and contribute to the development of more robust modelling tools. The results will also help to update and develop guidance for codes and standards.
Optimal Design and Operation of Integrated Wind-hydrogen-electricity Networks for Decarbonising the Domestic Transport Sector in Great Britain
Nov 2015
Publication
This paper presents the optimal design and operation of integrated wind-hydrogen-electricity networks using the general mixed integer linear programming energy network model STeMES (Samsatli and Samsatli 2015). The network comprises: wind turbines; electrolysers fuel cells compressors and expanders; pressurised vessels and underground storage for hydrogen storage; hydrogen pipelines and electricity overhead/underground transmission lines; and fuelling stations and distribution pipelines.<br/>The spatial distribution and temporal variability of energy demands and wind availability were considered in detail in the model. The suitable sites for wind turbines were identified using GIS by applying a total of 10 technical and environmental constraints (buffer distances from urban areas rivers roads airports woodland and so on) and used to determine the maximum number of new wind turbines that can be installed in each zone.<br/>The objective is the minimisation of the total cost of the network subject to satisfying all of the demands of the domestic transport sector in Great Britain. The model simultaneously determines the optimal number size and location of each technology whether to transmit the energy as electricity or hydrogen the structure of the transmission network the hourly operation of each technology and so on. The cost of distribution was estimated from the number of fuelling stations and length of the distribution pipelines which were determined from the demand density at the 1 km level.<br/>Results indicate that all of Britain's domestic transport demand can be met by on-shore wind through appropriately designed and operated hydrogen-electricity networks. Within the set of technologies considered the optimal solution is: to build a hydrogen pipeline network in the south of England and Wales; to supply the Midlands and Greater London with hydrogen from the pipeline network alone; to use Humbly Grove underground storage for seasonal storage and pressurised vessels at different locations for hourly balancing as well as seasonal storage; for Northern Wales Northern England and Scotland to be self-sufficient generating and storing all of the hydrogen locally. These results may change with the inclusion of more technologies such as electricity storage and electric vehicles.
Physics of Spontaneous Ignition of High-Pressure Hydrogen Release and Transition to Jet Fire
Sep 2009
Publication
The main objective of this study is an insight into physical phenomena underlying spontaneous ignition of hydrogen at sudden release from high pressure storage and its transition into the sustained jet fire. This paper describes modelling and large eddy simulation (LES) of spontaneous ignition dynamics in a tube with a rupture disk separating high pressure hydrogen storage and the atmosphere. Numerical experiments carried out by a LES model have provided an insight into the physics of the spontaneous ignition phenomenon. It is demonstrated that a chemical reaction commences in a boundary layer within the tube and propagates throughout the tube cross-section after that. Simulated by the LES model dynamics of flame formation outside the tube has reproduced experimental observation of combustion by high-speed photography including vortex induced “flame separation". It is concluded that the model developed can be applied for hydrogen safety engineering in particular for development of innovative pressure relief devices.
Hy4Heat Understanding Commercial Appliances - Work Package 5
Nov 2020
Publication
The 'Hydrogen for Heat' (Hy4Heat) programme aims to support the UK Government in its ambitions to decarbonise the UK energy sector in line with the targets of the Climate Change Act 2008 by attempting to evaluate and de-risk the natural gas to hydrogen network conversion option. The impact on the commercial sector is an important factor in understanding the feasibility of utilising hydrogen to decarbonise heat in the UK. The overall objective of the market research study Work Package 5 (WP5) was to determine if it is theoretically possible to successfully convert the commercial sector to hydrogen. This work will contribute to the understanding of the scale type and capacity of gas heating appliances within the sector providing a characterisation of the market and determining the requirements and feasibility for successfully transitioning them to hydrogen in the future.
This report and any attachment is freely available on the Hy4Heat website here. The report can also be downloaded directly by clicking on the pdf icon above
This report and any attachment is freely available on the Hy4Heat website here. The report can also be downloaded directly by clicking on the pdf icon above
Flow Loop Test for Hydrogen
Jul 2020
Publication
National Grid (NG) needs to understand the implications that a hydrogen rich gas mix may have on the existing pipeline network. The primary network consists extensively of X52 steel pipe sections welded together using girth welds. Different welding specifications that have been used in the past 40 years and girth welds with different specifications may behave differently when coming into contact with hydrogen gas.
The aim of the flow loop test programme is to begin to evaluate the durability of pipeline materials in the context of future proofing of gas grid service where the gas mix may include a significant proportion of hydrogen. One specific objective is to investigate the resistance to hydrogen embrittlement of a conventional steel (X52) with commonly used girth welds. The primary concern is that the phenomenon of hydrogen embrittlement may cause unexpected or early failure mechanisms especially in older pipe sections with less stringent girth weld specifications.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
The aim of the flow loop test programme is to begin to evaluate the durability of pipeline materials in the context of future proofing of gas grid service where the gas mix may include a significant proportion of hydrogen. One specific objective is to investigate the resistance to hydrogen embrittlement of a conventional steel (X52) with commonly used girth welds. The primary concern is that the phenomenon of hydrogen embrittlement may cause unexpected or early failure mechanisms especially in older pipe sections with less stringent girth weld specifications.
This report and any attachment is freely available on the ENA Smarter Networks Portal here. IGEM Members can download the report and any attachment directly by clicking on the pdf icon above.
Vapour Cloud Explosions from the Ignition of Methane, Hydrogen, Air Mixtures in a Congested Region
Sep 2007
Publication
To facilitate the transition to the hydrogen economy the EU project NATURALHY is studying the potential for the existing natural gas pipeline networks to transport hydrogen together with natural gas to end-users. Hydrogen may then be extracted for hydrogen fuel-cell applications or the mixture used directly by consumers in existing gas-fired equipment with the benefit of lower carbon emissions. The existing gas pipeline networks are designed constructed and operated to safely transport natural gas mostly methane. However hydrogen has significantly different properties that may adversely affect both the integrity of the network and thereby increase the likelihood of an accidental leak and the consequences if the leak finds a source of ignition. Consequently a major part of the NATURALHY project is focused on assessing how much hydrogen could be introduced into the network without adversely impacting on the safety of the network and the risk to the public. Hydrogen is more reactive than natural gas so the severity of an explosion following an accidental leak may be increased. This paper describes field-scale experiments conducted to measure the overpressures generated by ignition of methane/hydrogen/air mixtures in a congested but unconfined region. Such regions may be found in the gas handling and metering stations of the pipeline networks. The 3 m x 3 m x 2 m high congested region studied contained layers of pipes. The composition of the methane/hydrogen mixture used was varied from 0% hydrogen to 100% hydrogen. On the basis of the experiments performed the maximum overpressures generated by methane/hydrogen mixtures with 25% (by volume) or less hydrogen content are not likely to be much more than those generated by methane alone. Greater percentages of hydrogen did significantly increase the explosion overpressure.
Hydrogen and Fuel Cell Stationary Applications: Key Findings of Modelling and Experimental Work in the Hyper Project
Sep 2009
Publication
Síle Brennan,
A. Bengaouer,
Marco Carcassi,
Gennaro M. Cerchiara,
Andreas Friedrich,
O. Gentilhomme,
William G. Houf,
N. Kotchourko,
Alexei Kotchourko,
Sergey Kudriakov,
Dmitry Makarov,
Vladimir V. Molkov,
Efthymia A. Papanikolaou,
C. Pitre,
Mark Royle,
R. W. Schefer,
G. Stern,
Alexandros G. Venetsanos,
Anke Veser,
Deborah Willoughby,
Jorge Yanez and
Greg H. Evans
"This paper summarises the modelling and experimental programme in the EC FP6 project HYPER. A number of key results are presented and the relevance of these findings to installation permitting guidelines (IPG) for small stationary hydrogen and fuel cell systems is discussed. A key aim of the activities was to generate new scientific data and knowledge in the field of hydrogen safety and where possible use this data as a basis to support the recommendations in the IPG. The structure of the paper mirrors that of the work programme within HYPER in that the work is described in terms of a number of relevant scenarios as follows: 1. high pressure releases 2. small foreseeable releases 3. catastrophic releases and 4. the effects of walls and barriers. Within each scenario the key objectives activities and results are discussed.<br/>The work on high pressure releases sought to provide information for informing safety distances for high-pressure components and associated fuel storage activities on both ignited and unignited jets are reported. A study on small foreseeable releases which could potentially be controlled through forced or natural ventilation is described. The aim of the study was to determine the ventilation requirements in enclosures containing fuel cells such that in the event of a foreseeable leak the concentration of hydrogen in air for zone 2 ATEX is not exceeded. The hazard potential of a possibly catastrophic hydrogen leakage inside a fuel cell cabinet was investigated using a generic fuel cell enclosure model. The rupture of the hydrogen feed line inside the enclosure was considered and both dispersion and combustion of the resulting hydrogen air mixture were examined for a range of leak rates and blockage ratios. Key findings of this study are presented. Finally the scenario on walls and barriers is discussed; a mitigation strategy to potentially reduce the exposure to jet flames is to incorporate barriers around hydrogen storage equipment. Conclusions of experimental and modelling work which aim to provide guidance on configuration and placement of these walls to minimise overall hazards is presented. "
Hydrogen Releases Ignited in a Simulated Vehicle Refuelling Environment
Sep 2007
Publication
If the general public is to use hydrogen as a vehicle fuel customers must be able to handle hydrogen with the same degree of confidence and with comparable risk as conventional liquid and gaseous fuels. The hazards associated with jet releases from leaks in a vehicle-refuelling environment must be considered if hydrogen is stored and used as a high-pressure gas since a jet release in a confined or congested area could result in an explosion. As there was insufficient knowledge of the explosion hazards a study was initiated to gain a better understanding of the potential explosion hazard consequences associated with high-pressure leaks from refuelling systems. This paper describes two experiments with a dummy vehicle and dispenser units to represent refuelling station congestion. The first represents a ‘worst-case’ scenario where the vehicle and dispensers are enveloped by a 5.4 m x 6.0 m x 2.5 m high pre-mixed hydrogen-air cloud. The second is an actual high-pressure leak from storage at 40 MPa (400 bar) representing an uncontrolled full-bore failure of a vehicle refuelling hose. In both cases an electric spark ignited the flammable cloud. Measurements were made of the explosion overpressure generated its evolution with time and its decay with distance. The results reported provide a direct demonstration of the explosion hazard from an uncontrolled leak; they will also be valuable for validating explosion models that will be needed to assess configurations and conditions beyond those studied experimentally.
Numerical Simulation of Detonation Failure and Re-initiation in Bifurcated Tubes
Oct 2015
Publication
A numerical approach is developed to simulate detonation propagation attenuation failure and re-initiation in hydrogen–air mixture. The aim is to study the condition under which detonations may fail or re-initiate in bifurcated tubes which is important for risk assessment in industrial accidents. A code is developed to solve compressible multidimensional transient reactive Navier–Stokes equations. An Implicit Large Eddy Simulation approach is used to model the turbulence. The code is developed and tested to ensure both deflagrations (when detonation fails) and detonations are simulated correctly. The code can correctly predict the flame properties as well as detonation dynamic parameters. The detonation propagation predictions in bifurcated tubes are validated against the experimental work of Wang et al. [12] and found to be in good agreement with experimental observations.
Smart Systems and Heat: Decarbonising Heat for UK homes
Nov 2015
Publication
Around 20% of the nation’s carbon emissions are generated by domestic heating. Analysis of the many ways the energy system might be adapted to meet carbon targets shows that the elimination of emissions from buildings is more cost effective than deeper cuts in other energy sectors such as transport. This effectively means that alternatives need to be found for domestic natural gas heating systems. Enhanced construction standards are ensuring that new buildings are increasingly energy efficient but the legacy building stock of around 26 million homes has relatively poor thermal performance and over 90% are expected to still be in use in 2050. Even if building replacement was seen as desirable the cost is unaffordable and the carbon emissions associated with the construction would be considerable.
YouTube link to accompanying video
YouTube link to accompanying video
FutureGrid: Project Progress Report
Dec 2021
Publication
The facility will be built from a range of decommissioned transmission assets to create a representative whole-network which will be used to trial hydrogen and will allow for accurate results to be analysed. Blends of hydrogen up to 100% will then be tested at transmission pressures to assess how the assets perform.<br/>The hydrogen research facility will remain separate from the main National Transmission System allowing for testing to be undertaken in a controlled environment with no risk to the safety and reliability of the existing gas transmission network.<br/>Ofgem’s Network Innovation Competition will provide £9.07m of funding with the remaining amount coming from the project partners.<br/>The aim is to start construction in 2021 with testing beginning in 2022.
The Importance of Economies of Scale, Transport Costs and Demand Patterns in Optimising Hydrogen Fuelling Infrastructure: An Exploration with SHIPMod (Spatial Hydrogen Infrastructure Planning Model)
Jul 2013
Publication
Hydrogen is widely recognised as an important option for future road transportation but a widespread infrastructure must be developed if the potential for hydrogen is to be achieved. This paper and related appendices which can be downloaded as Supplementary material present a mixed-integer linear programming model (called SHIPMod) that optimises a hydrogen supply chains for scenarios of hydrogen fuel demand in the UK including the spatial arrangement of carbon capture and storage infrastructure. In addition to presenting a number of improvements on past practice in the literature the paper focuses attention on the importance of assumptions regarding hydrogen demand. The paper draws on socio-economic data to develop a spatially detailed scenario of possible hydrogen demand. The paper then shows that assumptions about the level and spatial dispersion of hydrogen demand have a significant impact on costs and on the choice of hydrogen production technologies and distribution mechanisms.
No more items...