United Kingdom
Performance and Failure Analysis of a Retrofitted Cessna Aircraft with a Fuel Cell Power System Fuelled with Liquid Hydrogen
Jan 2022
Publication
Proton-Exchange Membrane-Fuel Cells (PEM-FC) are regarded as one of the prime candidates to provide emissions-free electricity for propulsion systems of aircraft. Here a turbocharged Fuel Cell Power System (FCPS) powered with liquid H2 (LH2) is designed and modelled to provide a primary power source in retrofitted Cessna 208 Caravan aircraft. The proposed FCPS comprises multiple PEM-FCs assembled in stacks two single-stage turbochargers to mitigate the variation of the ambient pressure with altitude two preheaters two humidifiers and two combustors. Interlinked component sub-models are constructed in MATLAB and referenced to commercially available equipment. The FCPS model is used to simulate steady-state responses in a proposed 1.5 h (∼350 km) mission flight determining the overall efficiency of the FCPS at 43% and hydrogen consumption of ∼28 kg/h. The multi-stack FCPS is modelled applying parallel fluidic and electrical architectures analysing two power-sharing methods: equally distributed and daisy-chaining. The designed LH2-FCPS is then proposed as a power system to a retrofitted Cessna 208 Caravan and with this example analysed for the probability of failure occurrence. The results demonstrate that the proposed “dual redundant” FCPS can reach failure rates comparable to commercial jet engines with a rate below 1.6 failures per million hours.
Risk Perception of an Emergent Technology: The Case of Hydrogen Energy
Jan 2006
Publication
Although hydrogen has been used in industry for many years as a chemical commodity its use as a fuel or energy carrier is relatively new and expert knowledge about its associated risks is neither complete nor consensual. Public awareness of hydrogen energy and attitudes towards a future hydrogen economy are yet to be systematically investigated. This paper opens by discussing alternative conceptualisations of risk then focuses on issues surrounding the use of emerging technologies based on hydrogen energy. It summarises expert assessments of risks associated with hydrogen. It goes on to review debates about public perceptions of risk and in doing so makes comparisons with public perceptions of other emergent technologies—Carbon Capture and Storage (CCS) Genetically Modified Organisms and Food (GM) and Nanotechnology (NT)—for which there is considerable scientific uncertainty and relatively little public awareness. The paper finally examines arguments about public engagement and "upstream" consultation in the development of new technologies. It is argued that scientific and technological uncertainties are perceived in varying ways and different stakeholders and different publics focus on different aspects or types of risk. Attempting to move public consultation further "upstream" may not avoid this because the framing of risks and benefits is necessarily embedded in a cultural and ideological context and is subject to change as experience of the emergent technology unfolds.
Optimising Fuel Supply Chains within Planetary Boundaries: A Case Study of Hydrogen for Road Transport in the UK
Jul 2020
Publication
The world-wide sustainability implications of transport technologies remain unclear because their assessment often relies on metrics that are hard to interpret from a global perspective. To contribute to filling this gap here we apply the concept of planetary boundaries (PBs) i.e. a set of biophysical limits critical for operating the planet safely to address the optimal design of sustainable fuel supply chains (SCs) focusing on hydrogen for vehicle use. By incorporating PBs into a mixed-integer linear programming model (MILP) we identify SC configurations that satisfy a given transport demand while minimising the PBs transgression level i.e. while reducing the risk of surpassing the ecological capacity of the Earth. On applying this methodology to the UK we find that the current fossil-based sector is unsustainable as it transgresses the energy imbalance CO2 concentration and ocean acidification PBs heavily i.e. five to 55-fold depending on the downscale principle. The move to hydrogen would help to reduce current transgression levels substantially i.e. reductions of 9–86% depending on the case. However it would be insufficient to operate entirely within all the PBs concurrently. The minimum impact SCs would produce hydrogen via water electrolysis powered by wind and nuclear energy and store it in compressed form followed by distribution via rail which would require as much as 37 TWh of electricity per year. Our work unfolds new avenues for the incorporation of PBs in the assessment and optimisation of energy systems to arrive at sustainable solutions that are entirely consistent with the carrying capacity of the planet.
A Justice and Responsible Research and Innovation Exploration of Marine Renewables and Green Hydrogen in Island Communities
Oct 2022
Publication
Both marine renewables and hydrogen are being tested by the European Marine Energy Centre in the Orkney Islands Scotland. Given their emerging nature there is opportunity and risk pertaining to their development and deployment. This research will contribute conceptually and methodologically through the integration of energy justice and RRI conceptual frameworks strengthening justice analyses in relation to emerging energy technologies. This integrated model will be mobilized to critically scrutinize marine energy and green hydrogen as two future energy sources within the energy system. Following a technology-centered exploration of these technologies this work will then contextualise them into place-based considerations of Orkney’s just energy futures. Placing the technologies at the centre of the justice analysis insights will have the potential to inform their development and deployment in other locations. Exploring them within the local Orkney context will initiate an essential and important discussion of energy futures in this specific location. This presentation sets out the empirical and conceptual context for this work and presents a novel conceptual and methodological model combining energy justice and RRI frameworks. Moreover preliminary methods are discussed including methods and outcomes from co-creation workshops held at research design phase.
Batteries, Fuel Cells, or Engines? A Probabilistic Economic and Environmental Assessment of Electricity and Electrofuels for Heavy Goods Vehicles
Oct 2022
Publication
Uncertainty surrounding the total cost of ownership system costs and life cycle environmental impacts means that stakeholders may lack the required information to evaluate the risks of transitioning to low-carbon fuels and powertrains. This paper assesses the life cycle costs and well-to-wheel environmental impacts of using electricity and electrofuels in Heavy Good Vehicles (HGVs) whilst considering input parameter uncertainty. The complex relationship between electricity cost electrolyser capacity factor CO2 capture cost and electricity emissions intensity is assessed within a Monte Carlo based framework to identify scenarios where use of electricity or electrofuels in heavy goods vehicles makes economic and environmental sense. For vehicles with a range of less than 450 km battery electric vehicles achieve the lowest total cost of ownership for an electricity cost less than 100 €/MWh. For vehicles that require a range of up to 900 km hydrogen fuel cell vehicles represent the lowest long-term cost of abatement. Power-to-methane and power-to-liquid scenarios become economically competitive when low-cost electricity is available at high-capacity factors and CO2 capture costs for fuel synthesis are below 100 €/tCO2; these fuels may be more applicable to decarbonise shipping and aviation. Battery electric HGVs reduce greenhouse gas emissions by 50% compared to the diesel baseline with electricity emissions of 350 gCO2e/kWh. Electricity emissions less than 35 gCO2e/kWh are required for the power-to-methane and power-to-liquid scenarios to meet EU emissions savings criteria. High vehicle capital costs and a lack of widespread refuelling infrastructure may hinder initial uptake of low-carbon fuels and powertrains for HGVs.
A Review of the Role of Hydrogen in the Heat Decarbonization of Future Energy Systems: Insights and Perspectives
Apr 2024
Publication
Hydrogen is an emerging technology changing the context of heating with cleaner combustion than traditional fossil fuels. Studies indicate the potential to repurpose the existing natural gas infrastructure offering consumers a sustainable economically viable option in the future. The integration of hydrogen in combined heat and power systems could provide residential energy demand and reduce environmental emissions. However the widespread adoption of hydrogen will face several challenges such as carbon dioxide emissions from the current production methods and the need for infrastructure modification for transport and safety. Researchers indicated the viability of hydrogen in decarbonizing heat while some studies also challenged its long-term role in the future of heating. In this paper a comprehensive literature review is carried out by identifying the following key aspects which could impact the conclusion on the overall role of hydrogen in heat decarbonization: (i) a holistic view of the energy system considering factors such as renewable integration and system balancing; (ii) consumer-oriented approaches often overlook the broader benefits of hydrogen in emission reduction and grid stability; (iii) carbon capture and storage scalability is a key factor for large-scale production of low-emission blue hydrogen; (iv) technological improvements could increase the cost-effectiveness of hydrogen; (v) the role of hydrogen in enhancing resilience especially during extreme weather conditions raises the potential of hydrogen as a flexible asset in the energy infrastructure for future energy supply; and finally when considering the UK as a basis case (vi) incorporating factors such as the extensive gas network and unique climate conditions necessitates specific strategies.
Regional Supply Chains for Decarbonising Steel: Energy Efficiency and Green Premium Mitigation
Jan 2022
Publication
Decarbonised steel enabled by green hydrogen-based iron ore reduction and renewable electricity-based steel making will disrupt the traditional supply chain. Focusing on the energetic and techno-economic assessment of potential green supply chains this study investigates the direct reduced iron-electric arc furnace production route enabled by renewable energy and deployed in regional settings. The hypothesis that co-locating manufacturing processes with renewable energy resources would offer highest energy efficiency and cost reduction is tested through an Australia-Japan case study. The binational partnership is structured to meet Japanese steel demand (for domestic use and regional exports) and source both energy and iron ore from the Pilbara region of Western Australia. A total of 12 unique supply chains differentiated by spatial configuration timeline and energy carrier were simulated which validated the hypothesis: direct energy and ore exports to remote steel producers (i.e. Japan-based production) as opposed to co-locating iron and steel production with abundant ore and renewable energy resources (i.e. Australia-based production) increased energy consumption and the levelised cost of steel by 45% and 32% respectively when averaged across 2030 and 2050. Two decades of technological development and economies of scale realisation would be crucial; 2030 supply chains were on average 12% more energy-intense and 23% more expensive than 2050 equivalents. On energy vectors liquefied hydrogen was more efficient than ammonia for export-dominant supply chains due to the pairing of its process flexibility and the intermittent solar energy profile as well as the avoidance of the need for ammonia cracking prior to direct reduction. To mitigate the green premium a carbon tax in the range of A$66–192/t CO2 would be required in 2030 and A$0–70/t CO2 in 2050; the diminished carbon tax requirement in the latter is achievable only by wholly Australia-based production. Further the modelled system scale was immense; producing 40 Mtpa of decarbonised steel will require 74–129% of Australia’s current electricity output and A$137–328 billion in capital investment for solar power production and shipping vessel infrastructure. These results call for strategic planning of regional resource pairing to drive energy and cost efficiencies which accelerate the global decarbonisation of steel.
Enabling Hydrogen Blending From Industrial Clusters
Nov 2022
Publication
This study has been commissioned by the gas transporters as part of the Gas Goes Green (GGG)2 work programme to develop and report a ‘gas transporter view’ on how to facilitate hydrogen blending from industrial clusters which are likely to form the initial source for hydrogen blending in the gas network. This view has been developed through engagement carried out with industrial clusters and other stakeholders as well as drawing on learnings from a previous hydrogen blending study.3 The key takeaways of this study are that: l Enabling hydrogen blending from industrial clusters can be done in a pragmatic way with limited need for change to existing gas frameworks. l Where frameworks do need to change the changes are incremental rather than involving overhaul of existing frameworks and are highly workable. l While there remain uncertainties as to the nature of blending at each cluster (e.g. the volume and profile of hydrogen injections) in general the changes required to commercial and regulatory frameworks are the same implying that they are low regret. Below we summarise gas transporters’ preferred approach to facilitating hydrogen blending from industrial clusters including both the policy decisions needed and the changes required to commercial and regulatory frameworks. We note that this work has not involved a legal review and that one will be required as part of the process of implementing the framework changes described below.
Socio-technical Barriers to Domestic Hydrogen Futures: Repurposing Pipelines, Policies, and Public Perceptions
Feb 2023
Publication
The feasibility of the global energy transition may rest on the ability of nations to harness hydrogen's potential for cross-sectoral decarbonization. In countries historically reliant on natural gas for domestic heating and cooking such as the UK hydrogen may prove critical to meeting net-zero targets and strengthening energy security. In response the UK government is targeting industrial decarbonization via hydrogen with parallel interest in deploying hydrogen-fueled appliances for businesses and homes. However prospective hydrogen futures and especially the domestic hydrogen transition face multiple barriers which reflect the cross-sectoral dynamics of achieving economies of scale and social acceptance. Addressing these challenges calls for a deep understanding of socio-technical factors across different scales of the hydrogen economy. In response this paper develops a socio-technical systems framework for overcoming barriers to the domestic transition which is applied to the UK context. The paper demonstrates that future strategies should account for interactions between political techno-economic technical market and social dimensions of the hydrogen transition. In parallel to techno-economic feasibility the right policies will be needed to create an even playing field for green hydrogen technologies while also supporting stakeholder symbiosis and consumer buy-in. Future studies should grapple with how an effective repurposing of pipelines policies and public perceptions can be aligned to accelerate the development of the hydrogen economy with maximum net benefits for society and the environment.
Premier, Progress and Prospects in Renewable Hydrogen Generation: A Review
May 2023
Publication
Renewable hydrogen production has an opportunity to reduce carbon emissions in the transportation and industrial sectors. This method generates hydrogen utilizing renewable energy sources such as the sun wind and hydropower lowering the number of greenhouse gases released into the environment. In recent years considerable progress has been made in the production of sustainable hydrogen particularly in the disciplines of electrolysis biomass gasification and photoelectrochemical water splitting. This review article figures out the capacity efficiency and cost-effectiveness of hydrogen production from renewable sources effectively comparing the conventionally used technologies with the latest techniques which are getting better day by day with the implementation of the technological advancements. Governments investors and industry players are increasingly interested in manufacturing renewable hydrogen and the global need for clean energy is expanding. It is projected that facilities for manufacturing renewable hydrogen as well as infrastructure to support this development would expand hastening the transition to an environment-friendly and low-carbon economy
Enabling or Requiring Hydrogen-ready Industrial Boiler Equipment: Call for Evidence, Summary of Responses
Dec 2022
Publication
On 20 December 2021 the Department for Business Energy and Industrial Strategy (BEIS) launched a Call for Evidence (CfE) on enabling or requiring hydrogen-ready industrial boiler equipment. The aim was to gather evidence from a broad range of UK manufacturers industrial end-users supply chain participants and other experts to enable the development of proposals. The CfE was open for 12 weeks closing on 14 March 2022. The CfE followed the publication of the UK Hydrogen Strategy on 17 August 2021. In the Strategy government committed to run a CfE on hydrogen-ready industrial equipment by theend of 2022. The published CfE focussed on industrial boilers due to their widespread use and because BEIS analysis indicates a significant proportion of the demand for hydrogen in industry will come from this equipment category. Furthermore the technology required for hydrogen boilers is relatively advanced and more standardised than for other types of industrial<br/>equipment. For these reasons industrial boiler equipment presents a good test case for hydrogen-ready industrial equipment more broadly.<br/>The CfE contained the following three sections:<br/>• The opportunity for hydrogen-ready industrial boilers<br/>• The role for government to support hydrogen-ready industrial boiler equipment<br/>• The role of the supply chain and economic opportunities for the UK<br/>Respondents were asked to support their answers with evidence relating to their business product or sector published literature studies or to their broader expertise. To raise awareness of the CfE BEIS officials held two online webinars on 1 February 2022 and 3 February 2022. These were open to boiler manufacturers industrial end-users supply chain participants trade associations professional bodies and any other person(s) with an interest in the area.<br/>To build on evidence gathered through the CfE BEIS commissioned an independent study from Arup and Kiwa Gastec to further examine whether government should enable or require hydrogen-ready industrial boiler equipment. This study investigated the following topics:<br/>• definitions of hydrogen-readiness for industrial boilers<br/>• comparisons of the cost and resource requirement to install and convert hydrogen-ready industrial boiler equipment<br/>• industrial boiler supply chain capacity for conversion to hydrogen<br/>• estimates of the UK industrial boiler population<br/>The final report for this study has been published alongside the government response to the call for evidence. The conclusions and recommendations of that report do not necessarily represent the view of BEIS.
Hydrogen Strategy Update to the Market: July 2022
Jul 2022
Publication
Low carbon hydrogen is our new home-grown super-fuel which will be vital for our energy security and to meet our legally binding commitment to achieve net zero by 2050. The UK Hydrogen Strategy published in August 2021 outlined a comprehensive roadmap for the development of a thriving UK hydrogen economy over the coming decade. In the British Energy Security Strategy published in April this year the government doubled the UK’s hydrogen production ambition to up to 10GW by 2030. This increased ambition cements our place firmly at the forefront of the global race to develop hydrogen as a secure low carbon replacement for fossil fuels in the transition to greater energy security and net zero. Since the publication of the UK Hydrogen Strategy we have continued to deliver on our commitments setting out new policy and funding for hydrogen across the value chain and bringing together the international community around shared hydrogen objectives to rapidly develop a global hydrogen economy. Hydrogen was a key component of the Net Zero Strategy COP26 and the British Energy Security Strategy. The Hydrogen Investment Package and opening of the £240 million Net Zero Hydrogen Fund in April marked a major step forward in delivering government support to drive further private investment into hydrogen production in the UK. To keep industry informed on the government’s ongoing work to develop the hydrogen economy we committed in the UK Hydrogen Strategy to producing regular updates to the market as our policy develops. In addition to offering an accessible ‘one stop shop’ of government policy development and support schemes these updates will provide industry and investors with further clarity on the direction of travel of hydrogen policy across the value chain so that government and industry can work together most effectively and with the necessary pace to build a world-leading low carbon hydrogen sector in the UK.
A Multi-energy Multi-microgrid System Planning Model for Decarbonisation and Decontamination of Isolated Systems
May 2023
Publication
Decarbonising and decontaminating remote regions in the world presents several challenges. Many of these regions feature isolation dispersed demand in large areas and a lack of economic resources that impede the development of robust and sustainable networks. Furthermore isolated systems in the developing world are mostly based on diesel generation for electricity and firewood and liquefied petroleum gas for heating as these options do not require a significant infrastructure cost. In this context we present a stochastic multi-energy multi-microgrid system planning model that integrates electricity heat and hydrogen networks in isolated systems. The model is stochastic to capture uncertainty in renewable generation outputs particularly hydro and wind and thus design a multi-energy system proved secured against such uncertainty. The model also features two distinct constraints to limit the emissions of CO2 (for decarbonisation) and particulate matter (for decontamination) and incorporates firewood as a heating source. Moreover given that the focus is on low-voltage networks we introduce a fully linear AC power flow equations set allowing the planning model to remain tractable. The model is applied to a real-world case study to design a multi-energy multi-microgrid system in an isolated region in Chilean Patagonia. In a case with a zero limit over direct CO2 emissions the total system’s cost increases by 34% with respect to an unconstrained case. In a case with a zero limit over particulate matter emissions the total system’s cost increases by 189%. Finally although an absolute zero limit over both particulate matter and direct CO2 emissions leads to a total system’s cost increase of 650% important benefits in terms of decarbonisation and decontamination can be achieved at marginal cost increments.
Agreement for the Low Carbon Hydrogen Production Business Model
Dec 2022
Publication
The Heads of Terms for the Low Carbon Hydrogen Agreement sets out the government’s proposal for the final hydrogen production business model design. It will form the basis of the Low Carbon Hydrogen Agreement the business model contract between the government appointed counterparty and a low carbon hydrogen producer.<br/>The business model will provide revenue support to hydrogen producers to overcome the operating cost gap between low carbon hydrogen and high carbon fuels. It has been designed to incentivise investment in low carbon hydrogen production and use and in doing so deliver the government’s ambition of up to 10GW of low carbon hydrogen production capacity by 2030.
Technical and Economic Performance Assessment of Blue Hydrogen Production Using New Configuration Through Modelling and Simulation
Mar 2024
Publication
Steam methane reforming (SMR) is the dominant process for hydrogen production which produce large amount of carbon dioxide (CO2) as a by-product. To address concerns about carbon emissions there is an increasing focus on blue hydrogen to mitigate carbon emissions during hydrogen production. However the commercialization of blue hydrogen production (BHP) is hindered by the challenges of high cost and energy consumption. This study proposes a new configuration to address these challenges which is characterized by: (a) the use of piperazine (PZ) as a solvent which has a high CO2 absorption efficiency; (b) a more efficient heat exchange configuration which recovers the waste exergy from flue gas; (c) the advanced flash stripper (AFS) was adopted to reduce the capital cost due to its simpler stripper configuration. In addition the technical and economic performance of the proposed energy and cost-saving blue hydrogen production (ECSB) process is investigated and compared with the standard SMR process. The detailed models of the SMR process and the post-combustion carbon capture (PCC) process were developed and integrated in Aspen plus® V11. The results of the technical analysis showed that the ECSB process with 30 wt.% PZ achieves a 36.3 % reduction in energy penalty when compared to the standard process with 30 wt.% Monoethanolamine (MEA). The results of the economic analysis showed that the lowest levelized cost of blue hydrogen (LCBH) was achieved by the ECSB process with 30 wt.% PZ. Compared to the BHP process with 30 wt.% MEA the LCBH was reduced by 19.7 %.
Nuclear Cogeneration: Civil Nuclear Energy in a Low-carbon Future
Oct 2020
Publication
This policy briefing considers how the use of nuclear energy could be expanded to make the most of the energy produced and also to have the flexibility to complement an energy system with a growing input of intermittent renewable energy.<br/>What is nuclear cogeneration?<br/>Nuclear cogeneration is where the heat generated by a nuclear power station is used not only to generate electricity but to address some of the ‘difficult to decarbonise’ energy demands such as domestic heating and hydrogen production. It also enables a nuclear plant to be used more flexibly by switching between electricity generation and cogeneration applications.<br/>Applications for nuclear cogeneration<br/>Heat generated by civil nuclear reactors can be extracted at two different points for applications requiring either low-temperature or high-temperature heat. Each application differs in many aspects of operation and have different challenges.<br/>Low-temperature cogeneration<br/>Applications for the lower temperature ‘waste’ heat include:<br/>District heating<br/>Seawater desalination<br/>Low-temperature industrial process heating<br/>High-temperature cogeneration<br/>Higher temperature heat can be accessed earlier and used for:<br/>High-temperature industrial process heating<br/>Hydrogen production<br/>Sustainable synthetic fuel production<br/>Direct air capture<br/>Thermal energy storage<br/>Challenges of cogeneration systems<br/>Whilst some nuclear cogeneration applications have been employed in many countries the economic benefit of widescale nuclear cogeneration needs to be determined. However if the construction cost reductions for small modular reactors (SMRs) can be realised and the regulation and licencing processes streamlined then the additional revenue benefits of cogeneration could be material for SMRs and for the future of nuclear generation in the UK.<br/>Other outstanding issues include the ownership of reactors the future demand for hydrogen and other cogeneration products at a regional national and international level and the cost of carbon and dependable power.
Ammonia as Hydrogen Carrier for Transportation; Investigation of the Ammonia Exhaust Gas Fuel Reforming
Jun 2013
Publication
In this paper we show for the first time the feasibility of ammonia exhaust gas reforming as a strategy for hydrogen production used in transportation. The application of the reforming process and the impact of the product on diesel combustion and emissions were evaluated. The research was started with an initial study of ammonia autothermal reforming (NH3 e ATR) that combined selective oxidation of ammonia (into nitrogen and water) and ammonia thermal decomposition over a ruthenium catalyst using air as the oxygen source. The air was later replaced by real diesel engine exhaust gas to provide the oxygen needed for the exothermic reactions to raise the temperature and promote the NH3 decomposition. The main parameters varied in the reforming experiments are O2/NH3 ratios NH3 concentration in feed gas and gas e hourly e space e velocity (GHSV). The O2/NH3 ratio and NH3 concentration were the key factors that dominated both the hydrogen production and the reforming process efficiencies: by applying an O2/NH3 ratio ranged from 0.04 to 0.175 2.5e3.2 l/min of gaseous H2 production was achieved using a fixed NH3 feed flow of 3 l/min. The reforming reactor products at different concentrations (H2 and unconverted NH3) were then added into a diesel engine intake. The addition of considerably small amount of carbon e free reformate i.e. represented by 5% of primary diesel replacement reduced quite effectively the engine carbon emissions including CO2 CO and total hydrocarbons.
Gas Goes Green: Hydrogen Blending Capacity Maps
Jan 2022
Publication
Britain's gas networks are ready for hydrogen blending. Learn more about Britain's hydrogen blending capacity in the National Transmission System and Distribution Networks.
Hydrogen Strategy Update to the Market: December 2022
Dec 2022
Publication
The Government is committed to developing the UK’s low carbon hydrogen economy: hydrogen is considered critical to delivering energy security and our decarbonisation targets and presents a significant growth opportunity. It can play a pivotal role in our transition to a future based on renewable and nuclear energy while ensuring that natural gas used during this transition is from reliable sources including our own North Sea production and can provide clean energy for use in industry power transport and potentially home heating. In the UK Hydrogen Strategy we included the commitment to regularly summarise our policy development to keep industry apprised. Since publication of the Hydrogen Strategy we have doubled our low carbon hydrogen production capacity ambition to up to 10GW by 2030 (with at least half from electrolytic hydrogen) in the British Energy Security Strategy provided greater clarity to investors through the Hydrogen Investment Package and made substantial policy and funding strides across the hydrogen value chain. We summarised these ambitions commitments and actions in the first Hydrogen Strategy update to the market in July 2022. This was published alongside other key elements of our policy support which also included the launch of the first Electrolytic Hydrogen Allocation Round – offering joint Net Zero Hydrogen Fund (NZHF) and Hydrogen Production Business Model (HPBM) support – and our Hydrogen Sector Development Action Plan and the appointment of a UK Hydrogen Champion. Hydrogen is closely integrated into Government’s wider policy development on energy security and the energy transition both domestically and internationally with hydrogen policy previously announced through the Net Zero Strategy and the Breakthrough Agenda at COP26. This December 2022 Hydrogen Strategy update to the market summarises the extensive activity across Government since July to develop new hydrogen policy at pace and to design and deliver funding support. This includes announcements on shortlisted hydrogen projects in the Cluster Sequencing Process the launch of a consultation on hydrogen transport and storage (T&S) infrastructure the publication of the HPBM Heads of Terms and an update on the ongoing first Electrolytic Hydrogen Allocation Round. The hydrogen policy development presented here underlines the Government’s approach to promote every aspect of the UK hydrogen economy in collaboration with industry investors and international partners to create a strong globally competitive UK hydrogen sector.
A Review on Ports' Readiness to Facilitate International Hydrogen Trade
Jan 2023
Publication
The existing literature on the hydrogen supply chains has knowledge gaps. Most studies focus on hydrogen production storage transport and utilisation but neglect ports which are nexuses in the supply chains. To fill the gap this paper focuses on ports' readiness for the upcoming hydrogen international trade. Potential hydrogen exporting and importing ports are screened. Ports' readiness for hydrogen export and import are reviewed from perspectives of infrastructure risk management public acceptance regulations and standards and education and training. The main findings are: (1) liquid hydrogen ammonia methanol and LOHCs are suitable forms for hydrogen international trade; (2) twenty ports are identified that could be first movers; among them twelve are exporting ports and eight are importing ports; (3) ports’ readiness for hydrogen international trade is still in its infancy and the infrastructure construction or renovation risk management measures establishment of regulations and standards education and training all require further efforts.
Next for Net Zero Podcast: Transporting to a Greener World
Oct 2022
Publication
Decarbonisation will need a significant societal shift. The when why and how we travel is going to look very different within a decade. Joining us is Florentine Roy – a leading expert on electric vehicles and Innovation Project Lead at UK Power Networks and Matt Hindle - Head of Net Zero and Sustainability at Wales and West Utilities. Let’s talk about the energy system implications of this massive undertaking and how it can be enabled by innovation in a fair and just way.
The podcast can be found here.
The podcast can be found here.
The Key Techno-Economic and Manufacturing Drivers for Reducing the Cost of Power-to-Gas and a Hydrogen-Enabled Energy System
Jul 2021
Publication
Water electrolysis is a process which converts electricity into hydrogen and is seen as a key technology in enabling a net-zero compatible energy system. It will enable the scale-up of renewable electricity as a primary energy source for heating transport and industry. However displacing the role currently met by fossil fuels might require a price of hydrogen as low as 1 $/kg whereas renewable hydrogen produced using electrolysis is currently 10 $/kg. This article explores how mass manufacturing of proton exchange membrane (PEM) electrolysers can reduce the capital cost and thus make the production of renewable power to hydrogen gas (PtG) more economically viable. A bottom up direct manufacturing model was developed to determine how economies of scale can reduce the capital cost of electrolysis. The results demonstrated that (assuming an annual production rate of 5000 units of 200 kW PEM electrolysis systems) the capital cost of a PEM electrolysis system can reduce from 1990 $/kW to 590 $/kW based on current technology and then on to 431 $/kW and 300 $/kW based on the an installed capacity scale-up of ten- and one-hundred-fold respectively. A life-cycle costing analysis was then completed to determine the importance of the capital cost of an electrolysis system to the price of hydrogen. It was observed that based on current technology mass manufacturing has a large impact on the price of hydrogen reducing it from 6.40 $/kg (at 10 units units per year) to 4.16 $/kg (at 5000 units per year). Further analysis was undertaken to determine the cost at different installed capacities and found that the cost could reduce further to 2.63 $/kg and 1.37 $/kg based on technology scale-up by ten- and one hundred-fold respectively. Based on the 2030 (and beyond) baseline assumptions it is expected that hydrogen production from PEM electrolysis could be used as an industrial process feed stock provide power and heat to buildings and as a fuel for heavy good vehicles (HGVs). In the cases of retrofitted gas networks for residential or industrial heating solutions or for long distance transport it represents a more economically attractive and mass-scale compatible solution when compared to electrified heating or transport solutions.
Ammonia: Zero-carbon Fertiliser, Fuel and Energy Storage
Feb 2020
Publication
This briefing considers the opportunities and challenges associated with the manufacture and future use of zero-carbon ammonia which is referred to in this report as green ammonia. The production of green ammonia has the capability to impact the transition towards zero-carbon through the decarbonisation of its current major use in fertiliser production. Perhaps as significantly it has the following potential uses: • As a medium to store and transport chemical energy with the energy being released either by directly reacting with air or by the full or partial decomposition of ammonia to release hydrogen. • As a transport fuel by direct combustion in an engine or through chemical reaction with oxygen in the air in a fuel cell to produce electricity to power a motor. • To store thermal energy through the absorption of water and through phase changes between material states (for example liquid to gas).
Thermochemical Looping Technologies for Clean Hydrogen Production – Current Status and Recent Advances
Nov 2022
Publication
This review critically analyses various aspects of the most promising thermochemical cycles for clean hydrogen production. While the current hydrogen market heavily relies on fossil-fuel-based platforms the thermochemical water-splitting systems based on the reduction-oxidation (redox) looping reactions have a significant potential to significantly contribute to the sustainable production of green hydrogen at scale. However compared to the water electrolysis techniques the thermochemical cycles suffer from a low technology readiness level (TRL) which retards the commercial implementation of these technologies. This review mainly focuses on identifying the capability of the state-of-the-art thermochemical cycles to deploy large-scale hydrogen production plants and their techno-economic performance. This study also analyzed the potential integration of the hybrid looping systems with the solar and nuclear reactor designs which are evidenced to be more cost-effective than the electrochemical water-splitting methods but it excludes fossil-based thermochemical processes such as gasification steam methane reforming and pyrolysis. Further investigation is still required to address the technical issues associated with implementing the hybrid thermochemical cycles in order to bring them to the market for sustainable hydrogen production.
Blast Wave Generated by Delayed Ignition of Under-Expanded Hydrogen Free Jet at Ambient and Cryogenic Temperatures
Nov 2022
Publication
An under-expanded hydrogen jet from high-pressure equipment or storage tank is a potential incident scenario. Experiments demonstrated that the delayed ignition of a highly turbulent under-expanded hydrogen jet generates a blast wave able to harm people and damage property. There is a need for engineering tools to predict the pressure effects during such incidents to define hazard distances. The similitude analysis is applied to build a correlation using available experimental data. The dimensionless blast wave overpressure generated by delayed ignition and the follow-up deflagration or detonation of hydrogen jets at an any location from the jet ∆Pexp/P0 is correlated to the original dimensionless parameter composed of the product of the dimensionless ratio of storage pressure to atmospheric pressure Ps/P0 and the ratio of the jet release nozzle diameter to the distance from the centre of location of the fast-burning near-stoichiometric mixture on the jet axis (30% of hydrogen in the air by volume) to the location of a target (personnel or property) d/Rw. The correlation is built using the analysis of 78 experiments regarding this phenomenon in the wide range of hydrogen storage pressure of 0.5–65.0 MPa and release diameter of 0.5–52.5 mm. The correlation is applicable to hydrogen free jets at ambient and cryogenic temperatures. It is found that the generated blast wave decays inversely proportional to the square of the distance from the fast-burning portion of the jet. The correlation is used to calculate the hazard distances by harm thresholds for five typical hydrogen applications. It is observed that in the case of a vehicle with onboard storage tank at pressure 70 MPa the “no-harm” distance for humans reduces from 10.5 m to 2.6 m when a thermally activated pressure relief device (TPRD) diameter decreases from 2 mm to a diameter of 0.5 mm.
US-UK Scientific Forum on Sustainable Energy: Electrical Storage in Support of the Grid, Forum Report
Sep 2022
Publication
The effort to meet the ambitious targets of the Paris agreement is challenging many governments. The US and UK governments might have different approaches to achieving the targets but both will rely heavily on renewable energy sources such as wind and solar to power their economies. However these sources of power are unpredictable and ways will have to be developed to store renewable energy for hours days weeks seasons and maybe even years before it is used. As the disruptive and increasingly deadly impacts of climate change are being felt across the world the need to move to more sustainable sources of energy and to identify viable ways to store that energy has never been more important.<br/>This was the subject of the US–UK Science Forum on electrical storage in support of the grid which was held online from 17 – 18 March 2021. Co-organised by the Royal Society and the National Academy of Sciences it brought together a diverse group of 60 scientists policy makers industry leaders regulators and other key stakeholders for a wide-ranging discussion on all aspects of energy storage from the latest research in the field to the current status of deployment. It also considered the current national and international economic and policy contexts in which these developments are taking place. A number of key points emerged from the discussion. First it is clear that renewable energy will play an increasingly important role in the US and UK energy systems of the future and energy storage at a multi-terawatt hour scale has a vital role to play. Of course this will evolve differently to some extent in both countries and elsewhere according to the various geographical technological economic political social and regulatory environments. Second international collaboration is critical – no single nation will solve this problem alone. As two of the world’s leading scientific nations largest economies and per capita CO2 emitters with a long track record of collaboration the US and UK are well placed to play a vital role in addressing this critical challenge. As the discussion highlighted a wide range of energy storage technologies are now emerging and becoming increasingly available many of which have the potential to be critical components of a future net-zero energy system. A crucial next phase is in ensuring that these are technically developed as well as economically and political viable. This will require the support of a wide range of these potential solutions to ensure that their benefits remain widely available and to avoid costly ‘lock-in’. Scientists and science academies have a critical role to play in analysing technology options their combinations and their potential roles in future sustainable energy systems and in working with policymakers to incentivise investment and deployment.
Next for Net Zero Podcast: Unlock & Understand, Achieving a More Sustainable Future
Sep 2022
Publication
This episode examines how we are tackling a sustainable future – with Net Zero hurtling towards us at great pace. We’re around a year on from the pledges made at COP26 the UK’s Green Recovery initiative is well under way and by next year Britain is aiming to blend up to 20 per cent hydrogen into its gas networks. So now is the time to continue to unlock new insight and understand further the realities of both the challenges and opportunities ahead.
The podcast can be found here.
The podcast can be found here.
Techno Environmental Assessment of Flettner Rotor as Assistance Propulsion System for LH2 Tanker Ship Fuelled by Hydrogen
Nov 2022
Publication
This study presents a novel design and development of a 280000 m3 liquefied hydrogen tanker ship by implementing a set of 6 Flettner rotors as an assistance propulsion system in conjunction with a combined-cycle gas turbine fuelled by hydrogen as a prime mover. The study includes assessment of the technical and environmental aspects of the developed design. Furthermore an established method was applied to simulate the LH2 tanker in different voyages and conditions to investigate the benefits of harnessing wind energy to assist combined-cycle gas turbine in terms of performance and emission reduction based on engine behaviour for different voyages under loaded and unloaded normal as well as 6 % degraded engine and varying ambient conditions. The results indicate that implementing a set of 6 Flettner rotors for the LH2 tanker ship has the potential to positively impact the performance and lead to environmental benefits. A maximum contribution power of around 1.8 MW was achieved in the winter season owing to high wind speed and favourable wind direction. This power could save approximately 3.6 % of the combined-cycle gas turbine total output power (50 MW) and cause a 3.5 % reduction in NOx emissions.
Sustainable Synthetic Carbon Based Fuels for Transport
Sep 2019
Publication
The report considers two types of sustainable synthetic fuels: electro fuels (efuels) and synthetic biofuels. Efuels are made by combining hydrogen (from for example the electrolysis of water) with carbon dioxide (from direct air capture or a point source). Synthetic biofuels can be made from biological material (for example waste from forestry) or from further processing biofuels (for example ethanol).<br/>Whilst synthetic fuels can be “dropped in” to existing engines they are currently more expensive than fossil fuels and in the case of efuels could be thought of as an inefficient use of renewable electricity. However where renewable electricity is cheap and plentiful the manufacture and export of bulk efuels might make economic sense.<br/>Key research challenges identified include improving the fundamental understanding of catalysis; the need to produce cheap low-carbon hydrogen at scale; and developing sources of competitively priced low carbon energy are key to the development of synthetic efuels and biofuels. The UK has the research skills and capacity to improve many of these process steps such as in catalysis and biotechnology and to provide a further area of UK leadership in low-carbon energy.
Steady State Analysis of Gas Networks with Distributed Injection of Alternative Gas
Jun 2015
Publication
A steady state analysis method was developed for gas networks with distributed injection of alternative gas. A low pressure gas network was used to validate the method. Case studies were carried out with centralized and decentralized injection of hydrogen and upgraded biogas. Results show the impact of utilizing a diversity of gas supply sources on pressure distribution and gas quality in the network. It is shown that appropriate management of using a diversity of gas supply sources can support network management while reducing carbon emissions.
A System-Approach to Data can Help Install Trust and Enable a Net Zero Future
Mar 2021
Publication
Carbon capture and storage (CCS) and hydrogen will be a catalyst to deeply decarbonize the world’s energy system but not for another 15 years according to DNV’s Energy Transition Outlook. Many aspects from policy to technology developments can help to scale these technologies and accelerate the timeline.<br/>In the report A System-Approach to Data can Help Install Trust and Enable a Net Zero Future DNV considers what role data could play to support the initiation execution and operation of CCS and hydrogen projects.<br/>The research is based on interviews with representatives from across the UK energy supply chain. It focuses in particular on the emerging carbon and hydrogen industries and the cross sectoral challenges they face. It explores how data can facilitate the flow of the product both with respect to fiscal and technical risk matters.<br/>The report is intended for anyone involved in or has an interest in CCUS or hydrogen projects and in how data eco-systems will support the efficient operation and the transition to net-zero.<br/>DNV produced the report for and in partnership with the ODI an organization that advocates for the innovative use of open data to affect positive change across the globe.
Towards a Sustainable Hydrogen Economy: Optimisation-based Framework for Hydrogen Infrastructure Development
Sep 2016
Publication
This work studies the development of a sustainable hydrogen infrastructure that supports the transition towards a low-carbon transport system in the United Kingdom (UK). The future hydrogen demand is forecasted over time using a logistic diffusion model which reaches 50% of the market share by 2070. The problem is solved using an extension of SHIPMod an optimisation-based framework that consists of a multi-period spatially-explicit mixed-integer linear programming (MILP) formulation. The optimisation model combines the infrastructure elements required throughout the different phases of the transition namely economies of scale road and pipeline transportation modes and carbon capture and storage (CCS) technologies in order to minimise the present value of the total infrastructure cost using a discounted cash-flow analysis. The results show that the combination of all these elements in the mathematical formulation renders optimal solutions with the gradual infrastructure investments over time required for the transition towards a sustainable hydrogen economy.
Spatially Resolved Model for Studying Decarbonisation Pathways for Heat Supply and Infrastructure Trade-offs
Jun 2017
Publication
Heat decarbonisation is one of the main challenges of energy system decarbonisation. However existing energy planning models struggle to compare heat decarbonisation approaches because they rarely capture trade-offs between heat supply end-use technologies and network infrastructure at sufficient spatial resolution. A new optimisation model is presented that addresses this by including trade-offs between gas electricity and heat infrastructure together with related supply and end-use technologies with high spatial granularity. The model is applied in case studies for the UK. For the case modelled it is shown that electrification of heat is most cost-effective via district level heat pumps that supply heat networks instead of individual building heat pumps. This is because the cost of reinforcing the electricity grid for installing individual heat pumps does not sufficiently offset heat infrastructure costs. This demonstrates the importance of considering infrastructure trade-offs. When modelling the utilisation of a decarbonised gas the penetration of heat networks and location of district level heat supply technologies was shown to be dependent on linear heat density and on zone topology. This shows the importance of spatial aspects. Scenario-specific linear heat density thresholds for heat network penetration were identified. For the base case penetration of high temperature heat networks was over 50% and 60% by 2050 for linear heat densities over 1500 and 2500 kWh/m. For the case when medium heat temperature networks were additionally available a mix of both networks was observed. Medium temperature heat network penetration was over 20% 30% and 40% for linear heat densities of over 1500 2500 and 3000 kWh/m while high temperature heat network penetration was over 20% and 30% for linear heat densities of under 2000 and 1500 kWh/m respectively.
Neutron Scattering and Hydrogen Storage
Nov 2009
Publication
Hydrogen has been identified as a fuel of choice for providing clean energy for transport and other applications across the world and the development of materials to store hydrogen efficiently and safely is crucial to this endeavour. Hydrogen has the largest scattering interaction with neutrons of all the elements in the periodic table making neutron scattering ideal for studying hydrogen storage materials. Simultaneous characterisation of the structure and dynamics of these materials during hydrogen uptake is straightforward using neutron scattering techniques. These studies will help us to understand the fundamental properties of hydrogen storage in realistic conditions and hence design new hydrogen storage materials.
Possible Hydrogen Transitions in the UK: Critical Uncertainties and Possible Decision Points
Jun 2012
Publication
Many energy system optimization studies show that hydrogen may be an important part of an optimal decarbonisation mix but such analyses are unable to examine the uncertainties associated with breaking the ‘locked-in’ nature of incumbent systems. Uncertainties around technical learning rates; consumer behaviour; and the strategic interactions of governments automakers and fuel providers are particularly acute. System dynamics and agent-based models and studies of historical alternative fuel transitions have furthered our understanding of possible transition dynamics but these types of analysis exclude broader systemic issues concerning energy system evolution (e.g. supplies and prices of low-carbon energy) and the politics of transitions. This paper presents a hybrid approach to assessing hydrogen transitions in the UK by linking qualitative scenarios with quantitative energy systems modelling using the UK MARKAL model. Three possible transition pathways are explored each exploring different uncertainties and possible decision points with modelling used to inform and test key elements of each scenario. The scenarios draw on literature review and participatory input and the scenario structure is based on archetypal transition dynamics drawn from historical energy system transitions reflecting insights relating to innovation system development and resistance to change. Conclusions are drawn about appropriate policy responses.
Green Ammonia as a Spatial Energy Vector: A Review
May 2021
Publication
Green hydrogen is considered a highly promising vector for deep decarbonisation of energy systems and is forecast to represent 20% of global energy use by 2050. In order to secure access to this resource Japan Germany and South Korea have announced plans to import hydrogen; other major energy consumers are sure to follow. Ammonia a promising hydrogen derivative may enable this energy transport by densifying hydrogen at relatively low cost using well-understood technologies. This review seeks to describe a global green ammonia import/export market: it identifies benefits and limitations of ammonia relative to other hydrogen carriers the costs of ammonia production and transport and the constraints on both supply and demand. We find that green ammonia as an energy vector is likely to be critical to future energy systems but that gaps remain in the literature. In particular rigorous analysis of production and transport costs are rarely paired preventing realistic assessments of the delivered cost of energy or the selection of optimum import/export partners to minimise the delivered cost of ammonia. Filling these gaps in the literature is a prerequisite to the development of robust hydrogen and ammonia strategies and to enable the formation of global import and export markets of green fuel
Controlled Autoignition of Hydrogen in a Direct-injection Optical Engine
Mar 2021
Publication
Research into novel internal combustion engines requires consideration of the diversity in future fuels in an attempt to reduce drastically CO2 emissions from vehicles and promote energy sustainability. Hydrogen has been proposed as a possible fuel for future internal combustion engines and can be produced from renewable sources. Hydrogen’s wide flammability range allows higher engine efficiency than conventional fuels with both reduced toxic emissions and no CO2 gases. Most previous work on hydrogen engines has focused on spark-ignition operation. The current paper presents results from an optical study of controlled autoignition (or homogeneous charge compression ignition) of hydrogen in an engine of latest spark-ignition pentroof combustion chamber geometry with direct injection of hydrogen (100 bar). This was achieved by a combination of inlet air preheating in the range 200–400 C and residual gas recirculated internally by negative valve overlap. Hydrogen fuelling was set to various values of equivalence ratio typically in the range / = 0.40–0.63. Crank-angle resolved flame chemiluminescence images were acquired for a series of consecutive cycles at 1000 RPM in order to calculate in-cylinder rates of flame expansion and motion. Planar Laser Induced Fluorescence (LIF) of OH was also applied to record more detailed features of the autoignition pattern. Single and double (i.e. ‘split’ per cycle) hydrogen injection strategies were employed in order to identify the effect of mixture preparation on autoignition’s timing and spatial development. An attempt was also made to review relevant in-cylinder phenomena from the limited literature on hydrogen-fuelled spark-ignition optical engines and make comparisons were appropriate.
The Role of Renewable Hydrogen and Inter-seasonal Storage in Decarbonising Heat – Comprehensive Optimisation of Future Renewable Energy Value Chains
Nov 2018
Publication
Demands for space and water heating constitute a significant proportion of the total energy demands in Great Britain and are predominantly satisfied through natural gas which makes the heat sector a large emitter of carbon dioxide. Renewable hydrogen which can be injected into the gas grid or used directly in processes for generating heat and/or electricity is being considered as a low-carbon alternative energy carrier to natural gas because of its suitability for large-scale long- and short-term storage and low transportation losses all of which help to overcome the intermittency and seasonal variations in renewables. This requires new infrastructures for production storage transport and utilisation of renewable hydrogen – a hydrogen value chain – the design of which involves many interdependent decisions such as: where to locate wind turbines; where to locate electrolysers close to wind generation or close to demands; whether to transport energy as electricity or hydrogen and how; where to locate storage facilities; etc. This paper presents the Value Web Model a novel and comprehensive spatio-temporal mixed-integer linear programming model that can simultaneously optimise the design planning and operation of integrated energy value chains accounting for short-term dynamics inter-seasonal storage and investments out to 2050. It was coupled with GIS modelling to identify candidate sites for wind generation and used to optimise a number of scenarios for the production of hydrogen from onshore and offshore wind turbines in order to satisfy heat demands. The results show that over a wide range of scenarios the optimal pathway to heat is roughly 20% hydrogen and 80% electricity. Hydrogen storage both in underground caverns and pressurised tanks is a key enabling technology.
Effect of State of Charge on Type IV Hydrogen Storage Tank Rupture in a Fire
Sep 2021
Publication
The use of hydrogen storage tanks at 100% of nominal working pressure NWP is expected only after refuelling. Driving between refuellings is characterised by the state of charge SoC<100%. There is experimental evidence that Type IV tanks tested in a fire at initial pressures below one-third of its NWP depending on a fire source were leaking without rupture. This paper aims at understanding this phenomenon and the development of a predictive model. The numerical research has demonstrated that the heat transfer from fire through the composite overwrap is sufficient to melt the polymer liner. This initiates hydrogen microleaks through the composite wall before it loses the load-bearing ability when the resin degrades deep enough to cause the tank to rupture. The dependence of tank fire-resistance rating (FRR) on the SoC is presented for tanks of volume in the range 36-244 L. The tank wall thickness non-uniformity i.e. thinner composite at the dome area is identified as a serious issue for tank’s fire resistance that must be addressed by tank manufacturers and OEMs. The effect of the burst pressure ratio on FRR is investigated. It is concluded that thermal parameters of the composite wall i.e. decomposition heat and temperatures play a vital role in simulations of tank failure and thus FRR.
Hydrogen Informed Gurson Model for Hydrogen Embrittlement Simulation
Jul 2019
Publication
Hydrogen-microvoid interactions were studied via unit cell analyses with different hydrogen concentrations. The absolute failure strain decreases with hydrogen concentration but the failure loci were found to follow the same trend dependent only on stress triaxiality in other words the effects of geometric constraint and hydrogen on failure are decoupled. Guided by the decoupling principle a hydrogen informed Gurson model is proposed. This model is the first practical hydrogen embrittlement simulation tool based on the hydrogen enhanced localized plasticity (HELP) mechanism. It introduces only one additional hydrogen related parameter into the Gurson model and is able to capture hydrogen enhanced internal necking failure of microvoids with accuracy; its parameter calibration procedure is straightforward and cost efficient for engineering purpose
Fuel Cells for Shipping: To Meet On-board Auxiliary Demand and Reduce Emissions
Feb 2021
Publication
The reduction of harmful emissions from the international shipping sector is necessary. On-board energy demand can be categorised as either: propulsion or auxiliary services. Auxiliary services contribute a significant proportion of energy demand with major loads including: compressors pumps and HVAC (heating ventilation and air-conditioning). Typically this demand is met using the same fuel source as the main propulsion (i.e. fossil fuels). This study has analysed whether emissions from large scale ships could feasibly be reduced by meeting auxiliary demand by installing a hydrogen fuel cell using data from an LNG tanker to develop a case study. Simulations have shown that for a capacity of 10 x 40ft containers of compressed hydrogen the optimal fuel cell size would be 3 MW and this could save 10600 MWh of fossil fuel use equivalent to 2343 t of CO2. Hence this could potentially decarbonise a significant proportion of shipping energy demand. Although there are some notable technical and commercial considerations such as fuel cell lifetime and capital expenditure requirements. Results imply that if auxiliary loads could be managed to avoid peaks in demand this could further increase the effectiveness of this concept.
Our Green Print: Future Heat for Everyone
Jul 2021
Publication
Green Print - Future Heat for Everyone draws together technical consumer and economic considerations to create a pioneering plan to transition 22 million UK homes to low carbon heat by 2050.<br/>Our Green Print underlines the scale of the challenge ahead acknowledging that a mosaic of low carbon heating solutions will be required to meet the needs of individual communities and setting out 12 key steps that can be taken now in order to get us there<br/>The Climate Change Committee (CCC) estimates an investment spend of £250bn to upgrade insulation and heating in homes as well as provide the infrastructure to deliver the energy.<br/>This is a task of unprecedented scale the equivalent of retro-fitting 67000 homes every month from now until 2050. In this Report Cadent takes the industry lead in addressing the challenge.
Towards 2050 Net Zero Carbon Infrastructure: A Critical Review of Key Decarbonisation Challenges in the Domestic Heating Sector in the UK
Nov 2023
Publication
One of the most challenging sectors to meet “Net Zero emissions” target by 2050 in the UK is the domestic heating sector. This paper provides a comprehensive literature review of the main challenges of heating systems transition to low carbon technologies in which three distinct categories of challenges are discussed. The first challenge is of decarbonizing heat at the supply side considering specifically the difficulties in integrating hydrogen as a low-carbon heating substitute to the dominant natural gas. The next challenge is of decarbonizing heat at the demand side and research into the difficulties of retrofitting the existing UK housing stock of digitalizing heating energy systems as well as ensuring both retrofits and digitalization do not disproportionately affect vulnerable groups in society. The need for demonstrating innovative solutions to these challenges leads to the final focus which is the challenge of modeling and demonstrating future energy systems heating scenarios. This work concludes with recommendations for the energy research community and policy makers to tackle urgent challenges facing the decarbonization of the UK heating sector.
The Effect of Symmetrically Tilt Grain Boundary of Aluminum on Hydrogen Diffusion
Feb 2022
Publication
High-strength aluminum alloys are widely used in industry. Hydrogen embrittlement greatly reduces the performance and service safety of aluminum alloys. The hydrogen traps in aluminum profoundly affect the hydrogen embrittlement of aluminum. Here we took a coincidence-site lattice (CSL) symmetrically tilted grain boundary (STGB) Σ5(120)[001] as an example to carry out molecular dynamics (MD) simulations of hydrogen diffusion in aluminum at different temperatures and to obtain results and rules consistent with the experiment. At 700 K three groups of MD simulations with concentrations of 0.5 2.5 and 5 atomic % hydrogen (at. % H) were carried out for STGB models at different angles. By analyzing the simulation results and the MSD curves of hydrogen atoms we found that in the low hydrogen concentration of STGB models the grain boundaries captured hydrogen atoms and hindered their movement. In high-hydrogen-concentration models the diffusion rate of hydrogen atoms was not affected by the grain boundaries. The analysis of the simulation results showed that the diffusion of hydro-gen atoms at the grain boundary is anisotropic.
Impact of Hydrogen Liquefaction on Hydrogen Fuel Quality for Transport Applications (ISO-14687:2019)
Aug 2022
Publication
Decarbonisation of the energy sector is becoming increasingly more important to the reduction in climate change. Renewable energy is an effective means of reducing CO2 emissions but the fluctuation in demand and production of energy is a limiting factor. Liquid hydrogen allows for long-term storage of energy. Hydrogen quality is important for the safety and efficiency of the end user. Furthermore the quality of the hydrogen gas after liquefaction has not yet been reported. The purity of hydrogen after liquefaction was assessed against the specification of Hydrogen grade D in the ISO-14687:2019 by analysing samples taken at different locations throughout production. Sampling was carried out directly in gas cylinders and purity was assessed using multiple analytical methods. The results indicate that the hydrogen gas produced from liquefaction is of a higher purity than the starting gas with all impurities below the threshold values set in ISO-14687:2019. The amount fraction of water measured in the hydrogen sample increased with repeated sampling from the liquid hydrogen tank suggesting that the sampling system used was affected by low temperatures (−253 ◦C). These data demonstrate for the first time the impact of liquefaction on hydrogen purity assessed against ISO-14687:2019 showing that liquified hydrogen is a viable option for long-term energy storage whilst also improving quality.
Impact of Local Emergency Demand Response Programs on the Operation of Electricity and Gas Systems
Mar 2022
Publication
With increasing attention to climate change the penetration level of renewable energy sources (RES) in the electricity network is increasing. Due to the intermittency of RES gas‐fired power plants could play a significant role in backing up the RES in order to maintain the supply– demand balance. As a result the interaction between gas and power networks are significantly in‐ creasing. On the other hand due to the increase in peak demand (e.g. electrification of heat) net‐ work operators are willing to execute demand response programs (DRPs) to improve congestion management and reduce costs. In this context modeling and optimal implementation of DRPs in proportion to the demand is one of the main issues for gas and power network operators. In this paper an emergency demand response program (EDRP) is implemented locally to reduce the con‐ gestion of transmission lines and gas pipelines more efficiently. Additionally the effects of optimal implementation of local emergency demand response program (LEDRP) in gas and power networks using linear and non‐linear economic models (power exponential and logarithmic) for EDRP in terms of cost and line congestion and risk of unserved demand are investigated. The most reliable demand response model is the approach that has the least difference between the estimated demand and the actual demand. Furthermore the role of the LEDRP in the case of hydrogen injection instead of natural gas in the gas infrastructure is investigated. The optimal incentives for each bus or node are determined based on the power transfer distribution factor gas transfer distribution factor available electricity or gas transmission capability and combination of unit commitment with the LEDRP in the integrated operation of these networks. According to the results implementing the LEDRP in gas and power networks reduces the total operation cost up to 11% and could facilitate hydrogen injection to the network. The proposed hybrid model is implemented on a 24‐bus IEEE electricity network and a 15‐bus gas network to quantify the role and value of different LEDRP models.
Hydrogen Emissions from the Hydrogen Value Chain-emissions Profile and Impact to Global Warming
Feb 2022
Publication
Future energy systems could rely on hydrogen (H2) to achieve decarbonisation and net-zero goals. In a similar energy landscape to natural gas H2 emissions occur along the supply chain. It has been studied how current gas infrastructure can support H2 but there is little known about how H2 emissions affect global warming as an indirect greenhouse gas. In this work we have estimated for the first time the potential emission profiles (g CO2eq/MJ H2HHV) of H2 supply chains and found that the emission rates of H2 from H2 supply chains and methane from natural gas supply are comparable but the impact on global warming is much lower based on current estimates. This study also demonstrates the critical importance of establishing mobile H2 emission monitoring and reducing the uncertainty of short-lived H2 climate forcing so as to clearly address H2 emissions for net-zero strategies.
Towards a 100% Hydrogen Domestic Gas Network: Regulatory and Commercial Barriers to the First Demonstrator Project in the United Kingdom
May 2022
Publication
In the debate on the decarbonisation of heat renewable electricity tends to play a much more dominant role than green gases despite the potential advantages of gas in terms of utilising existing transportation networks and end-use appliances. Informed comparisons are hampered by information asymmetry; the renewable electricity has seen a huge grid level deployment whereas low-carbon hydrogen or bio-methane have been limited to some small stand-alone trials. This paper explores the regulatory and commercial challenges of implementing the first UK neighbourhood level 100% low-carbon hydrogen demonstration project. We draw on existing literature and action research to identify the key practical barriers currently hindering the ability of strategically important actors to accelerate the substitution of natural gas with low carbon hydrogen in local gas networks. This paper adds much needed contextual depth to existing generic and theoretical understandings of low-carbon hydrogen for heat transition feasibility. The learnings from pilot projects about the exclusion of hydrogen calorific value from the Local Distribution Zone calorific value calculation Special Purpose Vehicle companies holding of liability and future costs to consumers need to be quickly transferred into resilient operational practice or gas repurposing projects will continue to be less desirable than electrification using existing regulations and with more rapid delivery
A Zero Carbon Route to the Supply of High-temperature Heat Through the Integration of Solid Oxide Electrolysis Cells and H2–O2 Combustion
Aug 2022
Publication
Previously suggested options to achieve carbon neutrality involve the use of fossil fuels with carbon capture or exploiting biomass as sources of energy. Industrial high-temperature heating could possibly exploit electrical heating or combustion using hydrogen. However it is difficult to replace all the current coal or natural gas furnaces with these options for chemical industry. In this work a method that integrates solid oxide electrolysis cells (SOEC) and H2–O2 combustion is proposed and the related parameters are modelled to analyze their impacts. There is no waste heat and waste emissions in the proposed option and all substances are recycled. Unlike previous research the heat required for SOEC operation is generated from H2 combustion. The best working condition is under thermoneutral voltage and the highest electricity-to-thermal efficiency that can be achieved is 86.88% under a current density of 12000 A/m2 and operating temperature of 750 ◦C. Ohmic overpotential has the greatest effect on electricity consumption and the anode activation overpotential is the second most important option. Increasing combustion product temperature cannot significantly improve thermal efficiency but can raise the available maximum thermal energy.
Progress in Electrical Energy Storage System: A Critical Review
Jan 2009
Publication
Electrical energy storage technologies for stationary applications are reviewed. Particular attention is paid to pumped hydroelectric storage compressed air energy storage battery flow battery fuel cell solar fuel superconducting magnetic energy storage flywheel capacitor/supercapacitor and thermal energy storage. Comparison is made among these technologies in terms of technical characteristics applications and deployment status.
No more items...